Синергетику чаще всего рассматривают как науку о самоорганизации. Центральным в теории самоорганизации является термин «структура», или «паттерн». Грею Уолтеру принадлежит такое определение: «Понятие паттерн подразумевает любую последовательность явлений во времени или любое расположение предметов в пространстве, которое можно отличить от другой последовательности или другого расположения или сравнить с ними... Вообще говоря, можно считать, что науки возникают в результате поиска паттернов, а искусства - в результате создания паттерна, хотя между поисками и созданием паттерна существует более тесная связь, чем обычно полагают».

По аналогии с колебаниями паттерны можно разделить на свободные, вынужденные и автопаттерны (рис. 7.1). Под автопатгернами будем понимать локализованные пространственные образования, устойчиво существующие в диссипативных неравновесных средах и не зависящие (в конечных пределах) от граничных и начальных условий. Самое главное в этом определении и раскрывающее смысл добавки «авто» к слову паттерн - независимость от изменения начальных и граничных условий. Также как и в случае автоколебаний, подобная независимость может быть только в средах с диссипацией, которая понимается весьма обще.



Рис. 7.1. Классификация структур (паттернов)

Поскольку образование автопатгернов - результат развития пространственно неоднородных неустойчивостей с их последующей стабилизацией за счет баланса между диссипативными расходами и поступлением энергии от источника неравновесности, то процесс образования автопаттерна похож на установление колебаний в распределенных автоколебательных системах (РАС). Для последних определение звучит так: РАС - неконсервативная система, в которой в результате развития неустойчивости возможно установление волновых или колебательных движений, параметры которых (амплитуда и форма колебаний и волн, частота, а в общем случае спектр колебаний) определяются самой системой и не зависят от изменения начальных условий.

Представим себе стоящие на ребре фишки домино. Такие фишки при малых их отклонениях от такого положения снова возвращаются в него. Другими словами, состояние в виде стоящей на ребре фишки устойчиво относительно малых возмущений. Но мы хорошо знаем, что если достаточно сильно толкнуть крайнюю фишку, то это приведет к самораспространяющейся волне последовательного падения фишек вдоль линии их построения (рис. 7.2). Причина этого явления связана с тем, что в исходном состоянии каждая стоящая фишка (по сравнению с лежащей) обладает потенциальной энергий W = mgh , где m - масса фишки, 2h - ее высота. Кроме того, и это существенно, соседние фишки, т.е. элементы системы, взаимодействуют между собой: каждая падающая фишка толкает соседнюю и роняет ее. В рассматриваемом случае самораспространяющаяся волна падения фишек представляет собой автоволну переключения системы из метастабильного состояния с потенциальной энергией W = mgh в более выгодное состояние с меньшей энергией W = 0 . При таком переключении запасенная в фишках потенциальная энергия необратимо переходит в тепло, выделяющееся при падении фишек. Скорость и профиль такой автоволны переключения постоянны и не зависят от начального толчка первой фишки домино.

Рис. 7.2. Автоволна последовательного падения фишек домино. Внизу: профиль автоволны - положения центра тяжести фишек

Самым широким является определение самоорганизации как установления в диссипативной неравновесной среде пространственных паттернов (вообще говоря, эволюционирующих во времени), параметры которых определяются свойствами самой среды и слабо зависят от пространственной структуры источника неравновесности (энергии, массы и т.д.), начального состояния среды и условий на границах. Примеры самоорганизации, о которых далее пойдет речь, можно сказать, являются классическими - почти в каждой книге по самоорганизации этим примерам уделяется достойное место. Во многом, это объясняется тем, что в достаточно простых системах, которые мы и будем обсуждать, удается без различных ухищрений пронаблюдать образование структур возрастающей сложности.

Структуры Тьюринга. Тьюринг в 1952 г. попытался объяснить, почему некоторые живые организмы имеют близкое к периодическому строение. Сюда же примыкает задача о выяснении механизма возникновения пятен на шкуре животных. Тьюринг показал, что в первоначально однородной среде, в которой протекают химические реакции с диффузией, может установиться периодическое в пространстве и стационарное во времени распределение концентраций. Проблема морфогенеза - одна из центральных в исследовании самоорганизации. Главное в проблеме - ответить на вопрос: «Откуда первоначально недифференцированные клетки знают, где и каким образом дифференцироваться?» В отдельных клетках, как следует из экспериментов, такой информации нет. Находясь в ткани, клетка получает информацию о своем положении от других клеток, после чего идет дифференциация. Известно, что в экспериментах, произведенных на эмбрионах, клетка из центральной части тела после пересадки в головной отдел развивалась в глаз. В этих экспериментах доказано, что клетки не располагают информацией о своем последующем развитии, например, через ДНК, а извлекают ее из своего положения в клеточной ткани. Тьюринг предположил, что носителем такой «позиционной информации» служит химическая структура - «морфоген», возникающая благодаря совместному действию химических реакций и диффузии. Сейчас предполагается, что при достаточно высокой концентрации морфогенов в работу включаются гены, что и приводит к дифференциации клеток. Следует, правда, отметить, что существование морфогенов до настоящего времени окончательно не установлено, за исключением некоторых косвенных подтверждений.

