• ПРЕДЕ́Л , -а, м.

    1. Край, конечная часть чего-л. Здесь крайний предел Пермской губернии. Мамин-Сибиряк, Дружки. Казалось, что нет и не будет предела этим лесам. Белов, Кануны. || перен. Конец, окончание, завершение чего-л. [Больной] не думал о своем близком конце, - о том пределе, к которому он несся с головокружительной быстротой. Гладков, Энергия. Она была для них старым, подходящим к пределу жизни человеком, которому оставалась последняя женская доля - материнская забота. Лавренев, Старуха. Только катастрофа могла бы поставить предел разладу Никиты с самим собою. Федин, Братья.

    2. мн. ч. (преде́лы , -ов ). Естественная или условная черта, являющаяся границей какой-л. территории; рубеж. На востоке он [Святослав] раздвинул пределы русской земли до тех границ, которые через пятьсот лет пришлось снова очерчивать Ивану Грозному. А. Н. Толстой, Откуда пошла русская земля. Оказавшись за пределами отчей земли, Шаляпин умер от ностальгии - тоски по родине. Грибачев, Березка и океан. || чего или какие. Местность, пространство, заключенные в какие-л. границы. Ашагинские леса приняли охотников в свои заповедные пределы. Тихонов, Двойная радуга. Этой ночью весеннею белой Соловьи славословьем грохочущим Оглашают лесные пределы. Пастернак, Белая ночь. Постепенно камерная музыка вышла за пределы особняков богатых и знатных людей и стала исполняться в концертных залах, где мы слушаем ее и в наши дни. Кабалевский, Про трех китов и про многое другое. || Трад.-поэт. Край, страна. А князь тем ядом напитал Свои послушливые стрелы И с ними гибель разослал К соседям в чуждые пределы. Пушкин, Анчар. Я помню, как солнце горело, на зимний взойдя небосвод, когда из далеких пределов в Москву прилетел самолет. Смеляков, Памяти Димитрова. || Промежуток времени, ограниченный какими-л. сроками (обычно в сочетании в пределах ). Говорят, что в Оренбург ездят по чугунке, и, может быть, я поеду, но все в пределах 14 дней. Л. Толстой, Письмо С. А. Толстой, 4 сент. 1876.

    3. обычно мн. ч. (преде́лы , -ов ) перен. Мера, граница чего-л.; рамки. В пределах приличия. Наконец, всякому терпению 365 есть же пределы. Писарев, Посмертные стихотворения Гейне. - Пока что я не выхожу за пределы предоставленных мне законом прав командующего флотом. Степанов, Порт-Артур. Познания о прошлом своего отечества у Федора Андреевича были весьма скромны, в основном, в пределах «краткого курса». Е. Носов, Не имей десять рублей. || Высшая степень чего-л. Предел мечтаний. Силы людей, физические и моральные, были доведены до предела изнеможения. В. Кожевников, Парашютист. Страна моя, прекрасен твой порыв Во всем достичь последнего предела! Винокуров, «Интернационал».

    4. Мат. Постоянная величина, к которой приближается переменная величина, зависящая от другой переменной величины, при определенном изменении последней. Предел числовой последовательности.

    На пределе - 1) в крайней степени напряжения. Нервы на пределе; 2) в крайней степени раздражения. [Галя:] Я сама его боюсь сегодня. Он на пределе. Погодин, Цветы живые.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. - 4-е изд., стер. - М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия):

