Уравнение вида

Выражение D = b 2 - 4 ac называют дискриминантом квадратного уравнения. Если D = 0, то уравнение имеет один действительный корень; если D > 0, то уравнение имеет два действительных корня.
В случае, когда D = 0 , иногда говорят, что квадратное уравнение имеет два одинаковых корня.
Используя обозначение D = b 2 - 4 ac , можно переписать формулу (2) в виде

Если b = 2 k , то формула (2) принимает вид:

где k = b / 2 .
Последняя формула особенно удобна в тех случаях, когда b / 2 - целое число, т.е. коэффициент b - четное число.
Пример 1: Решить уравнение 2 x 2 - 5 x + 2 = 0 . Здесь a = 2, b = -5, c = 2 . Имеем D = b 2 - 4 ac = (-5) 2- 4*2*2 = 9 . Так как D > 0 , то уравнение имеет два корня. Найдем их по формуле (2)

Итак x 1 =(5 + 3) / 4 = 2, x 2 =(5 - 3) / 4 = 1 / 2 ,
то есть x 1 = 2 и x 2 = 1 / 2 - корни заданного уравнения.
Пример 2: Решить уравнение 2 x 2 - 3 x + 5 = 0 . Здесь a = 2, b = -3, c = 5 . Находим дискриминант D = b 2 - 4 ac = (-3) 2- 4*2*5 = -31 . Так как D 0 , то уравнение не имеет действительных корней.

Неполные квадратные уравнения. Если в квадратном уравнении ax 2 + bx + c =0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным . Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения - проще решить уравнение методом разложения его левой части на множители.
Пример 1: решить уравнение 2 x 2 - 5 x = 0 .
Имеем x (2 x - 5) = 0 . Значит либо x = 0 , либо 2 x - 5 = 0 , то есть x = 2.5 . Итак, уравнение имеет два корня: 0 и 2.5
Пример 2: решить уравнение 3 x 2 - 27 = 0 .
Имеем 3 x 2 = 27 . Следовательно корни данного уравнения - 3 и -3 .

Теорема Виета. Если приведенное квадратное уравнение x 2 + px + q =0 имеет действительные корни, то их сумма равна - p , а произведение равно q , то есть

x 1 + x 2 = -p ,
x 1 x 2 = q

(сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).

Копьевская сельская средняя общеобразовательная школа

10 способов решения квадратных уравнений

Руководитель: Патрикеева Галина Анатольевна,

учитель математики

с.Копьево, 2007

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

1.2 Как составлял и решал Диофант квадратные уравнения

1.3 Квадратные уравнения в Индии

1.4 Квадратные уравнения у ал- Хорезми

1.5 Квадратные уравнения в Европе XIII - XVII вв

1.6 О теореме Виета

2. Способы решения квадратных уравнений

Заключение

Литература

1. История развития квадратных уравнений

1.1 Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

X 2 + X = ¾; X 2 - X = 14,5

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

1.2 Как составлял и решал Диофант квадратные уравнения.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение - 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 - х . Разность между ними .

Отсюда уравнение:

(10 + х)(10 - х) = 96

100 - х 2 = 96

х 2 - 4 = 0 (1)

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 - у) = 96,

у 2 - 20у + 96 = 0. (2)


Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

1.3 Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ах 2 + b х = с, а > 0. (1)

В уравнении (1) коэфиценты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Задача 13.

«Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).

Соответствующее задаче 13 уравнение:

( x /8) 2 + 12 = x

Бхаскара пишет под видом:

х 2 - 64х = -768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

х 2 - 64х + 32 2 = -768 + 1024,

(х - 32) 2 = 256,

х - 32 = ± 16,

х 1 = 16, х 2 = 48.

1.4 Квадратные уравнения у ал – Хорезми

В алгебраическом трактате ал - Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корнями», т.е. ах 2 + с = b х.

2) «Квадраты равны числу», т.е. ах 2 = с.

3) «Корни равны числу», т.е. ах = с.

4) «Квадраты и числа равны корням», т.е. ах 2 + с = b х.

5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.

6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .

Для ал - Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал - джабр и ал - мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида

ал - Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал - Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат ал - Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

1.5 Квадратные уравнения в Европе XIII - XVII вв

Формулы решения квадратных уравнений по образцу ал - Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI - XVII вв. и частично XVIII.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:

х 2 + bx = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

1.6 О теореме Виета

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D , умноженное на A - A 2 , равно BD , то A равно В и равноD ».

Чтобы понять Виета, следует вспомнить, что А , как и всякая гласная буква, означало у него неизвестное (наше х ), гласные же В, D - коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место

(а + b )х - х 2 = ab ,

х 2 - (а + b )х + а b = 0,

х 1 = а, х 2 = b .

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

2. Способы решения квадратных уравнений

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.

Начальный уровень

Квадратные уравнения. Исчерпывающий гид (2019)

В термине «квадратное уравнение» ключевым является слово «квадратное». Это значит, что в уравнении обязательно должна присутствовать переменная (тот самый икс) в квадрате, и при этом не должно быть иксов в третьей (и большей) степени.

Решение многих уравнений сводится к решению именно квадратных уравнений.

Давай научимся определять, что перед нами квадратное уравнение, а не какое-нибудь другое.

Пример 1.

Избавимся от знаменателя и домножим каждый член уравнения на

Перенесем все в левую часть и расположим члены в порядке убывания степеней икса

Теперь можно с уверенностью сказать, что данное уравнение является квадратным!

Пример 2.

Домножим левую и правую часть на:

Это уравнение, хотя в нем изначально был, не является квадратным!