Одна из наиболее известных реакционно-диффузионных моделей морфогенеза принадлежит А. Гиреру и X. Мейнхардту (далее - модель ГМ). Модель ГМ основана на том, что все клетки развивающегося организма могут продуцировать два морфогена: активатор и ингибитор, которые могут диффундировать в другие клетки. Если диффузии нет (например, в случае идеального перемешивания), то в результате взаимодействия морфогенов система достигнет однородного стационарного состояния. Диффузия морфогенов с одинаковыми скоростями приведет к тому же: любое пространственное отклонение от стационарного состояния будет сглаживаться. К чему приведет разная скорость диффузии морфогенов? Малое пространственное возмущение может стать неустойчивым, и начинает расти пространственная структура, поскольку скорости реакции в любой заданной точке могут не успеть «подстроиться» друг к другу достаточно быстро. Такую неустойчивость называют диффузионной, а механизм образования структур - активаторно-ингибиторным.

Красивая аналогия, образно поясняющая активаторно-ингибиторный механизм образования структур в распределении концентрации морфогенов, дана в статье Марри: «Пусть имеется очень сухой лес, иными словами, есть все условия для лесного пожара. Чтобы свести к минимуму возможный урон, по всему лесу рассредоточены пожарные с противопожарным снаряжением и вертолеты. Теперь представим, что вспыхивает пожар (активатор). От мест воспламенения начинает двигаться фронт огня. Первоначально поблизости от места пожара недостаточно пожарных (ингибитора), чтобы погасить огонь. Однако с помощью вертолетов пожарные могут обогнать фронт огня и обработать деревья реактивами, которые не позволяют им загореться. Когда огонь достигнет обработанных деревьев, он погаснет. Фронт остановится. Если пожары спонтанно возникают в разных местах леса, то через какое-то время сформируются несколько распространяющихся фронтов огня (волн активации). В свою очередь, это заставит пожарных на вертолетах (волны ингибирования) обогнать каждый фронт и остановить его на некотором расстоянии от места воспламенения. Конечным результатом такого сценария будет лес с черными пятнами сгоревших деревьев, перемежающимися с пятнами зеленых нетронутых деревьев. В принципе полученная картина имитирует результат, даваемый реакционно-диффузионными механизмами, обусловленными диффузией».

Ячейки Бенара. Другим классическим примером самоорганизации являются ячейки Бенара. Слой жидкости (чаще всего силиконовое масло) находится в сосуде, обычно круглой или прямоугольной формы. На жидкость действует сила тяжести. Нижний слой жидкости подогревают, а верхнюю поверхность поддерживают при постоянной температуре (например, комнатной), которая ниже, чем температура нагревателя. Понятно, что устанавливается разность температур между верхней и нижней поверхностями жидкости (физики часто называют эту разность температур градиентом температуры), в результате чего возникает поток тепла снизу вверх. Так происходит всегда: теплота от более нагретых тел стремится перейти к менее нагретым.

Если градиент температуры мал, то перенос тепла осуществляется на микроскопическом уровне: из школьного курса физики известно, что теплота - это не что иное, как движение молекул жидкости. Чем больше температура, тем интенсивнее это так называемое тепловое движение молекул, тем больше скорость молекул. Молекулы жидкости сталкиваются между собой, и при столкновении «более быстрой» молекулы с «более медленной» первая молекула отдает часть энергии второй. Понятно, что в рассматриваемом слое жидкости в нижних слоях температура больше, соответственно, интенсивнее и тепловое движение молекул в этих слоях. В верхних же слоях меньше температура и менее интенсивное движение молекул. В результате взаимодействия «быстрых молекул» с «медленными молекулами» осуществляется передача тепла от нижних слоев к верхним без макроскопического движения жидкости. Под словами «макроскопическое движение жидкости» имеется в виду следующее: если мысленно выделить в жидкости некоторый малый объем и следить за всеми молекулами, заключенными в нем, то увидим, что все молекулы из этого объема, участвуя в хаотическом движении (т.е. двигаясь беспорядочно), наряду с этим совершают коллективное движение в некотором направлении, причем их перемещения оказываются много больше размеров молекул. И наоборот, когда говорим о «микроскопическом движении», то подразумеваем, что молекулы участвуют только в тепловом движении, и никаких направленных потоков жидкости нет.

Возрастая, градиент температуры достигает критического значения, и тогда внезапно (точнее говоря, лучше сказать «внешне внезапно») устанавливается макроскопическое движение жидкости, образующее четко выраженные структуры: на одних участках нагретая жидкость поднимается и затем охлаждается у верхней поверхности, на других - опускается (см. рис. 7.3). Именно в результате этого и возникает движение в виде цилиндрических или шестигранных ячеек. Эти ячейки, по внешнему виду напоминающие пчелиные соты, получили название ячеек Бенара.