Приложение

Пределы онлайн на сайт для полноценного закрепления студентами и школьниками пройденного материала. Как найти предел онлайн, используя наш ресурс? Это сделать очень просто, достаточно всего лишь правильно записать исходную функцию с переменной x, выбрать из селектора нужную бесконечность и нажать кнопку "Решение". В случае, когда предел функции должен быть вычислен в некоторой точке x, то вам нужно указать числовое значение этой самой точки. Ответ на решение предела получите в считанные секунды, другими словами - мгновенно. Однако, если вы укажете некорректные данные, то сервис автоматически сообщим вам об ошибке. Исправите введенную ранее функцию и получите верное решение предела. Для решения пределов применяются все возможные приемы, особенно часто используется метод Лопиталя, так как он универсален и приводит к ответу быстрее, чем другие способы вычисления предела функции. Интересно рассматривать примеры, в которых присутствует модуль. Кстати, по правилам нашего ресурса, модуль обозначается классической в математике вертикальной чертой "|" или Abs(f(x)) от латинского absolute. Часто решение предела требуется для вычисления суммы числовой последовательности. Как всем известно, нужно всего лишь правильно выразить частичную сумму исследуемой последовательности, а дальше все гораздо проще, благодаря нашему бесплатному сервису сайт, так как вычисление предела от частичной суммы это и есть итоговая сумма числовой последовательности. Вообще-то говоря, теория предельного перехода - это основное понятие всего математического анализа. Все базируется именно на предельных переходах, то есть решение пределов заложено в основу науки математического анализа. В интегрировании также применяется предельный переход, когда интеграл по теории представляется суммой неограниченного числа площадей. Где присутствует неограниченное число чего-либо, то есть стремление количества объектов к бесконечности, то всегда вступает в силу теория предельных переходов, а в общепринятом виде это решение знакомых всем пределов. Решение пределов онлайн на сайте сайт - это уникальный сервис для получения точного и мгновенного ответа в режиме реального времени. Предел функции (предельное значение функции) в заданной точке, предельной для области определения функции, - такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке. Не редко, а мы бы даже сказали очень часто, у студентов возникает вопрос решения пределов онлайн при изучении математического анализа. Задаваясь вопросом о решении предела онлайн с подробным решением исключительно в особых случаях, становится ясно, что не справиться со сложной задачей без применения вычислительного калькулятора пределов. Решение пределов нашим сервисом - залог точности и простоты.. Предел функции является обобщением понятия предела последовательности: изначально под пределом функции в точке понимали предел последовательности элементов области значений функции, составленной из образов точек последовательности элементов области определения функции, сходящейся к заданной точке (предел в которой рассматривается); если такой предел существует, то говорят, что функция сходится к указанному значению; если такого предела не существует, то говорят, что функция расходится. Решение пределов онлайн для пользователей становится легким ответом при том условии, что они знают как решить предел онлайн с помощью сайт. Будем сосредоточенны и не позволим ошибкам доставлять нам неприятности в виде неудовлетворительных оценок. Как всякое решение пределов онлайн, ваша задача будет представлена в удобном и понятном виде, с подробным решением, с соблюдением всех норм и правил получения решения. Наиболее часто определение предела функции формулируют на языке окрестностей. Тут пределы функции рассматриваются только в точках, предельных для области определения функции, означая, что в каждой окрестности данной точки есть точки из области определения этой самой функции. Это позволяет говорить о стремлении аргумента функции к данной точке. Но предельная точка области определения не обязана принадлежать самой области определения и это доказывается решением предела: например, можно рассматривать предел функции на концах открытого интервала, на котором определена функция. При этом сами границы интервала в область определения не входят. В этом смысле система проколотых окрестностей данной точки - частный случай такой базы множеств. Решение пределов онлайн с подробным решением производится в реальном времени и применяя формулы в явно заданном виде.. Вы сможете сэкономить время, а главное деньги, так как мы не просим за это вознаграждение. Если в некоторой точке области определения функции существует предел и решение этого предела равно значению функции в данной точке, то функция оказывается непрерывной в такой точке. На нашем сайте решение пределов доступно онлайн двадцать четыре часа в сутки каждый день и каждую минуту.. Использовать калькулятор пределов очень важно и главное применять его каждый раз, как только понадобится проверка знаний. Студентам явная польза от всего этого функционала. Вычислить предел, используя и применяя только теорию, не всегда получится так просто, как говорят опытные студенты математических факультетов ВУЗов страны. Факт остается фактом при наличии цели. Обычно найденное решение пределов неприменимо локально для постановки задач. Ликовать станет студент, как только обнаружит для себя калькулятор пределов онлайн в интернете и в бесплатном доступе, и не только для одного себя, но для всех желающих. Назначение стоит расценивать как математику, в общем, её понимании. Если запросить в Интернете, как найти предел онлайн подробно, то масса появляющихся в результате запроса сайтов не помогут так, как это сделаем именно мы. Разность сторон приумножается эквивалентности происшествия. Исконно законный предел функции необходимо определять их постановки самой математической задачи. Гамильтон был прав, однако стоит учитывать и высказывания современников. Отнюдь вычисление пределов онлайн не такая сложная задача, как кому-то может показаться на первый взгляд.. Чтобы не сломать истинность непоколебимых теорий. Возвращаясь к начальной ситуации, вычислить предел необходимо быстро, качественно и в аккуратно оформленном виде. Разве возможно было бы сделать иначе? Такой подход очевиден и оправдан. Калькулятор пределов создан для увеличения знаний, улучшения качества написания домашнего задания и подъему общего настроения среди учащихся, так будет правильно для них. Просто надо мыслить как можно быстрее и будет разум торжествовать. Явно сказать про пределы онлайн интерполяционными терминами очень изысканное занятие для профессионалов своего ремесла. Прогнозируем отношение системы внеплановых разностей в точках пространства. И вновь задача сводится к неопределенности, исходя из того, что предел функции существует на бесконечности и в некой окрестности локальной точки на заданной оси абсцисс после аффинного преобразования начального выражения. Легче будет анализировать восхождение точек на плоскости и на вершине пространства. В общем положении вещей не сказано про вывод математической формула, как в натуре, так и в теории, чтобы калькулятор пределов онлайн использовался по назначению в этом смысле. Без определения предела онлайн считаю затруднительным дальнейшие вычисления в области исследования криволинейного пространства. Было бы не легче с точки зрения нахождения истинного правильного ответа. Разве невозможно вычислить предел, если заданная точка в пространстве является неопределенной заранее? Опровергнем наличие ответов за областью исследования. Про решение пределов можно рассуждать с точки зрения математического анализа как начало исследования последовательности точек на оси. Может быть неуместным сам факт действия вычислений. Числа представимы в виде бесконечной последовательности и отождествлены начальной записи после того, как мы решили предел онлайн подробно согласно теории. Как раз обосновано в пользу наилучшего значения. Результат предела функции, как явная ошибка неправильно поставленной задачи, может исказить представление о реальном механическом процессе неустойчивой системы. Возможность выразить значение прямо в область взглядов. Сопоставив онлайн пределу аналогичную запись одностороннего предельного значения, лучше избежать выражения в явном виде по формулам приведения. Кроме начала пропорционального выполнения задания. Полином разложим после того, как удастся вычислить предел односторонний и записать его на бесконечности. Простые размышления приводят в математическом анализе к истинному результату. Простое решение пределов зачастую сводится к иной степени равенства исполняемых противолежащих математических иллюстраций. Линии и числа Фибоначчи расшифровали калькулятор пределов онлайн, в зависимости от этого можно заказать непредельное вычисление и может быть сложность отступит