Пример 3.

Домножим все на:

Страшно? Четвертая и вторая степени… Однако, если произвести замену, то мы увидим, что перед нами простое квадратное уравнение:

Пример 4.

Вроде бы есть, но давай посмотрим внимательнее. Перенесем все в левую часть:

Видишь, сократился - и теперь это простое линейное уравнение!

Теперь попробуй сам определить, какие из следующий уравнений являются квадратными, а какие нет:

Примеры:

Ответы:

  1. квадратное;
  2. квадратное;
  3. не квадратное;
  4. не квадратное;
  5. не квадратное;
  6. квадратное;
  7. не квадратное;
  8. квадратное.

Математики условно делят все квадратные уравнения на вида:

  • Полные квадратные уравнения - уравнения, в которых коэффициенты и, а также свободный член с не равны нулю (как в примере). Кроме того, среди полных квадратных уравнений выделяют приведенные - это уравнения, в которых коэффициент (уравнение из примера один является не только полным, но еще и приведенным!)
  • Неполные квадратные уравнения - уравнения, в которых коэффициент и или свободный член с равны нулю:

    Неполные они, потому что в них не хватает какого-то элемента. Но в уравнении всегда должен присутствовать икс в квадрате!!! Иначе это будет уже не квадратное, а какое-то другое уравнение.

Зачем придумали такое деление? Казалось бы, есть икс в квадрате, и ладно. Такое деление обусловлено методами решения. Рассмотрим каждый из них подробнее.

Решение неполных квадратных уравнений

Для начала остановимся на решении неполных квадратных уравнений - они гораздо проще!

Неполные квадратные уравнения бывают типов:

  1. , в этом уравнении коэффициент равен.
  2. , в этом уравнении свободный член равен.
  3. , в этом уравнении коэффициент и свободный член равны.

1. и. Поскольку мы знаем, как извлекать квадратный корень, то давайте выразим из этого уравнения

Выражение может быть как отрицательным, так и положительным. Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел - результатом всегда будет положительное число, так что: если, то уравнение не имеет решений.

А если, то получаем два корня. Эти формулы не нужно запоминать. Главное, ты должен знать и помнить всегда, что не может быть меньше.

Давай попробуем решить несколько примеров.

Пример 5:

Решите уравнение

Теперь осталось извлечь корень из левой и правой части. Ведь ты помнишь как извлекать корни?

Ответ:

Никогда не забывай про корни с отрицательным знаком!!!

Пример 6:

Решите уравнение

Ответ:

Пример 7:

Решите уравнение

Ой! Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней!

Для таких уравнений, в которых нет корней, математики придумали специальный значок - (пустое множество). И ответ можно записать так:

Ответ:

Таким образом, данное квадратное уравнение имеет два корня. Здесь нет никаких ограничений, так как корень мы не извлекали.
Пример 8:

Решите уравнение

Вынесем общий множитель за скобки:

Таким образом,

У этого уравнения два корня.

Ответ:

Самый простой тип неполных квадратных уравнений (хотя они все простые, не так ли?). Очевидно, что данное уравнение всегда имеет только один корень:

Здесь обойдемся без примеров.

Решение полных квадратных уравнений

Напоминаем, что полное квадратное уравнение, это уравнение вида уравнение где

Решение полных квадратных уравнений немного сложнее (совсем чуть-чуть), чем приведенных.

Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Остальные способы помогут сделать это быстрее, но если у тебя возникают проблемы с квадратными уравнениями, для начала освой решение с помощью дискриминанта.

1. Решение квадратных уравнений с помощью дискриминанта.

Решение квадратных уравнений этим способом очень простое, главное запомнить последовательность действий и пару формул.

Если, то уравнение имеет корняНужно особое внимание обратить на шаг. Дискриминант () указывает нам на количество корней уравнения.

  • Если, то формула на шаге сократится до. Таким образом, уравнение будет иметь всего корень.
  • Если, то мы не сможем извлечь корень из дискриминанта на шаге. Это указывает на то, что уравнение не имеет корней.

Вернемся к нашим уравнениям и рассмотрим несколько примеров.

Пример 9:

Решите уравнение

Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет два корня.

Шаг 3.

Ответ:

Пример 10:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет один корень.

Ответ:

Пример 11:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

Азначит мы не сможем извлечь корень из дискриминанта. Корней уравнения не существует.

Теперь мы знаем, как правильно записывать такие ответы.

Ответ: Корней нет

2. Решение квадратных уравнений с помощью теоремы Виета.

Если ты помнишь, то есть такой тип уравнений, которые называются приведенными (когда коэффициент а равен):

Такие уравнения очень просто решать, используя теорему Виета:

Сумма корней приведенного квадратного уравнения равна, а произведение корней равно.

Пример 12:

Решите уравнение

Это уравнение подходит для решения с использованием теоремы Виета, т.к. .

Сумма корней уравнения равна, т.е. получаем первое уравнение:

А произведение равно:

Составим и решим систему:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Ответ: ; .

Пример 13:

Решите уравнение

Ответ:

Пример 14:

Решите уравнение

Уравнение приведенное, а значит:

Ответ:

КВАДРАТНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Что такое квадратное уравнение?

Другими словами, квадратное уравнение - это уравнение вида, где - неизвестное, - некоторые числа, причем.

Число называют старшим или первым коэффициентом квадратного уравнения, - вторым коэффициентом , а - свободным членом .

Почему? Потому что если, уравнение сразу станет линейным, т.к. пропадет.