Рис. 7.3. Возникновение шестигранных ячеек при конвекции Бенара в тонком слое жидкости. Сверху показаны линии тока жидкости в режиме Бенаровской конвекции. На нижнем кадре показан экспериментальный снимок конвекции Бенара. Снимок демонстрирует шестигранную конвективную структуру в слое силиконового масла глубиной 1 мм при равномерном нагреве снизу. Если верхняя граница свободна, то течение создается неоднородностями поверхностного натяжения, а не плавучестью. Свет, отраженный от алюминиевых хлопьев, демонстрирует подъем жидкости в центре каждой ячейки и ее опускание на краях

Рябь Фарадея. Если кювету, в которую налит слой жидкости с достаточно большой вязкостью (силиконовое масло) периодически «трясти» в вертикальном направлении, то на поверхности жидкости могут образовываться структуры, напоминающие по форме прямоугольники. Первым, кто наблюдал подобные структуры еще в 1831 году, был Майкл Фарадей.

Вихри за движущимся объектом. Говоря о самоорганизации в гидродинамике, стоит упомянуть еще один класс структур, имеющих важное практическое значение. Речь идет о вихрях, которые образуются при обтекании жидкостью или газом движущихся объектов, таких как самолеты, автомобили, суда. И здесь важное значение для образования структуры вихря имеет скорость движущегося объекта и его геометрия. Наблюдать подобные вихри легко можно в неглубоком слое жидкости: вам необходимо, опустив в воду какой-либо объект (например, кончик карандаша), двигать его в горизонтальном направлении с постоянной скоростью. При этом, при небольших скоростях будут наблюдаться два «уса» волн, двигающихся за карандашом. Угол между этими «усами» зависит от скорости его движения. С увеличением скорости ситуация изменяется: за движущимся объектом начинают образовываться вихри, которые затем отрываются от него, но еще некоторое время двигаются вслед за объектом по инерции. Оказывается, что критическое значение скорости, при превышении которого начинается процесс образования вихрей, зависит от геометрических размеров движущегося тела: например, чем больше диаметр движущегося объекта (если мы рассматриваем объект цилиндрической формы), тем при меньшем значении скорости движения начинают формироваться вихревые структуры. Это так называемая дорожка Кармана (рис. 7.4).

Рис. 7.4. Вихревая дорожка Кармана за круговым цилиндром

Процессы самоорганизации в человеческом обществе. Не стоит думать, что поле деятельности синергетики ограничивается только естественно-научным направлением. Процессы самоорганизации имеют место и в экологии, экономике, социологии, демографии и т.д. Например, задумывались ли вы над вопросом, почему на одинаковые товары устанавливается почти одинаковая цена? Вам кажется это само-собой разумеющимся? Но ведь продавцы могут устанавливать на свои товары свои цены, разные, их вроде бы никто не заставляет «держать» одинаковые цены. Тем не менее цена-то одинаковая. Это как раз пример процесса самоорганизации, который представляет интерес для синергетики.

Существует еще масса различных примеров, но мы остановимся лишь на одном. Оказывается, что «формирование общественного мнения» (которое можно, безусловно, определить по-разному) - коллективное явление. Один из его механизмов, имеющий, по-видимому, фундаментальное значение, был обнаружен в результате опытов Соломона Эша. Основная идея этих экспериментов заключалась в следующем: группе, состоявшей примерно из десяти «испытуемых», предлагалось ответить на простой вопрос, например, указать, с какой из трех различных по длине линий совпадает предъявленный отрезок (рис. 7.5). За исключением одного настоящего испытуемого, все остальные члены группы были помощниками экспериментатора, о чем испытуемый, естественно, не подозревал. В первом опыте помощники давали правильный ответ, и испытуемый, естественно, тоже. В последующих опытах помощники давали неверные ответы, и 60% испытуемых также давали неверные ответы. Это свидетельствует о том, что мнение остальных членов группы явно влияет на мнение индивидуумов. Последний эффект известен в психологии как проявление комфортности к мнению незнакомых людей и должен обязательно учитываться, например, при опросе свидетелей при судопроизводстве и т.п. Заметим, что так как в процессе формирования общественного мнения индивидуумы оказывают друг на друга взаимное влияние, то и это явление может быть проанализировано методами синергетики.

Рис. 7.5. Схема опыта С.Эша. Участники эксперимента должны были выбирать на карточке Б линию, которая совпадает по длине с линией на карточке А. Во время исследований испытуемый сталкивался с тем, что все остальные участники единодушно оценивали линию 1 на карточке Б как равную линии-образцу

Интересно то, что формирование структуры в опытах Эша можно сравнительно легко разрушить. Давайте представим себе, что одинокий испытуемый получил бы небольшую поддержку, т.е. еще один человек высказал бы мнение, противоречащее неверной оценке большинства. Что тогда? Эш провел эксперимент, когда один из его помощников отклонился от общей тенденции в ходе одного из исследований и открыто выразил несогласие с большинством. При соблюдении этого условия настоящие испытуемые проявили конформизм только в 6% случаев. Степень комфортности снижалась и в тех случаях, когда испытуемый получал возможность отвечать в частном порядке, т.е. вне пределов слышимости большинства исследуемой малой группы. С другой стороны, комфортность увеличивается, если группа оказывается привлекательной для индивида. Если вам нравятся люди, которые составляют большинство, вы просто обречены на бо льшую комфортность, поскольку вы хотите им понравиться и не оказаться отверженными. Все вышеперечисленное может рассматриваться как некоторые управляющие параметры подобной социальной системы, хотя их формализованная формулировка, а не интуитивное понимание, оказывается достаточно сложным, а может быть и невозможным. Это тот случай, когда гуманитарные науки привносят в синергетику новые примеры и заставляют искать исследователей новые методы описания наблюдаемых «нефизических» явлений. Очевидно, что из анализа таких простых экспериментов становятся более понятными многие мотивы поведения людей, что определяет важность подобных исследований, в том числе и с применением аппарата синергетики.