на задний план. Идет процесс развертывания графика на плоскости в срезе трехмерного пространства. Это и привило к потребности различных взглядов на сложную математическую задачу. Однако результат не заставит себя ждать. Однако, происходящий процесс реализации восходящего произведения, искажает пространство линий и записывает онлайн предел для ознакомления с постановкой задачей. Естественность протекания процесса накапливания задач обуславливает потребность в знаниях всех областей математических дисциплин. Отличный калькулятор пределов станет незаменимым инструментом в руках умелых студентов и они по достоинству оценят все его преимущества перед аналогами цифрового прогресса. В школах для чего-то пределы онлайн называют не так, как в институтах. Вырастет значение функции от изменения аргумента. Еще Лопиталь говорил - предел функции найти это лишь полдела, надо задачу довести до логического завершения и представить ответ в развернутом виде. Реальности адекватно присутствие фактов по делу. С пределом онлайн связаны исторически важные аспекты математических дисциплин и составляют основу изучения теории чисел. Кодировка страницы в математических формулах доступна на клиентском языке в браузере. Как бы вычислить предел допустимым законным методом, не заставив функцию видоизменяться по направлению оси абсцисс. Вообще реальность пространства зависит не только от выпуклости функции или её вогнутости. Исключите из задачи все неизвестные и решение пределов сведет к наименьшим затратам имеющихся у вас математических ресурсов. Решение постановочной задачи исправит функционал на все сто процентов. Происходящее математическое ожидание выявит предел онлайн подробно относительно отклонения от наименьшего значимого особенного отношения. Прошло дня три после принятого математического решения в пользу науки. Это действительно полезное занятие. Без причины отсутствия предела онлайн будет означать расхождение в общем подходе к решению ситуационных проблем. Лучшее название одностороннего предела с неопределенностью 0/0 будет востребовано в будущем. Ресурс может быть не только красивым и хорошим, но также и полезным, когда сможет вычислить предел за вас. Великий ученый, будучи студентом, исследовал функции для написания научной работы. Прошло десять лет. Перед разными нюансами стоит однозначно прокомментировать математическое ожидание в пользу того, что предел функции заимствует расхождение принципалов. На заказанную контрольную работу откликнулись. В математике исключительную позицию в обучении занимает, как ни странно, исследование онлайн предела с взаимообразными сторонними отношениями. Как в обычных случаях и бывает. Можно ничего не воспроизводить. Проанализировав подходы изучения студентов к математическим теориям, мы основательно оставим решение пределов на пост завершающий этап. В этом заключается смысл нижесказанного, исследуйте текст. Преломление однозначно определяет математическое выражение как суть полученной информации. предел онлайн есть суть в определении истинного положения математической системы относительности разнонаправленных векторов. В этом смысле разумею выразить собственное мнение. Как в прошлой задаче. Отличительный предел онлайн подробно распространяет свое влияние на математический взгляд последовательного изучения программного анализа в области исследования. В разрезе с теорией, математика нечто высшее, чем просто наука. Лояльность подтверждается действиями. Не остается возможным намеренно прервать цепочку последовательных чисел, начинающих свое движение вверх, если некорректно вычислить предел. Двусторонняя поверхность выражена в натуральном виде во всю величину. За возможностью исследовать математический анализ предел функции заключает последовательность функционального ряда как эпсилон-окрестность в заданной точке. В знак отличия от теории функций, не исключены погрешности в вычислениях, однако это предусмотрено ситуацией. Деление по пределу онлайн задачи можно расписать функцию переменного расхождения для быстрого произведения нелинейной системы трехмерного пространства. Тривиальный случай заложен в основу функционирования. Не надо быть студентом, чтобы проанализировать данный случай. Совокупность моментов происходящего вычисления, изначально решение пределов определяет как функционирование всей целостной системы прогресса вдоль оси ординат на множественных значениях чисел. Берем за базовую величину как можно наименьшее математическое значение. Вывод очевиден. Расстояние между плоскостями поможет расшириться в теории онлайн пределов, поскольку применение метода расходящегося вычисления приполярного аспекта значимости не несет в себе заложенного смысла. Отличный выбор, если калькулятор пределов расположен на сервере, это можно принимать как есть без искажения значимости поверхностного изменения площадей, а то выше станет задача о линейности. Полный математический анализ выявил неустойчивость системы наряду с её описанием в области наименьшей окрестности точки. Как любой предел функции по оси пересечения ординат и абсцисс, можно заключить числовые значения объектов в некоторую минимальную окрестность по распределению функциональности процесса исследования. Распишем задачу по пунктам. Идет разделение по этапам написания. Академические заявления, что вычислить предел реально сложно или совсем не совсем просто, подкрепляются анализом математических взглядов всех без исключения студентов и аспирантов. Возможные промежуточные результаты не заставят себя ожидать долгое время. Указанный выше предел онлайн подробно исследуют абсолютный минимум системной разности объектов, за которыми линейность пространства математики искажается. Большую по площади сегментацию площади не используют студенты для вычисления множественного разногласия после записи калькулятора пределов онлайн по вычитаниям. После начала запретим студентам пересмотреть задачи на исследование пространственного окружения в математике. Раз уже предел функции мы находили, то давайте построим график её исследования на плоскости. Выделим оси ординат особым цветом и покажем направление линий. Устойчивость есть. Неопределенность присутствует долгое время на протяжении написания ответа. Вычислить предел функции в точке просто проанализировав разность пределов на бесконечности при начальных условиях. Этот способ известен не каждому пользователю. Нужен математический анализ. Решение пределов накапливает опыт в умах поколений на многие год в вперед. Не усложнять процесс невозможно. За его вывод отвечают студенты всех поколений. Может начать изменяться все вышесказанное при отсутствии закрепляющего аргумента по позиции функций около некоторой точки, отстающей от калькуляторов пределов по разности мощности вычисления. Проведем исследование функции для получения результирующего ответа. Вывод не очевиден. Исключив из общего числа неявно заданные функции после преобразования математических выражений, останется последний шаг, чтобы правильно и с высокой точностью найти пределы онлайн. Положено на проверку приемлемость выданного решения. Процесс продолжается. Локировать последовательность в изоляции от функций и, применив свой колоссальный опыт, математики должны вычислить предел за обоснованием правильности направления в исследовании. Не нужен такому результату теоретический подъем. Изменить пропорцию чисел внутри некоторой окрестности не нулевой точки на оси абсцисс в сторону калькулятор пределов онлайн изменчивый пространственный угол наклона под написанный задачей в математике. Свяжем две области в пространстве. Разногласия решебников по поводу того как предел функции набирает свойства односторонних значений в пространстве, не может остаться без внимания усиленных подконтрольных выступлений студентов. Направление в математике предел онлайн занял одну из наименьших оспариваемых позиций по поводу неопределенности в вычислениях этих самых пределов. Выучить наизусть студенту поможет на ранней ступени науки калькулятор пределов онлайн за высотой треугольников равнобедренных и кубов со стороной в три радиуса окружности. Оставим на совести учеников решение пределов в исследовании функционирующей математической ослабляемой системы со стороны плоскости исследования. На теории чисел взгляд студента неоднозначен. Каждому свое мнение присуще. Правильное направление в изучении математики поможет вычислить предел в истинном смысле, как это заведено в ВУЗах продвинутых стран. Котангенс в математике вычисляется как калькулятор пределов и есть отношение двух других элементарных тригонометрических функций, а именно косинуса и синуса от аргумента. В этом заключено решение пополам сегментов. Другой подход навряд ли решит ситуацию в пользу прошлого момента. Можно долго говорить, как предел онлайн подробно решать без осмысления очень сложно и бесполезно, однако такой подход склонен к наращиванию внутренней дисциплины студентов в лучшую сторону.