При этом и могут быть равны нулю. В этом стулчае уравнение называют неполным. Если же все слагаемые на месте, то есть, уравнение - полное.

Решения различных типов квадратных уравнений

Методы решения неполных квадратных уравнений:

Для начала разберем методы решений неполных квадратных уравнений - они проще.

Можно выделить типа таких уравнений:

I. , в этом уравнении коэффициент и свободный член равны.

II. , в этом уравнении коэффициент равен.

III. , в этом уравнении свободный член равен.

Теперь рассмотрим решение каждого из этих подтипов.

Очевидно, что данное уравнение всегда имеет только один корень:

Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел результатом всегда будет положительное число. Поэтому:

если, то уравнение не имеет решений;

если, имеем учаем два корня

Эти формулы не нужно запоминать. Главное помнить, что не может быть меньше.

Примеры:

Решения:

Ответ:

Никогда не забывай про корни с отрицательным знаком!

Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней.

Чтобы коротко записать, что у задачи нет решений, используем значок пустого множества.

Ответ:

Итак, это уравнение имеет два корня: и.

Ответ:

Вынесем общим множитель за скобки:

Произведение равно нулю, если хотя бы один из множителей равен нулю. А это значит, что уравнение имеет решение, когда:

Итак, данное квадратное уравнение имеет два корня: и.

Пример:

Решите уравнение.

Решение:

Разложим левую часть уравнения на множители и найдем корни:

Ответ:

Методы решения полных квадратных уравнений:

1. Дискриминант

Решать квадратные уравнения этим способом легко, главное запомнить последовательность действий и пару формул. Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Ты заметил корень из дискриминанта в формуле для корней? Но ведь дискриминант может быть отрицательным. Что делать? Нужно особое внимание обратить на шаг 2. Дискриминант указывает нам на количество корней уравнения.

  • Если, то уравнение имеет корня:
  • Если, то уравнение имеет одинаковых корня, а по сути, один корень:

    Такие корни называются двукратными.

  • Если, то корень из дискриминанта не извлекается. Это указывает на то, что уравнение не имеет корней.

Почему возможно разное количество корней? Обратимся к геометрическому смыслу квадратного уравнения. График функции является параболой:

В частном случае, которым является квадратное уравнение, . А это значит, что корни квадратного уравнения, это точки пересечения с осью абсцисс (ось). Парабола может вообще не пересекать ось, либо пересекать ее в одной (когда вершина параболы лежит на оси) или двух точках.

Кроме того, за направление ветвей параболы отвечает коэффициент. Если, то ветви параболы направлены вверх, а если - то вниз.

Примеры:

Решения:

Ответ:

Ответ: .

Ответ:

А значит, решений нет.

Ответ: .

2. Теорема Виета

Использовать теорему Виета очень легко: нужно всего лишь подобрать такую пару чисел, произведение которых равно свободному члену уравнения, а сумма - второму коэффициенту, взятому с обратным знаком.

Важно помнить, что теорему Виета можно применять только в приведенных квадратных уравнениях ().

Рассмотрим несколько примеров:

Пример №1:

Решите уравнение.

Решение:

Это уравнение подходит для решения с использованием теоремы Виета, т.к. . Остальные коэффициенты: ; .

Сумма корней уравнения равна:

А произведение равно:

Подберем такие пары чисел, произведение которых равно, и проверим, равна ли их сумма:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Таким образом, и - корни нашего уравнения.

Ответ: ; .

Пример №2:

Решение:

Подберем такие пары чисел, которые в произведении дают, а затем проверим, равна ли их сумма:

и: в сумме дают.

и: в сумме дают. Чтобы получить, достаточно просто поменять знаки предполагаемых корней: и, ведь произведение.

Ответ:

Пример №3:

Решение:

Свободный член уравнения отрицательный, а значит и произведение корней - отрицательное число. Это возможно только если один из корней отрицательный, а другой - положительный. Поэтому сумма корней равна разности их модулей .

Подберем такие пары чисел, которые в произведении дают, и разность которых равна:

и: их разность равна - не подходит;

и: - не подходит;

и: - не подходит;

и: - подходит. Остается только вспомнить, что один из корней отрицательный. Так как их сумма должна равняться, то отрицательным должен быть меньший по модулю корень: . Проверяем:

Ответ:

Пример №4:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Свободный член отрицателен, а значит и произведение корней отрицательно. А это возможно только тогда, когда один корень уравнения отрицателен, а другой положителен.

Подберем такие пары чисел, произведение которых равно, а затем определим, какой корней должен иметь отрицательный знак:

Очевидно, что под первое условие подходят только корни и:

Ответ:

Пример №5:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Сумма корней отрицательна, а это значит что, по крайней мере, один из корней отрицателен. Но поскольку их произведение положительно, то значит оба корня со знаком минус.

Подберем такие пары чисел, произведение которых равно:

Очевидно, что корнями являются числа и.

Ответ:

Согласись, это очень удобно - придумывать корни устно, вместо того, чтобы считать этот противный дискриминант. Старайся использовать теорему Виета как можно чаще.

Но теорема Виета нужна для того, чтобы облегчить и ускорить нахождение корней. Чтобы тебе было выгодно ее использовать, ты должен довести действия до автоматизма. А для этого порешай-ка еще пяток примеров. Но не жульничай: дискриминант использовать нельзя! Только теорему Виета:

Решения заданий для самостоятельной работы:

Задание 1. {{x}^{2}}-8x+12=0

По теореме Виета:

Как обычно, начинаем подбор с произведения:

Не подходит, так как сумма;

: сумма - то что надо.