Много интересных примеров образования подобных структур в малых социальных группах описано в книге Роберта Чалдини Психология влияния. В этой же книге подробно обсуждаются механизмы, приводящие к образованию подобных структур в общении людей, например, психологические методики и стратегии, позволяющие влиять на субъектов общения и навязывать то или иное мнение и индивидуальное поведение людям, подобно тому как это имело место в опыте С. Эша. Так Чалдини утверждает, что во многом такое влияние возможно благодаря определенным паттернам поведения и реакции людей. В частности, он пишет следующее: «Этологи, исследователи, которые изучают поведение животных в естественном окружении, обратили внимание на то, что в поведении представителей многих видов животных часто имеют место жесткие автоматические модели. Называемые жестко фиксированными моделями (паттернами) поведения, эти автоматические последовательности действий заслуживают особого внимания, поскольку они имеют сходство с определенным автоматическим... реагированием людей. Как у людей, так и у животных данные модели, как правило, приводятся в действие каким-то одним элементом информации. Это единственная специфическая черта играет роль спускового крючка, она часто оказывается очень ценной, поскольку позволяет индивиду принимать правильное решение без тщательного и полного анализа всех остальных элементов информации в конкретной ситуации. Преимущество такого стереотипного реагирования заключается в его эффективности и „экономичности"; автоматически реагируя на несущую основную информацию черту - „спусковой крючок", индивид сохраняет свое время, энергию и умственный потенциал...»

Все эти механизмы уступчивости или влияния основаны на определенных паттернах (или, как часто говорят психологи, стереотипах, или казуальных схемах) поведения, «зашитых» в психологию человека, который склонен в большинстве случаев автоматически, не раздумывая реагировать на внешнюю информацию в соответствии с заранее усвоенными причинно-следственными связями.

Рассмотренные выше организационные процессы, ведущие к преобразованию систем, могут осуществляться в двух фор­мах: целенаправленной сознательной деятельности человека (организации) и самоорганизации.

Выделяются три типа процессов самоорганизации:

1) процессы, благодаря которым происходит самозарожде­ние организационной формы, т. е. возникновение каче­ственно нового целостного формирования из некоторой совокупности объектов определенного уровня;

2) процессы, поддерживающие определенный уровень организационной формы при изменении внешних и внутренних условий ее функционирования.

3) процессы совершенствования и саморазвития организа­ционной формы, которые способны накапливать и ис­пользовать прошлый опыт.

Проблема самоорганизации стала интенсивно разраба­тываться в кибернетике, в частности, в работах Н. Винера, Дж. фон Неймана, У. Эшби и др. Эти авторы связывали само­организацию со свойством управления и делали акцент на про­блеме организации. Нетрудно убедиться, что самоорганизация здесь явно или неявно предполагает наличие либо внешнего агента (человека-организатора), либо цели, которая задается самоорганизующейся системе человеком.

Только в синергетике разработка проблемы самоорганиза­ции вносит новый вклад в развитие теории организации, рас­сматривая вопрос об организации вне связи с управлением и акцентируя внимание на проблеме связи понятий организации и самоорганизации, порядка и беспорядка, энтропии и инфор­мации.

Эта точка зрения, на наш взгляд, более продуктивна, так как, раскрывая содержание понятия «самоорганизация», мы обогащаем понятие «организация». Организацию можно по­нять и определить через самоорганизацию, но не наоборот. Вполне возможно, что многочисленные попытки построения общей теории организации до сих пор не имеют успеха, в том числе из-за недостаточного внимания к феномену самоорга­низации. Синергетика ставит перед собой задачу не только изучения данного феномена и максимизации (минимизации) синергетических эффектов, но и управления процессами са­моорганизации. Термин «управляемое развитие» должен быть ■ заменен термином «направляемое развитие».

Существует точка зрения, согласно которой в формирова­нии организационных форм роль внешней среды доминиру­ет, т. е. само возникновение материальных структур почти пол­ностью определяется внешними факторами, поэтому рассмат­ривать самоорганизацию лишь как внутреннее свойство системы в принципе неверно: самоорганизация невозможна без внешней среды.

Самоорганизация не является локальным процессом, про­текающим независимо от внешней среды. Но хотя самоорга­низация и зависит от типа внешней среды, от истории разви­тия и возможных форм ее реализации, хотя внешние условия играют важную роль в выборе поведения материальных си­стем, последнее невозможно объяснить, исходя только из внеш­них факторов как определяющих.