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

Теория пределов - один из разделов математического анализа, который одним под силу освоить, другие с трудом вычисляют пределы. Вопрос нахождения пределов является достаточно общим, поскольку существуют десятки приемов решения пределов различных видов. Одни и те же предела можно найти как по правилу Лопиталя, так и без него. Бывает, что расписание в ряд бесконечно малых функций позволяет быстро получить нужный результат. Существуют набор приемов и хитростей, позволяющих найти предел функции любой сложности. В данной статье попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике. Теорию и определение предела мы здесь давать не будем, в интернете множество ресурсов где это разжевано. Поэтому займемся практическим вычислениям, именно здесь у Вас и начинается "не знаю! Не умею! Нас не учили!"

Вычисление пределов методом подстановки

Пример 1. Найти предел функции
Lim((x^2-3*x)/(2*x+5),x=3).

Решение: Такого сорта примеры по теории вычисляют обычной подстановкой

Предел равен 18/11.
Ничего сложного и мудрого в таких пределах нет - подставили значение, вычислили, записали предел в ответ. Однако на базе таких пределов всех приучают, что прежде всего нужно подставить значение в функцию. Далее пределы усложняют, вводят понятие бесконечности, неопределенности и тому подобные.

Предел с неопределенностью типа бесконечность разделить на бесконечность. Методы раскрытия неопределенности

Пример 2. Найти предел функции
Lim((x^2+2x)/(4x^2+3x-4),x=infinity).
Решение: Задан предел вида полином разделить на полином, причем переменная стремится к бесконечности

Простая подстановка значения к которому следует переменная найти пределов не поможет, получаем неопределенность вида бесконечность разделить на бесконечность.
Пот теории пределов алгоритм вычисления предела заключается в нахождении наибольшего степени "икс" в числителе или знаменателе. Далее на него упрощают числитель и знаменатель и находят предел функции

Поскольку значение стремятся к нулю при переменной к бесконечности то ими пренебрегают, или записывают в конечный выражение в виде нулей

Сразу из практики можно получить два вывода которые являются подсказкой в вычислениях. Если переменная стремится к бесконечности и степень числителя больше от степени знаменателя то предел равен бесконечности. В противном случае, если полином в знаменателе старшего порядка чем в числителе предел равен нулю.
Формулами предел можно записать так

Если имеем функцию вида обычный поленом без дробей то ее предел равен бесконечности

Следующий тип пределов касается поведения функций возле нуля.

Пример 3. Найти предел функции
Lim((x^2+3x-5)/(x^2+x+2), x=0).
Решение: Здесь уже выносить старший множитель полинома не требуется. С точностью до наоборот, необходимо найти наименьший степень числителя и знаменателя и вычислить предел

Значение x^2; x стремятся к нулю когда переменная стремится к нулю Поэтому ими пренебрегают, таким образом получим

что предел равен 2,5.

Теперь Вы знаете как найти предел функции вида полином разделить на полином если переменная стремится к бесконечности или 0. Но это лишь небольшая и легкая часть примеров. Из следующего материала Вы научитесь как раскрывать неопределенности пределов функции .

Предел с неопределенностью типа 0/0 и методы его вычислений

Сразу все вспоминают правило согласно которому делить на ноль нельзя. Однако теория пределов в этом контексте подразумеваем бесконечно малые функции.
Рассмотрим для наглядности несколько примеров.

Пример 4. Найти предел функции
Lim((3x^2+10x+7)/(x+1), x=-1).

Решение: При подстановке в знаменатель значения переменной x = -1 получим ноль, то же самое получим в числителе. Итак имеем неопределенность вида 0/0.
Бороться с такой неопределенностью просто: нужно разложить полином на множители, а точнее выделить множитель, который превращает функцию в ноль.

После разложения предел функции можно записать в виде

Вот и вся методика вычисления предела функции. Так же поступаем если есть предел вида многочлен разделить на многочлен.

Пример 5. Найти предел функции
Lim((2x^2-7x+6)/(3x^2-x-10), x=2).