Ответ: ; .

Задание 2.

И снова наша любимая теорема Виета : в сумме должно получиться, а произведение равно.

Но так как должно быть не, а, меняем знаки корней: и (в сумме).

Ответ: ; .

Задание 3.

Хм… А где тут что?

Надо перенести все слагаемые в одну часть:

Сумма корней равна, произведение.

Так, стоп! Уравнение-то не приведенное. Но теорема Виета применима только в приведенных уравнениях. Так что сперва нужно уравнение привести. Если привести не получается, бросай эту затею и решай другим способом (например, через дискриминант). Напомню, что привести квадратное уравнение - значит сделать старший коэффициент равным:

Отлично. Тогда сумма корней равна, а произведение.

Тут подобрать проще простого: ведь - простое число (извини за тавтологию).

Ответ: ; .

Задание 4.

Свободный член отрицательный. Что в этом особенного? А то, что корни будут разных знаков. И теперь во время подбора проверяем не сумму корней, а разность их модулей: эта разность равна, а произведение.

Итак, корни равны и, но один из них с минусом. Теорема Виета говорит нам, что сумма корней равна второму коэффициенту с обратным знаком, то есть. Значит, минус будет у меньшего корня: и, так как.

Ответ: ; .

Задание 5.

Что нужно сделать первым делом? Правильно, привести уравнение:

Снова: подбираем множители числа, и их разность должна равняться:

Корни равны и, но один из них с минусом. Какой? Их сумма должна быть равна, значит, с минусом будет больший корень.

Ответ: ; .

Подведу итог:
  1. Теорема Виета используется только в приведенных квадратных уравнениях.
  2. Используя теорему Виета можно найти корни подбором, устно.
  3. Если уравнение не приводится или не нашлось ни одной подходящей пары множителей свободного члена, значит целых корней нет, и нужно решать другим способом (например, через дискриминант).

3. Метод выделения полного квадрата

Если все слагаемые, содержащие неизвестное, представить в виде слагаемых из формул сокращенного умножения - квадрата суммы или разности - то после замены переменных можно представить уравнение в виде неполного квадратного уравнения типа.

Например:

Пример 1:

Решите уравнение: .

Решение:

Ответ:

Пример 2:

Решите уравнение: .

Решение:

Ответ:

В общем виде преобразование будет выглядеть так:

Отсюда следует: .

Ничего не напоминает? Это же дискриминант! Вот именно, формулу дискриминанта так и получили.

КВАДРАТНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Квадратное уравнение - это уравнение вида, где - неизвестное, - коэффициенты квадратного уравнения, - свободный член.

Полное квадратное уравнение - уравнение, в котором коэффициенты, не равны нулю.

Приведенное квадратное уравнение - уравнение, в котором коэффициент, то есть: .

Неполное квадратное уравнение - уравнение, в котором коэффициент и или свободный член с равны нулю:

  • если коэффициент, уравнение имеет вид: ,
  • если свободный член, уравнение имеет вид: ,
  • если и, уравнение имеет вид: .

1. Алгоритм решения неполных квадратных уравнений

1.1. Неполное квадратное уравнение вида, где, :

1) Выразим неизвестное: ,

2) Проверяем знак выражения:

  • если, то уравнение не имеет решений,
  • если, то уравнение имеет два корня.

1.2. Неполное квадратное уравнение вида, где, :

1) Вынесем общим множитель за скобки: ,

2) Произведение равно нулю, если хотя бы один из множителей равен нулю. Следовательно, уравнение имеет два корня:

1.3. Неполное квадратное уравнение вида, где:

Данное уравнение всегда имеет только один корень: .

2. Алгоритм решения полных квадратных уравнений вида где

2.1. Решение с помощью дискриминанта

1) Приведем уравнение к стандартному виду: ,

2) Вычислим дискриминант по формуле: , который указывает на количество корней уравнения:

3) Найдем корни уравнения:

  • если, то уравнение имеет корня, которые находятся по формуле:
  • если, то уравнение имеет корень, который находится по формуле:
  • если, то уравнение не имеет корней.

2.2. Решение с помощью теоремы Виета

Сумма корней приведенного квадратного уравнения (уравнения вида, где) равна, а произведение корней равно, т.е. , а.

2.3. Решение методом выделения полного квадрата

В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

Yandex.RTB R-A-339285-1

Квадратное уравнение, его виды

Определение 1

Квадратное уравнение – это уравнение, записанное как a · x 2 + b · x + c = 0 , где x – переменная, a , b и c – некоторые числа, при этом a не есть нуль.

Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

Приведем пример для иллюстрации заданного определения: 9 · x 2 + 16 · x + 2 = 0 ; 7 , 5 · x 2 + 3 , 1 · x + 0 , 11 = 0 и т.п. – это квадратные уравнения.

Определение 2

Числа a , b и c – это коэффициенты квадратного уравнения a · x 2 + b · x + c = 0 , при этом коэффициент a носит название первого, или старшего, или коэффициента при x 2 , b – второго коэффициента, или коэффициента при x , а c называют свободным членом.

К примеру, в квадратном уравнении 6 · x 2 − 2 · x − 11 = 0 старший коэффициент равен 6 , второй коэффициент есть − 2 , а свободный член равен − 11 . Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6 · x 2 − 2 · x − 11 = 0 , а не 6 · x 2 + (− 2) · x + (− 11) = 0 .

Уточним также такой аспект: если коэффициенты a и/или b равны 1 или − 1 , то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y 2 − y + 7 = 0 старший коэффициент равен 1 , а второй коэффициент есть − 1 .