Самоорганизацию целесообразно подразделять на самоор­ганизацию естественных и самоорганизацию искусственных систем. Очевидно, что до появления человека существовала естественная самоорганизация в «чистом» виде. И сейчас та­кие процессы самоорганизации происходят в природе естест­венным путем. К самоорганизации искусственных систем от­носятся процессы, которые совершаются в самоорганизу­ющихся системах, созданных руками человека. Однако вполне очевидно, что природа процессов самоорганизации не зависит от типа систем, и естественные предпосылки ее возникнове­ния, а также формализованный аппарат описания самого про­цесса идентичны.

Следует отметить, что не только в искусственных, но и во многих естественных системах человек способен оказывать влияние на управляющие параметры и «стохастические» силы и этим в известной мере предопределять момент изменения состояния системы (точка бифуркации) и соответственно сце­нарий развития самоорганизующейся системы. В этом случае можно говорить о размывании границы между процессами организации и самоорганизации. По этой же причине, на наш взгляд, нельзя говорить и о противопоставлении понятий «организация» и «самоорганизация», как нельзя ни сводить соотношение между этими понятиями к формально-логиче­скому пониманию «шире - уже» (оно носит сложный харак­тер), ни противопоставлять их. Это два взаимодополняющих процесса. Примером тому может служить демографическая си­стема, в которой наиболее ярко проявляется диалектическое единство организации и самоорганизации.

Раскрытие принципов самоорганизации зависит от пони­мания и адекватного определения понятия самоорганизации. Как следует из литературных источников, самоорганизация - это понятие для обозначения процесса структурообразования в результате действия внутренних детерминантов при специ­фических внешних условиях. При этом причиной возникно­вения структур являются внутренние детерминанты, внутрен­ние свойства системы, внешние же условия (факторы) - всего лишь поводом.

Таким образом, многие авторы при определении понятия самоорганизации совершенно верно указывают в качестве определяющих внутренние причины, однако при этом игнорируют (или опускают как нечто несущественное) факт откры­тости системы для внешних инициирующих воздействий. Вместе с тем некоторые философы отдают предпочтение вне­шним детерминантам, т. е. считают, что роль внешней среды доминирует. В предложенном определении понятия самоорга­низации наблюдается сближение двух точек зрения, но имен­но такой подход к пониманию самоорганизации представля­ется наиболее перспективным.

Самоорганизация в синергетическом понимании - это процесс спонтанного образования высокоупорядоченных по времени и (или) в пространстве устойчивых структур в гетеро­генных открытых неравновесных динамических системах лю­бой природы вследствие внутрисистемных закономерностей при индуцировании внешними воздействиями.

Понятие самоорганизации тесно связано с более фундамен­тальными понятиями порядка и беспорядка. Проблема «поря­док - беспорядок» привлекает внимание исследователей раз­личных областей современной науки. Эти понятия, впервые возникшие в физике, используются для изучения широкого круга явлений не только в естественных, технических, но и в общественных науках, что говорит о необходимости последо­вательно развивать и уточнять представление о порядке и бес­порядке в структуре материи.

Понятия «порядок» и «беспорядок» наряду с понятием «са­моорганизация» являются ключевыми в синергетике, исследу­ющей не только процессы образования устойчивых макроско­пических структур в сложных неравновесных открытых дина­мических системах любой природы, как во времени, так и в пространстве, но и обратное явление - переход от упорядо­ченного состояния к хаосу. Самоорганизация и хаос, или, в более общем смысле, порядок и беспорядок, - это основ­ные структурные характеристики материи.

Из журнала «Естествознание в школе» - 2004. - №3

Ляпцев А. В,

Процессы самоорганизации в курсе «Естествознание»

В государственном образовательном стандарте среднего (полного) общего образования по учебному предмету "Естествознание" дидактическая единица «Процессы самоорганизации» выделена курсивом, что предполагает ознакомительный характер ее изучения. В педагогической практике это приводит к тому, что учебный материал порой не изучается, поскольку необязателен для запоминания.

На наш взгляд, указанная тема является не менее важной, чем многие другие, включенные в перечень требований к уровню подготовки выпускников. О значении процессов самоорганизации и о том, как, несмотря на безусловную сложность рассматриваемых в ней вопросов, тема может быть просто и понятно изложена в учебном процессе и пойдет речь в данной статье.

Мировоззренческий потенциал

Осмысление феномена самоорганизации является важным для формирования естественнонаучного мировоззрения современного учащихся. В частности на уроках биологии при изучении темы «Возникновение жизни» говорится о том, что согласно общепринятой гипотезе жизнь возникла в результате самоорганизации неживой материи. Между тем, суть гипотезы в большинстве случаев остается непонятной не только для учеников, но даже и для учителей в виду сложной интерпретации такого понятия как "самоорганизация".