Решение: Прямая подстановка показывает
2*4-7*2+6=0;
3*4-2-10=0

что имеем неопределенность типа 0/0 .
Разделим полиномы на множитель которій вносит особенность


Есть преподаватели которые учат, что полиномы 2 порядка то есть вида "квадратные уравнения" следует решать через дискриминант. Но реальная практика показывает что это дольше и запутаннее, поэтому избавляйтесь особенности в пределах по указанному алгоритму. Таким образом записываем функцию в виде простых множителей и вічисляем в предел

Как видите, ничего сложного в исчислении таких пределов нет. Делить многочлены Вы на момент изучения пределов умеете, по крайней мере согласно программе должны уже пройти.
Среди задач на неопределенность типа 0/0 встречаются такие в которых нужно применять формулы сокращенного умножения. Но если Вы их не знаете, то делением многочлена на одночлен можно получить нужную формулу.

Пример 6. Найти предел функции
Lim((x^2-9)/(x-3), x=3).
Решение: Имеем неопределенность типа 0/0 . В числителе применяем формулу сокращенного умножения

и вычисляем нужній предел

Метод раскрытия неопределенности умножением на сопряженное

Метод применяют к пределам в которіхнеопределенность порождают иррациональные функции. Числитель или знаменатель превращается в точке вычисления в ноль и неизвестно как найти границу.

Пример 7. Найти предел функции
Lim((sqrt(x+2)-sqrt(7x-10))/(3x-6), x=2).
Решение:
Представим переменную в формулу предела

При подстановки получим неопределенность типа 0/0.
Согласно теории пределов схема обхода данной особенности заключается в умножении иррационального выражения на сопряженное. Чтобы выражение не изменилось знаменатель нужно разделить на такое же значение

По правилу разности квадратов упрощаем числитель и вычисляем предел функции

Упрощаем слагаемые, создающие особенность в пределе и выполняем подстановку

Пример 8. Найти предел функции
Lim((sqrt(x-2)-sqrt(2x-5))/(3-x), x=3).
Решение: Прямая подстановка показывает что предел имеет особенность вида 0/0.

Для раскрытия умножаем и делим на сопряженное к числителю

Записываем разницу квадратов

Упрощаем слагаемые которые вносят особенность и находим предел функции

Пример 9. Найти предел функции
Lim((x^2+x-6)/(sqrt(3x-2)-2), x=2).
Решение: Подставим двойку в формулу

Получим неопределенность 0/0 .
Знаменатель нужно умножить на сопряженный выражение, а в числителе решить квадратное уравнение или разложить на множители, учитывая особенность. Поскольку известно, что 2 является корнем, то второй корень находим по теореме Виета

Таким образом числитель запишем в виде

и подставим в предел

Сведя разницу квадратов избавляемся особенности в числителе и знаменателе

Приведенным образом можно избавиться особенности во многих примерах, а применение надо замечать везде где заданная разница корней превращается в ноль при подстановке. Другие типы пределов касаются показательных функций, бесконечно малых функций, логарифмов, особых пределов и других методик. Но об этом Вы сможете прочитать в перечисленных ниже статьях о пределах.

Первым замечательным пределом именуют следующее равенство:

\begin{equation}\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1 \end{equation}

Так как при $\alpha\to{0}$ имеем $\sin\alpha\to{0}$, то говорят, что первый замечательный предел раскрывает неопределённость вида $\frac{0}{0}$. Вообще говоря, в формуле (1) вместо переменной $\alpha$ под знаком синуса и в знаменателе может быть расположено любое выражение, - лишь бы выполнялись два условия:

  1. Выражения под знаком синуса и в знаменателе одновременно стремятся к нулю, т.е. присутствует неопределенность вида $\frac{0}{0}$.
  2. Выражения под знаком синуса и в знаменателе совпадают.

Часто используются также следствия из первого замечательного предела:

\begin{equation} \lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1 \end{equation} \begin{equation} \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1 \end{equation}

На данной странице решены одиннадцать примеров. Пример №1 посвящен доказательству формул (2)-(4). Примеры №2, №3, №4 и №5 содержат решения с подробными комментариями. Примеры №6-10 содержат решения практически без комментариев, ибо подробные пояснения были даны в предыдущих примерах. При решении используются некоторые тригонометрические формулы, которые можно найти .

Замечу, что наличие тригонометрических функций вкупе с неопределённостью $\frac {0} {0}$ ещё не означает обязательное применение первого замечательного предела. Иногда бывает достаточно простых тригонометрических преобразований, - например, см. .

Пример №1

Доказать, что $\lim_{\alpha\to{0}}\frac{\tg\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$, $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$.

а) Так как $\tg\alpha=\frac{\sin\alpha}{\cos\alpha}$, то:

$$ \lim_{\alpha\to{0}}\frac{\tg{\alpha}}{\alpha}=\left|\frac{0}{0}\right| =\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} $$

Так как $\lim_{\alpha\to{0}}\cos{0}=1$ и $\lim_{\alpha\to{0}}\frac{\sin\alpha}{\alpha}=1$, то:

$$ \lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha\cos{\alpha}} =\frac{\displaystyle\lim_{\alpha\to{0}}\frac{\sin{\alpha}}{\alpha}}{\displaystyle\lim_{\alpha\to{0}}\cos{\alpha}} =\frac{1}{1} =1. $$

б) Сделаем замену $\alpha=\sin{y}$. Поскольку $\sin{0}=0$, то из условия $\alpha\to{0}$ имеем $y\to{0}$. Кроме того, существует окрестность нуля, в которой $\arcsin\alpha=\arcsin(\sin{y})=y$, поэтому:

$$ \lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\sin{y}} =\lim_{y\to{0}}\frac{1}{\frac{\sin{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\sin{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arcsin\alpha}{\alpha}=1$ доказано.

в) Сделаем замену $\alpha=\tg{y}$. Поскольку $\tg{0}=0$, то условия $\alpha\to{0}$ и $y\to{0}$ эквивалентны. Кроме того, существует окрестность нуля, в которой $\arctg\alpha=\arctg\tg{y})=y$, поэтому, опираясь на результаты пункта а), будем иметь:

$$ \lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=\left|\frac{0}{0}\right| =\lim_{y\to{0}}\frac{y}{\tg{y}} =\lim_{y\to{0}}\frac{1}{\frac{\tg{y}}{y}} =\frac{1}{\displaystyle\lim_{y\to{0}}\frac{\tg{y}}{y}} =\frac{1}{1} =1. $$

Равенство $\lim_{\alpha\to{0}}\frac{\arctg\alpha}{\alpha}=1$ доказано.