Приведенные и неприведенные квадратные уравнения

По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

Определение 3

Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1 . При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

Приведем примеры: квадратные уравнения x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 являются приведенными, в каждом из которых старший коэффициент равен 1 .

9 · x 2 − x − 2 = 0 - неприведенное квадратное уравнение, где первый коэффициент отличен от 1 .

Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

Пример 1

Задано уравнение 6 · x 2 + 18 · x − 7 = 0 . Необходимо преобразовать исходное уравнение в приведенную форму.

Решение

Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6 . Тогда получим: (6 · x 2 + 18 · x − 7) : 3 = 0: 3 , и это то же самое, что: (6 · x 2) : 3 + (18 · x) : 3 − 7: 3 = 0 и далее: (6: 6) · x 2 + (18: 6) · x − 7: 6 = 0 . Отсюда: x 2 + 3 · x - 1 1 6 = 0 . Таким образом, получено уравнение, равносильное заданному.

Ответ: x 2 + 3 · x - 1 1 6 = 0 .

Полные и неполные квадратные уравнения

Обратимся к определению квадратного уравнения. В нем мы уточнили, что a ≠ 0 . Подобное условие необходимо, чтобы уравнение a · x 2 + b · x + c = 0 было именно квадратным, поскольку при a = 0 оно по сути преобразуется в линейное уравнение b · x + c = 0 .

В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

Определение 4

Неполное квадратное уравнение – такое квадратное уравнение a · x 2 + b · x + c = 0 , где хотя бы один из коэффициентов b и c (или оба) равен нулю.

Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

При b = 0 квадратное уравнение примет вид a · x 2 + 0 · x + c = 0 , что то же самое, что a · x 2 + c = 0 . При c = 0 квадратное уравнение записано как a · x 2 + b · x + 0 = 0 , что равносильно a · x 2 + b · x = 0 . При b = 0 и c = 0 уравнение примет вид a · x 2 = 0 . Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x , либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

Например, x 2 + 3 · x + 4 = 0 и − 7 · x 2 − 2 · x + 1 , 3 = 0 – это полные квадратные уравнения; x 2 = 0 , − 5 · x 2 = 0 ; 11 · x 2 + 2 = 0 , − x 2 − 6 · x = 0 – неполные квадратные уравнения.

Решение неполных квадратных уравнений

Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

  • a · x 2 = 0 , такому уравнению соответствуют коэффициенты b = 0 и c = 0 ;
  • a · x 2 + c = 0 при b = 0 ;
  • a · x 2 + b · x = 0 при c = 0 .

Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

Решение уравнения a·x 2 =0

Как уже было указано выше, такому уравнению отвечают коэффициенты b и c , равные нулю. Уравнение a · x 2 = 0 возможно преобразовать в равносильное ему уравнение x 2 = 0 , которое мы получим, поделив обе части исходного уравнения на число a , не равное нулю. Очевидный факт, что корень уравнения x 2 = 0 это нуль, поскольку 0 2 = 0 . Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p , не равного нулю, верно неравенство p 2 > 0 , из чего следует, что при p ≠ 0 равенство p 2 = 0 никогда не будет достигнуто.

Определение 5

Таким образом, для неполного квадратного уравнение a · x 2 = 0 существует единственный корень x = 0 .

Пример 2

Для примера решим неполное квадратное уравнение − 3 · x 2 = 0 . Ему равносильно уравнение x 2 = 0 , его единственным корнем является x = 0 , тогда и исходное уравнение имеет единственный корень - нуль.

Кратко решение оформляется так:

− 3 · x 2 = 0 , x 2 = 0 , x = 0 .

Решение уравнения a · x 2 + c = 0

На очереди - решение неполных квадратных уравнений, где b = 0 , c ≠ 0 , то есть уравнений вида a · x 2 + c = 0 . Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

  • переносим c в правую часть, что дает уравнение a · x 2 = − c ;
  • делим обе части уравнения на a , получаем в итоге x = - c a .

Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения - c a: оно может иметь знак минус (допустим, если a = 1 и c = 2 , тогда - c a = - 2 1 = - 2) или знак плюс (например, если a = − 2 и c = 6 , то - c a = - 6 - 2 = 3); оно не равно нулю, поскольку c ≠ 0 . Подробнее остановимся на ситуациях, когда - c a < 0 и - c a > 0 .

В случае, когда - c a < 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа p равенство p 2 = - c a не может быть верным.

Все иначе, когда - c a > 0: вспомним о квадратном корне, и станет очевидно, что корнем уравнения x 2 = - c a будет число - c a , поскольку - c a 2 = - c a . Нетрудно понять, что число - - c a - также корень уравнения x 2 = - c a: действительно, - - c a 2 = - c a .

Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x 1 и − x 1 . Выскажем предположение, что уравнение x 2 = - c a имеет также корень x 2 , который отличается от корней x 1 и − x 1 . Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

Для x 1 и − x 1 запишем: x 1 2 = - c a , а для x 2 - x 2 2 = - c a . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x 1 2 − x 2 2 = 0 . Используем свойства действий с числами, чтобы переписать последнее равенство как (x 1 − x 2) · (x 1 + x 2) = 0 . Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x 1 − x 2 = 0 и/или x 1 + x 2 = 0 , что то же самое, x 2 = x 1 и/или x 2 = − x 1 . Возникло очевидное противоречие, ведь вначале было условлено, что корень уравнения x 2 отличается от x 1 и − x 1 . Так, мы доказали, что уравнение не имеет иных корней, кроме x = - c a и x = - - c a .