На одной из лекций для учителей по курсу «Концепции современного естествознания» мне был задан следующий вопрос: «Можно вполне представить, как здание, в котором мы находимся, самопроизвольно разрушится, но как можно представить себе процесс, при котором это здание само по себе построилось?» Вопрос в конечном итоге сводился к гипотезе о возникновении жизни, и, с учетом того, что строение живого организма (даже простейшего) не менее сложно, чем построенное человеком здание, звучал вполне правомерно. Подобного рода вопросы можно найти в многочисленной литературе религиозного характера. Часто, их смысл изначально связан с отрицанием возникновения и эволюцией живой материи. Как сказала одна из учителей в ходе дискуссии на данную тему: «Ученику было бы гораздо проще объяснить возникновение жизни в результате божественного творения, чем в результате какой-то непонятной самоорганизации».

Здесь следует отметить, что, на наш взгляд, борьба между наукой и религией в настоящее время лишь отголосок недавнего исторического прошлого, в котором в силу идеологических, а не естественнонаучных причин бытовал тезис «Наука доказала, что бога нет». На самом деле уже в период становления современной естественнонаучной методологии, естественные науки самоограничились изучением того, что объективно наблюдается. Все, что могут сказать естественные науки о боге – это то, что объективных данных о его существовании у науки нет. Отрицать же существование того, что мы в настоящее время объективно не наблюдаем попросту абсурдно . Настолько же абсурдно спорить по поводу того, какие положения – естественнонаучные или религиозные являются более истинными. Связано это с тем, что критерии истины в естественных науках и в религии различны. С точки зрения науки истинно то, что объективно наблюдается или соответствует логическим выводам из этих наблюдений. С точки зрения религии истинно то, что соответствует определенным религиозным канонам, священным писаниям и т. д. В этом смысле не следует противопоставлять естественнонаучное и религиозное мировоззрения. Естественные науки, отвечают на вопросы: какова структура нашего мира, какие законы управляют природой, как эволюционирует природа.

Естественные науки не отвечают и не должны отвечать на вопросы: кто и с какой целью создал наш мир таким, какой он есть, кто создал такие законы, управляющие природой. В частности вопрос о божественном происхождении нашего мира для естественных наук остается в стороне, а вот вопросы возникновения жизни и эволюции природы вообще – являются предметом естественнонаучных исследований. Именно поэтому мы говорим о естественнонаучных гипотезах возникновения жизни и, в частности, о самоорганизации, а не о том, что жизнь была создана богом.

Так как же «можно представить самовыстраивание здания»? Вот здесь выступает вторая точка зрения на важность формирования у школьников понятия «процессы самоорганизации». Несмотря на то, что наблюдаемая нами жизнь уникальное явление – все живое в нашем мире является тесно взаимосвязанным и единым по происхождению, а другой, отличной от нашей, жизни во Вселенной мы не наблюдаем, законы, описывающие процессы самоорганизации являются более общими, чем биологические законы и связывают эволюцию живой и неживой материи. Таким образом, в теме «процессы самоорганизации», как ни в какой другой прослеживается интегративный характер современных естественнонаучных представлений. В определенном смысле данное понятие «строит мостик» между живой и неживой природой, показывая, что, несмотря на уникальность жизни, и законов, которым она подчинена, в неживой природе существуют примитивные аналоги тех процессов, которые характерны, казалось бы, только для живой природы.

Синергетика – наука о процессах самоорганизации.

Синергетика, или теория самоорганизации, сегодня представляется одним из наиболее популярных и перспективных научных междисциплинарных подходов. Введя в научный оборот термин "синергетика" (дословно – теория совместного действия) Герман Хакен вкладывал в него два смысла. Первый – теория возникновения новых качеств у сложных систем, которыми не обладает ни одна из их частей. Второй – это междисциплинарный подход, разработка которого требует сотрудничества специалистов из разных областей.

Синергетика очень быстро вышла из стен научных лабораторий и начала оказывать большое влияние на разные сферы деятельности современного человека, вызывая у него все больший интерес. В настоящее время этим подходом интересуются многие – от старших школьников и студентов до государственных политиков, от педагогов в образовании и менеджеров по продажам до активно работающих исследователей.

Теория самоорганизации прошла большой путь. Тридцать лет назад на нее смотрели как на очередную забаву физиков-теоретиков, увидевших сходство в описании нелинейных явлений, Двадцать лет назад, благодаря ее концепциям, методам, представлениям были экспериментально обнаружены многие замечательные явления в области физики, химии, биологии, климатологии и других естественных наук. Сейчас этот междисциплинарный подход все шире используется в стратегическим планировании в различных областях человеческой деятельности, а также при анализе исторических альтернатив и поиске путей решения глобальных проблем, вставших перед человечеством.

ПОРЯДОК – определенное расположение элементов в пространстве или их

последовательность во времени.

САМООРГАНИЗАЦИЯ - появление определенного порядка в однородной массе и

последующего совершенствования и усложнения возникающей структуры.

СИНЕРГЕТИКА - наука, изучающая системы, состоящие из многих подсистем

самой различ­ной природы; наука о самоорганизации простых систем и

превращении хаоса в порядок.

СИНЕРГИЗМ- взаимное влияние, содействие, поддержка.

СИНЕРГИЯ - совместное взаимодействие различных потенций или видов энергий в

целостном действии.

СИСТЕМА – множество элементов связанных между собой

и образующих целостное единство.