Равенства а), б), в) часто используются наряду с первым замечательным пределом.

Пример №2

Вычислить предел $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}$.

Так как $\lim_{x\to{2}}\frac{x^2-4}{x+7}=\frac{2^2-4}{2+7}=0$ и $\lim_{x\to{2}}\sin\left(\frac{x^2-4}{x+7}\right)=\sin{0}=0$, т.е. и числитель и знаменатель дроби одновременно стремятся к нулю, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Кроме того, видно, что выражения под знаком синуса и в знаменателе совпадают (т.е. выполнено и ):

Итак, оба условия, перечисленные в начале страницы, выполнены. Из этого следует, что применима формула , т.е. $\lim_{x\to{2}} \frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Ответ : $\lim_{x\to{2}}\frac{\sin\left(\frac{x^2-4}{x+7}\right)}{\frac{x^2-4}{x+7}}=1$.

Пример №3

Найти $\lim_{x\to{0}}\frac{\sin{9x}}{x}$.

Так как $\lim_{x\to{0}}\sin{9x}=0$ и $\lim_{x\to{0}}x=0$, то мы имеем дело с неопределенностью вида $\frac{0}{0}$, т.е. выполнено. Однако выражения под знаком синуса и в знаменателе не совпадают. Здесь требуется подогнать выражение в знаменателе под нужную форму. Нам необходимо, чтобы в знаменателе расположилось выражение $9x$, - тогда станет истинным. По сути, нам не хватает множителя $9$ в знаменателе, который не так уж сложно ввести, - просто домножить выражение в знаменателе на $9$. Естественно, что для компенсации домножения на $9$ придётся тут же на $9$ и разделить:

$$ \lim_{x\to{0}}\frac{\sin{9x}}{x}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\sin{9x}}{9x\cdot\frac{1}{9}} =9\lim_{x\to{0}}\frac{\sin{9x}}{9x} $$

Теперь выражения в знаменателе и под знаком синуса совпали. Оба условия для предела $\lim_{x\to{0}}\frac{\sin{9x}}{9x}$ выполнены. Следовательно, $\lim_{x\to{0}}\frac{\sin{9x}}{9x}=1$. А это значит, что:

$$ 9\lim_{x\to{0}}\frac{\sin{9x}}{9x}=9\cdot{1}=9. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{9x}}{x}=9$.

Пример №4

Найти $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}$.

Так как $\lim_{x\to{0}}\sin{5x}=0$ и $\lim_{x\to{0}}\tg{8x}=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако форма первого замечательного предела нарушена. Числитель, содержащий $\sin{5x}$, требует наличия в знаменателе $5x$. В этой ситуации проще всего разделить числитель на $5x$, - и тут же на $5x$ домножить. Кроме того, проделаем аналогичную операцию и со знаменателем, домножив и разделив $\tg{8x}$ на $8x$:

$$\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}}$$

Сокращая на $x$ и вынося константу $\frac{5}{8}$ за знак предела, получим:

$$ \lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}\cdot{5x}}{\frac{\tg{8x}}{8x}\cdot{8x}} =\frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} $$

Обратите внимание, что $\lim_{x\to{0}}\frac{\sin{5x}}{5x}$ полностью удовлетворяет требованиям для первого замечательного предела. Для отыскания $\lim_{x\to{0}}\frac{\tg{8x}}{8x}$ применима формула :

$$ \frac{5}{8}\cdot\lim_{x\to{0}}\frac{\frac{\sin{5x}}{5x}}{\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{\displaystyle\lim_{x\to{0}}\frac{\sin{5x}}{5x}}{\displaystyle\lim_{x\to{0}}\frac{\tg{8x}}{8x}} =\frac{5}{8}\cdot\frac{1}{1} =\frac{5}{8}. $$

Ответ : $\lim_{x\to{0}}\frac{\sin{5x}}{\tg{8x}}=\frac{5}{8}$.

Пример №5

Найти $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}$.

Так как $\lim_{x\to{0}}(\cos{5x}-\cos^3{5x})=1-1=0$ (напомню, что $\cos{0}=1$) и $\lim_{x\to{0}}x^2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Однако чтобы применить первый замечательный предел следует избавиться от косинуса в числителе, перейдя к синусам (дабы потом применить формулу ) или тангенсам (чтобы потом применить формулу ). Сделать это можно таким преобразованием:

$$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)$$ $$\cos{5x}-\cos^3{5x}=\cos{5x}\cdot\left(1-\cos^2{5x}\right)=\cos{5x}\cdot\sin^2{5x}.$$

Вернемся к пределу:

$$ \lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\cos{5x}\cdot\sin^2{5x}}{x^2} =\lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) $$

Дробь $\frac{\sin^2{5x}}{x^2}$ уже близка к той форме, что требуется для первого замечательного предела. Немного поработаем с дробью $\frac{\sin^2{5x}}{x^2}$, подгоняя её под первый замечательный предел (учтите, что выражения в числителе и под синусом должны совпасть):

$$\frac{\sin^2{5x}}{x^2}=\frac{\sin^2{5x}}{25x^2\cdot\frac{1}{25}}=25\cdot\frac{\sin^2{5x}}{25x^2}=25\cdot\left(\frac{\sin{5x}}{5x}\right)^2$$

Вернемся к рассматриваемому пределу:

$$ \lim_{x\to{0}}\left(\cos{5x}\cdot\frac{\sin^2{5x}}{x^2}\right) =\lim_{x\to{0}}\left(25\cos{5x}\cdot\left(\frac{\sin{5x}}{5x}\right)^2\right)=\\ =25\cdot\lim_{x\to{0}}\cos{5x}\cdot\lim_{x\to{0}}\left(\frac{\sin{5x}}{5x}\right)^2 =25\cdot{1}\cdot{1^2} =25. $$

Ответ : $\lim_{x\to{0}}\frac{\cos{5x}-\cos^3{5x}}{x^2}=25$.