Резюмируем все рассуждения выше.

Определение 6

Неполное квадратное уравнение a · x 2 + c = 0 равносильно уравнению x 2 = - c a , которое:

  • не будет иметь корней при - c a < 0 ;
  • будет иметь два корня x = - c a и x = - - c a при - c a > 0 .

Приведем примеры решения уравнений a · x 2 + c = 0 .

Пример 3

Задано квадратное уравнение 9 · x 2 + 7 = 0 . Необходимо найти его решение.

Решение

Перенесем свободный член в правую часть уравнения, тогда уравнение примет вид 9 · x 2 = − 7 .
Разделим обе части полученного уравнения на 9 , придем к x 2 = - 7 9 . В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9 · x 2 + 7 = 0 не будет иметь корней.

Ответ: уравнение 9 · x 2 + 7 = 0 не имеет корней.

Пример 4

Необходимо решить уравнение − x 2 + 36 = 0 .

Решение

Перенесем 36 в правую часть: − x 2 = − 36 .
Разделим обе части на − 1 , получим x 2 = 36 . В правой части - положительное число, отсюда можно сделать вывод, что x = 36 или x = - 36 .
Извлечем корень и запишем окончательный итог: неполное квадратное уравнение − x 2 + 36 = 0 имеет два корня x = 6 или x = − 6 .

Ответ: x = 6 или x = − 6 .

Решение уравнения a·x 2 +b·x=0

Разберем третий вид неполных квадратных уравнений, когда c = 0 . Чтобы найти решение неполного квадратного уравнения a · x 2 + b · x = 0 , воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x . Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x · (a · x + b) = 0 . А это уравнение, в свою очередь, равносильно совокупности уравнений x = 0 и a · x + b = 0 . Уравнение a · x + b = 0 линейное, и корень его: x = − b a .

Определение 7

Таким образом, неполное квадратное уравнение a · x 2 + b · x = 0 будет иметь два корня x = 0 и x = − b a .

Закрепим материал примером.

Пример 5

Необходимо найти решение уравнения 2 3 · x 2 - 2 2 7 · x = 0 .

Решение

Вынесем x за скобки и получим уравнение x · 2 3 · x - 2 2 7 = 0 . Это уравнение равносильно уравнениям x = 0 и 2 3 · x - 2 2 7 = 0 . Теперь следует решить полученное линейное уравнение: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

Кратко решение уравнения запишем так:

2 3 · x 2 - 2 2 7 · x = 0 x · 2 3 · x - 2 2 7 = 0

x = 0 или 2 3 · x - 2 2 7 = 0

x = 0 или x = 3 3 7

Ответ: x = 0 , x = 3 3 7 .

Дискриминант, формула корней квадратного уравнения

Для нахождения решения квадратных уравнений существует формула корней:

Определение 8

x = - b ± D 2 · a , где D = b 2 − 4 · a · c – так называемый дискриминант квадратного уравнения.

Запись x = - b ± D 2 · a по сути означает, что x 1 = - b + D 2 · a , x 2 = - b - D 2 · a .

Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

Вывод формулы корней квадратного уравнения

Пускай перед нами стоит задача решить квадратное уравнение a · x 2 + b · x + c = 0 . Осуществим ряд равносильных преобразований:

  • разделим обе части уравнения на число a , отличное от нуля, получим приведенное квадратное уравнение: x 2 + b a · x + c a = 0 ;
  • выделим полный квадрат в левой части получившегося уравнения:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + c a
    После этого уравнения примет вид: x + b 2 · a 2 - b 2 · a 2 + c a = 0 ;
  • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • наконец, преобразуем выражение, записанное в правой части последнего равенства:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Таким образом, мы пришли к уравнению x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , равносильному исходному уравнению a · x 2 + b · x + c = 0 .

Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • при b 2 - 4 · a · c 4 · a 2 < 0 уравнение не имеет действительных решений;
  • при b 2 - 4 · a · c 4 · a 2 = 0 уравнение имеет вид x + b 2 · a 2 = 0 , тогда x + b 2 · a = 0 .

Отсюда очевиден единственный корень x = - b 2 · a ;

  • при b 2 - 4 · a · c 4 · a 2 > 0 верным будет: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 или x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , что то же самое, что x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 или x = - b 2 · a - b 2 - 4 · a · c 4 · a 2 , т.е. уравнение имеет два корня.

Возможно сделать вывод, что наличие или отсутствие корней уравнения x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (а значит и исходного уравнения) зависит от знака выражения b 2 - 4 · a · c 4 · a 2 , записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4 · a 2 всегда будет положителен), то есть, знаком выражения b 2 − 4 · a · c . Этому выражению b 2 − 4 · a · c дано название - дискриминант квадратногоуравнения и определена в качестве его обозначения буква D . Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней - один или два.

Вернемся к уравнению x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Перепишем его, используя обозначение дискриминанта: x + b 2 · a 2 = D 4 · a 2 .

Вновь сформулируем выводы:

Определение 9

  • при D < 0 уравнение не имеет действительных корней;
  • при D = 0 уравнение имеет единственный корень x = - b 2 · a ;
  • при D > 0 уравнение имеет два корня: x = - b 2 · a + D 4 · a 2 или x = - b 2 · a - D 4 · a 2 . Эти корни на основе свойства радикалов возможно записать в виде: x = - b 2 · a + D 2 · a или - b 2 · a - D 2 · a . А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x = - b + D 2 · a , x = - b - D 2 · a .

Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

x = - b + D 2 · a , x = - b - D 2 · a , дискриминант D вычисляется по формуле D = b 2 − 4 · a · c .

Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

Алгоритм решения квадратных уравнений по формулам корней

Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

Рассуждения выше дают возможность сформулировать алгоритм решения квадратного уравнения.

Определение 10

Чтобы решить квадратное уравнение a · x 2 + b · x + c = 0 , необходимо:

  • по формуле D = b 2 − 4 · a · c найти значение дискриминанта;
  • при D < 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • при D = 0 найти единственный корень уравнения по формуле x = - b 2 · a ;
  • при D > 0 определить два действительных корня квадратного уравнения по формуле x = - b ± D 2 · a .

Отметим, что, когда дискриминант есть нуль, можно использовать формулу x = - b ± D 2 · a , она даст тот же результат, что и формула x = - b 2 · a .

Рассмотрим примеры.

Примеры решения квадратных уравнений

Приведем решение примеров при различных значениях дискриминанта.

Пример 6

Необходимо найти корни уравнения x 2 + 2 · x − 6 = 0 .

Решение

Запишем числовые коэффициенты квадратного уравнения: a = 1 , b = 2 и c = − 6 . Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a , b и c в формулу дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Итак, мы получили D > 0 , а это означает, что исходное уравнение будет иметь два действительных корня.
Для их нахождения используем формулу корня x = - b ± D 2 · a и, подставив соответствующие значения, получим: x = - 2 ± 28 2 · 1 . Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

x = - 2 ± 2 · 7 2

x = - 2 + 2 · 7 2 или x = - 2 - 2 · 7 2

x = - 1 + 7 или x = - 1 - 7

Ответ: x = - 1 + 7 ​​​​​​, x = - 1 - 7 .

Пример 7

Необходимо решить квадратное уравнение − 4 · x 2 + 28 · x − 49 = 0 .

Решение

Определим дискриминант: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0 . При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x = - b 2 · a .

x = - 28 2 · (- 4) x = 3 , 5

Ответ: x = 3 , 5 .

Пример 8

Необходимо решить уравнение 5 · y 2 + 6 · y + 2 = 0

Решение

Числовые коэффициенты этого уравнения будут: a = 5 , b = 6 и c = 2 . Используем эти значения для нахождения дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

x = - 6 ± - 4 2 · 5 ,

x = - 6 + 2 · i 10 или x = - 6 - 2 · i 10 ,

x = - 3 5 + 1 5 · i или x = - 3 5 - 1 5 · i .

Ответ: действительные корни отсутствуют; комплексные корни следующие: - 3 5 + 1 5 · i , - 3 5 - 1 5 · i .

В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

Формула корней для четных вторых коэффициентов

Формула корней x = - b ± D 2 · a (D = b 2 − 4 · a · c) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2 · n , к примеру, 2 · 3 или 14 · ln 5 = 2 · 7 · ln 5). Покажем, как выводится эта формула.

Пусть перед нами стоит задача найти решение квадратного уравнения a · x 2 + 2 · n · x + c = 0 . Действуем по алгоритму: определяем дискриминант D = (2 · n) 2 − 4 · a · c = 4 · n 2 − 4 · a · c = 4 · (n 2 − a · c) , а затем используем формулу корней:

x = - 2 · n ± D 2 · a , x = - 2 · n ± 4 · n 2 - a · c 2 · a , x = - 2 · n ± 2 n 2 - a · c 2 · a , x = - n ± n 2 - a · c a .

Пусть выражение n 2 − a · c будет обозначено как D 1 (иногда его обозначают D "). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2 · n примет вид:

x = - n ± D 1 a , где D 1 = n 2 − a · c .

Легко увидеть, что что D = 4 · D 1 , или D 1 = D 4 . Иначе говоря, D 1 – это четверть дискриминанта. Очевидно, что знак D 1 такой же, как знак D , а значит знак D 1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

Определение 11

Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом 2 · n , необходимо:

  • найти D 1 = n 2 − a · c ;
  • при D 1 < 0 сделать вывод, что действительных корней нет;
  • при D 1 = 0 определить единственный корень уравнения по формуле x = - n a ;
  • при D 1 > 0 определить два действительных корня по формуле x = - n ± D 1 a .

Пример 9

Необходимо решить квадратное уравнение 5 · x 2 − 6 · x − 32 = 0 .

Решение

Второй коэффициент заданного уравнения можем представить как 2 · (− 3) . Тогда перепишем заданное квадратное уравнение как 5 · x 2 + 2 · (− 3) · x − 32 = 0 , где a = 5 , n = − 3 и c = − 32 .

Вычислим четвертую часть дискриминанта: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169 . Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

x = - n ± D 1 a , x = - - 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 или x = 3 - 13 5

x = 3 1 5 или x = - 2

Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

Ответ: x = 3 1 5 или x = - 2 .

Упрощение вида квадратных уравнений

Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

К примеру, квадратное уравнение 12 · x 2 − 4 · x − 7 = 0 явно удобнее для решения, чем 1200 · x 2 − 400 · x − 700 = 0 .

Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200 · x 2 − 400 · x − 700 = 0 , полученную делением обеих его частей на 100 .

Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Как пример используем квадратное уравнение 12 · x 2 − 42 · x + 48 = 0 . Определим НОД абсолютных величин его коэффициентов: НОД (12 , 42 , 48) = НОД(НОД (12 , 42) , 48) = НОД (6 , 48) = 6 . Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2 · x 2 − 7 · x + 8 = 0 .

Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 1 6 · x 2 + 2 3 · x - 3 = 0 перемножить с НОК (6 , 3 , 1) = 6 , то оно станет записано в более простом виде x 2 + 4 · x − 18 = 0 .

Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на − 1 . К примеру, от квадратного уравнения − 2 · x 2 − 3 · x + 7 = 0 можно перейти к упрощенной его версии 2 · x 2 + 3 · x − 7 = 0 .

Связь между корнями и коэффициентами

Уже известная нам формула корней квадратных уравнений x = - b ± D 2 · a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

Самыми известными и применимыми являются формулы теоремы Виета:

x 1 + x 2 = - b a и x 2 = c a .

В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3 · x 2 − 7 · x + 22 = 0 возможно сразу определить, что сумма его корней равна 7 3 , а произведение корней - 22 3 .

Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 · x 1 · x 2 = - b a 2 - 2 · c a = b 2 a 2 - 2 · c a = b 2 - 2 · a · c a 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Квадратное уравнение – решается просто! *Далее в тексте «КУ». Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:


Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим! Содержание статьи:

Квадратное уравнение – это уравнение вида:

где коэффициенты a, b и с произвольные числа, при чём a≠0.

В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

1. Имеют два корня.

2. *Имеют только один корень.

3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

Как вычисляются корни? Просто!

Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

Формулы корней имеют следующий вид:

*Эти формулы нужно знать наизусть.

Можно сразу записывать и решать:

Пример:


1. Если D > 0, то уравнение имеет два корня.

2. Если D = 0, то уравнение имеет один корень.

3. Если D < 0, то уравнение не имеет действительных корней.

Давайте рассмотрим уравнение:


По данному поводу, когда дискриминант равен нулю, в школьном курсе говорится о том, что получается один корень, здесь он равен девяти. Всё правильно, так и есть, но…

Данное представление несколько несколько некорректно. На самом деле получается два корня. Да-да, не удивляйтесь, получается два равных корня, и если быть математически точным, то в ответе следует записывать два корня:

х 1 = 3 х 2 = 3

Но это так – небольшое отступление. В школе можете записывать и говорить, что корень один.

Теперь следующий пример:


Как нам известно – корень из отрицательного числа не извлекается, поэтому решения в данном случае нет.

Вот и весь процесс решения.

Квадратичная функция.

Здесь показано, как решение выглядит геометрически. Это крайне важно понимать (в дальнейшем в одной из статей мы подробно будем разбирать решение квадратного неравенства).

Это функция вида:

где х и у — переменные

a, b, с – заданные числа, при чём a ≠ 0

Графиком является парабола:

То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть статью у Инны Фельдман.

Рассмотрим примеры:

Пример 1: Решить 2x 2 +8 x –192=0

а=2 b=8 c= –192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Ответ: х 1 = 8 х 2 = –12

*Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

Пример 2: Решить x 2 –22 x+121 = 0

а=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Получили, что х 1 = 11 и х 2 = 11

В ответе допустимо записать х = 11.

Ответ: х = 11

Пример 3: Решить x 2 –8x+72 = 0

а=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискриминант отрицательный, решения в действительных числах нет.

Ответ: решения нет

Дискриминант отрицательный. Решение есть!

Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

Понятие комплексного числа.

Немного теории.

Комплексным числом z называется число вида

z = a + bi

где a и b – действительные числа, i – так называемая мнимая единица.

a+bi – это ЕДИНОЕ ЧИСЛО, а не сложение.

Мнимая единица равна корню из минус единицы:

Теперь рассмотрим уравнение:


Получили два сопряжённых корня.

Неполное квадратное уравнение.

Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

Случай 1. Коэффициент b = 0.

Уравнение приобретает вид:

Преобразуем:

Пример:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Случай 2. Коэффициент с = 0.

Уравнение приобретает вид:

Преобразуем, раскладываем на множители:

*Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

Пример:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

x 1 = 0 x 2 = 5

Случай 3. Коэффициенты b = 0 и c = 0.

Здесь понятно, что решением уравнения всегда будет х = 0.

Полезные свойства и закономерности коэффициентов.

Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

а x 2 + bx + c =0 выполняется равенство

a + b + с = 0, то

— если для коэффициентов уравнения а x 2 + bx + c =0 выполняется равенство

a + с = b , то

Данные свойства помогают решить определённого вида уравнения.

Пример 1: 5001 x 2 –4995 x – 6=0

Сумма коэффициентов равна 5001+(4995)+(6) = 0, значит

Пример 2: 2501 x 2 +2507 x +6=0

Выполняется равенство a + с = b , значит

Закономерности коэффициентов.

1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

х 1 = –6 х 2 = –1/6.

2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

х 1 = 15 х 2 = 1/15.

3. Если в уравнении ax 2 + bx – c = 0 коэффициент «b» равен (a 2 – 1), а коэффициент «c» численно равен коэффициенту «a» , то его корни равны

аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

х 1 = – 17 х 2 = 1/17.

4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

х 1 = 10 х 2 = – 1/10

Теорема Виета.

Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

СПОСОБ ПЕРЕБРОСКИ

При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а ± b+c ≠ 0, то используется прием переброски, например:

2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

х 1 = 5 х 2 = 0,5.

Каково обоснование? Посмотрите что происходит.

Дискриминанты уравнений (1) и (2) равны:

Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:


У второго (изменённого) корни получаются в 2 раза больше.

Потому результат и делим на 2.

*Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

Ответ: х 1 = 5 х 2 = 0,5

Кв. ур-ие и ЕГЭ.

О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

Что стоит отметить!

1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

15+ 9x 2 - 45x = 0 или 15х+42+9x 2 - 45x=0 или 15 -5x+10x 2 = 0.

Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.