СЛОЖНАЯ СИСТЕМА- собирательное название систем, состоящих из большого числа взаимосвязанных элементов (строгое математическое определение этого понятия отсутствует).

СТРУКТУРА – относительно устойчивая система связей элементов, образующих целое (вещь).

ЦЕЛОСТНОСТЬ – внутреннее единство объекта, его относительная самостоятельность.

ФРАКТАЛЫ - самоподобные объекты, в которых по мере

увеличения обнаруживается все большее число деталей. Имеют размерность,

промежуточную между точкой и линией, линией и поверхностью, поверхностью и

объемом. Фракталы не являются ни точками, ни кривыми, ни поверхностями, ни

топологическими многообразиями.

ХАОС – беспредельное пространство, беспорядочная смесь материальных

элементов мира, из которой, согласно древнегреческой мифологии,

произошло все существующее.

ЭНЕРГИЯ физическая величина, изменяемая в джоулях, выделяемая или тратящаяся при выполнении той или мной работы. Выделяют потенциальную, кинетическую, тепловую, энергию химических связей, энергию солнечного излучения и ядерную. При проведении той или иной работы энергия не расходуется, а переходит из одного состояния в другое.

ЭНТРОПИЯ – термодинамическая функция, характеризующая часть внутренней энергии замкнутой системы, которая не может быть преобразована в механическую работу.

Илья Пригожин

Пригожин родился 25 января 1917 в Москве. После революции был вывезен родителями в эмиграцию. Окончив брюссельский университет, он быстро продвигался в науке, сделав ряд крупных открытий в области физической химии и термодинамики.

Основные труды в области термодинамики и статистической механики неравновесных процессов. Он сформулировал одну из основных теорем теории неравновесных процессов, названную его именем. Бельгийский ученый был инициатором применения методов теории неравновесных процессов в биологии.

Нобелевская премия по химии была присуждена ученому в 1977 году "за работы по термодинамике необратимых процессов, особенно за теорию диссипативных структур".

Награжден золотой медалью Сванте Аррениуса Шведской королевской академии наук (1969), медалью Баурка Британского химического общества (1972), медалью Котениуса Германской академии естествоиспытателей "Леопольдина" (1975) и медалью Румфорда Лондонского королевского общества (1976). Помимо перечисленных Илья Пригожин получил около 40 научных наград и премий, был почетным членом академий многих стран мира, включая Академию наук СССР, и президентом Королевской академии Бельгии.

ХИМИЧЕСКИЕ ЧАСЫ

В 1951 году российский ученый открыл удивительную химическую реакцию, в которой раствор реакционной смеси веществ поначалу красно-лилового цвета вдруг становится ярко-синим. Потом снова красно-лиловым. И снова синим и т. д. В зависимости от концентрации растворенных веществ период колебаний варьируется от 2 до 100 с.

Химическую реакцию такого рода можно рассматривать как своеобразные химические часы (ведь часы суть не что иное, как инструмент, непрерывно отмеряющий периоды определенной длительности). Следует отметить, что смена цвета жидкости продолжается не бесконечно – спустя некоторое время система приходит в однородное состояние.

Условия эксперимента можно изменить, проведя по жидкости налитой тонким слоем, скажем, ногтем, результатом станет возникновение сложных узоров, кругов, спиралей, вихрей, причем все происходит само по себе, без какого-либо дополнительного воздействия извне (рис.6).

Научные журналы того времени отказывались публиковать об этой реакции даже короткое сообщение. Это замалчивание длилось до тех пор, пока биофизик А. Жаботинский не дал объяснение этой реакции на основе автоколебательных, автоволновых явлений, подобных тем, которые управляют работой сердечной мышцы.

(по тексту учебника Естествознание: Для учащихся 10-х классов школ и средних учебных заведений с гуманитарным профилем/ , . – М.: АСТ-ПРЕСС, 1999 – 336 с.)

Синергетика:

Область научных исследований коллективного поведения частей сложных систем, связанных с неустойчивостями и касающихся процессов самоорганизаций.

Является теорией самоорганизации в природных и социальных системах.

Междисциплинарная универсальная теория самоорганизации процессов самой разной природы. Возникла на стыке физики, биологии и других наук.

Самоорганизация:

Спонтанный переход от неупорядоченного состояния к упорядоченному за счет совместного, кооперативного действия многих подсистем.

Необратимый процесс спонтанного возникновения порядка и организации из хаоса и беспорядка в открытых неравновесных системах.

При самоорганизации энтропия системы уменьшается за счет обмена энергией и веществом с окружающей средой.

Объектами исследования синергетики могут быть системы, которые удовлетворяют следующим необходимым условиям, т.е. системы должны быть:

Открытыми

Нелинейными

Диссипативными

Неравновесными

Нелинейные системы – это системы, для которых даже малые изменения в исходном состоянии приводят к быстронарастающему отклонению ее от исходного состояния. В этом проявляется неустойчивость системы.

Диссипативные систем ы – способные рассеивать (перераспределять) энергию. К диссипативным системам относится любой живой организм.