Пример №6

Найти предел $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}$.

Так как $\lim_{x\to{0}}(1-\cos{6x})=0$ и $\lim_{x\to{0}}(1-\cos{2x})=0$, то мы имеем дело с неопределенностью $\frac{0}{0}$. Раскроем ее с помощью первого замечательного предела. Для этого перейдем от косинусов к синусам. Так как $1-\cos{2\alpha}=2\sin^2{\alpha}$, то:

$$1-\cos{6x}=2\sin^2{3x};\;1-\cos{2x}=2\sin^2{x}.$$

Переходя в заданном пределе к синусам, будем иметь:

$$ \lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{2\sin^2{3x}}{2\sin^2{x}} =\lim_{x\to{0}}\frac{\sin^2{3x}}{\sin^2{x}}=\\ =\lim_{x\to{0}}\frac{\frac{\sin^2{3x}}{(3x)^2}\cdot(3x)^2}{\frac{\sin^2{x}}{x^2}\cdot{x^2}} =\lim_{x\to{0}}\frac{\left(\frac{\sin{3x}}{3x}\right)^2\cdot{9x^2}}{\left(\frac{\sin{x}}{x}\right)^2\cdot{x^2}} =9\cdot\frac{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{3x}}{3x}\right)^2}{\displaystyle\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\right)^2} =9\cdot\frac{1^2}{1^2} =9. $$

Ответ : $\lim_{x\to{0}}\frac{1-\cos{6x}}{1-\cos{2x}}=9$.

Пример №7

Вычислить предел $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}$ при условии $\alpha\neq\beta$.

Подробные пояснения были даны ранее, здесь же просто отметим, что вновь наличествует неопределенность $\frac{0}{0}$. Перейдем от косинусов к синусам, используя формулу

$$\cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\cdot\sin\frac{\alpha-\beta}{2}.$$

Используя указанную формулу, получим:

$$ \lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{-2\sin\frac{\alpha{x}+\beta{x}}{2}\cdot\sin\frac{\alpha{x}-\beta{x}}{2}}{x^2}=\\ =-2\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)\cdot\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x^2} =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x}\right)=\\ =-2\cdot\lim_{x\to{0}}\left(\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\frac{\alpha+\beta}{2}\cdot\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}}\cdot\frac{\alpha-\beta}{2}\right)=\\ =-\frac{(\alpha+\beta)\cdot(\alpha-\beta)}{2}\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha+\beta}{2}\right)}{x\cdot\frac{\alpha+\beta}{2}}\cdot\lim_{x\to{0}}\frac{\sin\left(x\cdot\frac{\alpha-\beta}{2}\right)}{x\cdot\frac{\alpha-\beta}{2}} =-\frac{\alpha^2-\beta^2}{2}\cdot{1}\cdot{1} =\frac{\beta^2-\alpha^2}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\cos(\alpha{x})-\cos(\beta{x})}{x^2}=\frac{\beta^2-\alpha^2}{2}$.

Пример №8

Найти предел $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}$.

Так как $\lim_{x\to{0}}(\tg{x}-\sin{x})=0$ (напомню, что $\sin{0}=\tg{0}=0$) и $\lim_{x\to{0}}x^3=0$, то здесь мы имеем дело с неопределенностью вида $\frac{0}{0}$. Раскроем её следующим образом:

$$ \lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{x}}{\cos{x}}-\sin{x}}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(\frac{1}{\cos{x}}-1\right)}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(1-\cos{x}\right)}{x^3\cdot\cos{x}}=\\ =\lim_{x\to{0}}\frac{\sin{x}\cdot{2}\sin^2\frac{x}{2}}{x^3\cdot\cos{x}} =\frac{1}{2}\cdot\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2\cdot\frac{1}{\cos{x}}\right) =\frac{1}{2}\cdot{1}\cdot{1^2}\cdot{1} =\frac{1}{2}. $$

Ответ : $\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\frac{1}{2}$.

Пример №9

Найти предел $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}$.

Так как $\lim_{x\to{3}}(1-\cos(x-3))=0$ и $\lim_{x\to{3}}(x-3)\tg\frac{x-3}{2}=0$, то наличествует неопределенность вида $\frac{0}{0}$. Перед тем, как переходить к её раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha \to 0$). Проще всего ввести переменную $t=x-3$. Однако ради удобства дальнейших преобразований (эту выгоду можно заметить по ходу приведённого ниже решения) стоит сделать такую замену: $t=\frac{x-3}{2}$. Отмечу, что обе замены применимы в данном случае, просто вторая замена позволит поменьше работать с дробями. Так как $x\to{3}$, то $t\to{0}$.

$$ \lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{x-3}{2};\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\cos{2t}}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{2\sin^2t}{2t\cdot\tg{t}} =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\tg{t}}=\\ =\lim_{t\to{0}}\frac{\sin^2t}{t\cdot\frac{\sin{t}}{\cos{t}}} =\lim_{t\to{0}}\frac{\sin{t}\cos{t}}{t} =\lim_{t\to{0}}\left(\frac{\sin{t}}{t}\cdot\cos{t}\right) =\lim_{t\to{0}}\frac{\sin{t}}{t}\cdot\lim_{t\to{0}}\cos{t} =1\cdot{1} =1. $$

Ответ : $\lim_{x\to{3}}\frac{1-\cos(x-3)}{(x-3)\tg\frac{x-3}{2}}=1$.

Пример №10

Найти предел $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}$.

Вновь мы имеем дело с неопределенностью $\frac{0}{0}$. Перед тем, как переходить к ее раскрытию, удобно сделать замену переменной таким образом, чтобы новая переменная устремилась к нулю (обратите внимание, что в формулах переменная $\alpha\to{0}$). Проще всего ввести переменную $t=\frac{\pi}{2}-x$. Так как $x\to\frac{\pi}{2}$, то $t\to{0}$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2} =\left|\frac{0}{0}\right| =\left|\begin{aligned}&t=\frac{\pi}{2}-x;\\&t\to{0}\end{aligned}\right| =\lim_{t\to{0}}\frac{1-\sin\left(\frac{\pi}{2}-t\right)}{t^2} =\lim_{t\to{0}}\frac{1-\cos{t}}{t^2}=\\ =\lim_{t\to{0}}\frac{2\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{t^2} =2\lim_{t\to{0}}\frac{\sin^2\frac{t}{2}}{\frac{t^2}{4}\cdot{4}} =\frac{1}{2}\cdot\lim_{t\to{0}}\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2 =\frac{1}{2}\cdot{1^2} =\frac{1}{2}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\left(\frac{\pi}{2}-x\right)^2}=\frac{1}{2}$.

Пример №11

Найти пределы $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}$.

В данном случае нам не придётся использовать первый замечательный предел. Обратите внимание: как в первом, так и во втором пределах присутствуют только тригонометрические функции и числа. Зачастую в примерах такого рода удаётся упростить выражение, расположенное под знаком предела. При этом после упомянутого упрощения и сокращения некоторых сомножителей неопределённость исчезает. Я привёл данный пример лишь с одной целью: показать, что наличие тригонометрических функций под знаком предела вовсе не обязательно означает применение первого замечательного предела.

Так как $\lim_{x\to\frac{\pi}{2}}(1-\sin{x})=0$ (напомню, что $\sin\frac{\pi}{2}=1$) и $\lim_{x\to\frac{\pi}{2}}\cos^2x=0$ (напомню, что $\cos\frac{\pi}{2}=0$), то мы имеем дело с неопределенностью вида $\frac{0}{0}$. Однако это вовсе не означает, что нам потребуется использовать первый замечательный предел. Для раскрытия неопределенности достаточно учесть, что $\cos^2x=1-\sin^2x$:

$$ \lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x} =\left|\frac{0}{0}\right| =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{1-\sin^2x} =\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{(1-\sin{x})(1+\sin{x})} =\lim_{x\to\frac{\pi}{2}}\frac{1}{1+\sin{x}} =\frac{1}{1+1} =\frac{1}{2}. $$

Аналогичный способ решения есть и в решебнике Демидовича (№475) . Что же касается второго предела, то как и в предыдущих примерах этого раздела, мы имеем неопределённость вида $\frac{0}{0}$. Отчего она возникает? Она возникает потому, что $\tg\frac{2\pi}{3}=-\sqrt{3}$ и $2\cos\frac{2\pi}{3}=-1$. Используем эти значения с целью преобразования выражений в числителе и в знаменателе. Цель наших действий: записать сумму в числителе и знаменателе в виде произведения. Кстати сказать, зачастую в пределах аналогичного вида удобна замена переменной, сделанная с таким расчётом, чтобы новая переменная устремилась к нулю (см., например, примеры №9 или №10 на этой странице). Однако в данном примере в замене смысла нет, хотя при желании замену переменной $t=x-\frac{2\pi}{3}$ несложно осуществить.

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cdot\left(\cos{x}+\frac{1}{2}\right)} =\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}-\tg\frac{2\pi}{3}}{2\cdot\left(\cos{x}-\cos\frac{2\pi}{3}\right)}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{\frac{\sin\left(x-\frac{2\pi}{3}\right)}{\cos{x}\cos\frac{2\pi}{3}}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}} =\lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\frac{2\sin\frac{x-\frac{2\pi}{3}}{2}\cos\frac{x-\frac{2\pi}{3}}{2}}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}} =\lim_{x\to\frac{2\pi}{3}}\frac{\cos\frac{x-\frac{2\pi}{3}}{2}}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Как видите, нам не пришлось применять первый замечательный предел. Конечно, при желании это можно сделать (см. примечание ниже), но необходимости в этом нет.

Каким будет решение с использованием первого замечательного предела? показать\скрыть

При использовании первого замечательного предела получим:

$$ \lim_{x\to\frac{2\pi}{3}}\frac{\sin\left(x-\frac{2\pi}{3}\right)}{-4\sin\frac{x+\frac{2\pi}{3}}{2}\sin\frac{x-\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}=\\ =\lim_{x\to\frac{2\pi}{3}}\left(\frac{\sin\left(x-\frac{2\pi}{3}\right)}{x-\frac{2\pi}{3}}\cdot\frac{1}{\frac{\sin\frac{x-\frac{2\pi}{3}}{2}}{\frac{x-\frac{2\pi}{3}}{2}}}\cdot\frac{1}{-2\sin\frac{x+\frac{2\pi}{3}}{2}\cos{x}\cos\frac{2\pi}{3}}\right) =1\cdot{1}\cdot\frac{1}{-2\cdot\frac{\sqrt{3}}{2}\cdot\left(-\frac{1}{2}\right)\cdot\left(-\frac{1}{2}\right)} =-\frac{4}{\sqrt{3}}. $$

Ответ : $\lim_{x\to\frac{\pi}{2}}\frac{1-\sin{x}}{\cos^2x}=\frac{1}{2}$, $\lim_{x\to\frac{2\pi}{3}}\frac{\tg{x}+\sqrt{3}}{2\cos{x}+1}=-\frac{4}{\sqrt{3}}$.