Неравновесные системы – системы в которых присутствуют неоднородность в пространстве того или иного макропараметра (например, наличие в системе перепадов температур, давления, концентрации химических веществ и др.) Признаками неравновесности системы является перетекание в ней потоков веществ, энергии и др.

Большинство реально существующих систем – это открытые неравновесные системы.

Процесс самоорганизации характеризуется переходом системы из одного состояния в принципиально новые более упорядоченные состояния. Для возникновения упорядочения в системах необходим приток энергии и ее диссипация в системе. За счет энергии поступившей извне возникает некая обобщенная движущая сила (например, перепад давления, перепад концентраций вещества и т.п.) Под действием этой силы система из равновесного или слаборавновесного состояния постепенно переходит к неравновесному состоянию, система становится нелинейной и возникшие флуктуации начинают играть все более заметную роль. В конце концов, наступает момент времени – точка бифуркации, когда система становится перед выбором одного из нескольких принципиально возможных состояний. Этот выбор возможных состояний носит непрогнозированный вероятностный характер.

После осуществления выбора, система становится более упорядоченной, по сравнению с исходной, а ее поведение прогнозируемой. Если движущая сила будет увеличиваться, то система может придти к новой точке бифуркации и т.д.



Точка бифуркации (точка ветвления ) – критическое состояние системы, при котором она становится неустойчивой относительно флуктуаций и возникает неопределенность: станет ли состояние системы хаотическим или она перейдет на новый более высокий уровень упорядоченности.

В масштабе Вселенной самоорганизация проявляется в эволюции космологических сильно неравновесных систем. Процессы самоорганизации имеют место и при формировании геологического облика Земли (геологическая эволюция).

Живой организм, биологический вид, популяция, экосистема и био сфера представляют собой открытые системы, далекие от равновесия, которые характеризуются определенной упорядоченностью.

К процессам самоорганизации относятся:

Кооперативное поведение насекомых

Эффекты самодостраивания (регенерация живых тканей)

Интуиция в процессе мышления

Вся жизнь на Земле, а также ее возникновение.

Примерами самоорганизации могут служить:

- ячейки Бенара : возникновение упорядоченности в виде конвективных ячеек в форме цилиндрических валов или правильных шестигранных структур в слое вязкой жидкости с вертикальным градиентом температуры, т.е. равномерно подогреваемых снизу.

- реакция Белоусова-Жаботинского – класс химических реакций, протекающих в колебательном режиме, при котором некоторые параметры реакции (цвет, концентрация компонентов, температура и др.) изменяются периодически, образуя сложную пространственно-временную структуру реакционной среды.

- лазер (переход лазера в режим генерации) : при накачке энергии лазер работает как обычная лампа, причем микроскопические ячейки, подобно антеннам, излучают свет независимо друг от друга. При определенном значении энергии антенны начинают работать самостоятельно в одной фазе, что приводит к мощному излучению. Таким образом, происходит скачкообразный переход к новому качественному состоянию.

- возникновение кристаллов в достаточно концентрированном растворе

Пороговый характер (внезапность) явлений самоорганизации :

К закономерностям самоорганизации в любой системе относится внезапность, быстрота формирования диссипативной структуры,т.к.развитие кризисной ситуации достигается быстрым переходом диссипативной системы на новый более высокий уровень упорядоченности.

При самоорганизации происходит ;

Синхронизация частей системы

Понижение энтропии системы

Повышение энтропии окружающей систему среды

Универсальный эволюционизм , его причины (положения):

Все существует в развитии

Развитие есть чередование медленных количественных и быстрых качественных изменений (бифуркаций)

Законы природы как принцип отбора допустимых состояний из всех мыслимых

Фундаментальная и неустранимая роль случайности и неопределенности

Непредсказуемость пути выхода из точки бифуркации: прошлое влияет на настоящее и будущее, но не предопределяет его

Устойчивость и надежность природных систем, как результат их постоянного обновления

Эволюция Вселенной и ее структур обусловлены ее собственными законами, действующими объективно и познаваемыми рационально

Вселенная существует и может существовать лишь в развитии

Приведем несколько положений , следующих из вышеизложенного :

Общие закономерности самоорганизации изучают синергетика, неравновесная термодинамика

Примерами самоорганизации систем могут служить:

а) возникновение кристаллов

б) генерация лазерного излучения

в) возникновение ячеек Бенара

г) колебательные реакции Белоусова-Жаботинского

д) популяции

е) планета Земля (геологическая эволюция)

В точке бифуркации:

а) система пребывает в критическом состоянии, переход из которого осуществляется скачком

б) неоднозначен выбор пути дальнейшего развития

Поведение системы вблизи точки бифуркации:

а) по мере приближения к точке бифуркации флуктуации в системе нарастают

б) элементы возникающие в точке бифуркации упорядоченной структуры формируются из флуктуаций, случайно возникших до точки бифуркации

Состояние, когда человек тяжело болен и имеются варианты развития: либо выздороветь либо умереть, либо болезнь примет хроническую форму – и есть точка бифуркации

В ходе самоорганизации системы:

а) в системе происходит превращения хаоса в порядок и энтропия системы уменьшается

б) в окружающей среде системы увеличивается беспорядок и ее энтропия возрастает