Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования, рекомендован Министерством образования и науки РФ и включен в Федеральный перечень учебников.

Учебник адресован учащимся 10 класса и рассчитан на преподавание предмета 1 или 2 часа в неделю.

Современное оформление, многоуровневые вопросы и задания, дополнительная информация и возможность параллельной работы с электронным приложением способствуют эффективному усвоению учебного материала.

Книга:

<<< Назад
Вперед >>>

Вспомните!

Приведите примеры признаков, изменяющихся под воздействием внешней среды.

Что такое мутации?

Изменчивость – одно из важнейших свойств живого, способность живых организмов приобретать отличия от особей как других видов, так и своего вида.

Различают два вида изменчивости: ненаследственная (фенотипическая, или модификационная) и наследственная (генотипическая).

Ненаследственная (модификационная) изменчивость. Этот вид изменчивости представляет собой процесс появления новых признаков под влиянием факторов внешней среды, не затрагивающих генотип. Следовательно, возникающие при этом видоизменения признаков – модификации – по наследству не передаются (рис. 93). Два однояйцевых (монозиготных) близнеца, имеющие абсолютно одинаковые генотипы, но волею судьбы выросшие в разных условиях, могут сильно отличаться друг от друга. Классическим примером, доказывающим воздействие внешней среды на развитие признаков, является стрелолист. У этого растения развивается три вида листьев в зависимости от условий произрастания – на воздухе, в толще воды или на её поверхности.


Рис. 93. Листья дуба, выросшие при яркой освещённости (А) и в затенённом месте (Б)


Рис. 94. Изменение окраски шерсти гималайского кролика под влиянием различных температур

Под влиянием температуры окружающей среды изменяется окраска шерсти у гималайского кролика. Эмбрион, развиваясь в утробе матери, находится в условиях повышенной температуры, которая разрушает фермент, необходимый для синтеза пигмента, поэтому кролики рождаются совершенно белыми. Вскоре после рождения отдельные выступающие части тела (нос, кончики ушей и хвоста) начинают темнеть, потому что там температура ниже, чем в других местах, и фермент не разрушается. Если выщипать участок белой шерсти и охладить кожу, на этом месте вырастет чёрная шерсть (рис. 94).

В сходных условиях среды у генетически близких организмов модификационная изменчивость имеет групповой характер , например в летний период у большинства людей под влиянием УФ-лучей в коже откладывается защитный пигмент – меланин, люди загорают.

У одного и того же вида организмов под воздействием условий внешней среды изменчивость различных признаков может быть абсолютно разной. Например, у крупного рогатого скота удой молока, масса, плодовитость очень сильно зависят от условий кормления и содержания, а, например, жирность молока под влиянием внешних условий изменяется очень мало. Проявления модификационной изменчивости для каждого признака ограничены своей нормой реакции. Норма реакции – это пределы, в которых возможно изменение признака у данного генотипа. В отличие от самой модификационной изменчивости, норма реакции наследуется, и её границы различны для разных признаков и у отдельных индивидов. Наиболее узкая норма реакции характерна для признаков, обеспечивающих жизненно важные качества организма.

Благодаря тому что большинство модификаций имеют приспособительное значение, они способствуют адаптации – приспособлению организма в пределах нормы реакции к существованию в изменяющихся условиях.

Наследственная (генотипическая) изменчивость. Этот вид изменчивости связан с изменениями генотипа, и признаки, приобретённые вследствие этого, передаются по наследству следующим поколениям. Существует две формы генотипической изменчивости: комбинативная и мутационная.

Комбинативная изменчивость заключается в появлении новых признаков в результате образования иных комбинаций генов родителей в генотипах потомков. В основе этого вида изменчивости лежит независимое расхождение гомологичных хромосом в первом мейотическом делении, случайная встреча гамет у одной и той же родительской пары при оплодотворении и случайный подбор родительских пар. Также приводит к перекомбинации генетического материала и повышает изменчивость обмен участками гомологичных хромосом, происходящий в первой профазе мейоза. Таким образом, в процессе комбинативной изменчивости структура генов и хромосом не изменяется, однако новые сочетания аллелей приводят к образованию новых генотипов и, как следствие, к появлению потомков с новыми фенотипами.

Мутационная изменчивость выражается в появлении новых качеств организма в результате образования мутаций. Впервые термин «мутация» ввёл в 1901 г. голландский ботаник Гуго де Фриз. Согласно современным представлениям мутации – это внезапные естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков и свойств организма. Мутации имеют ненаправленный, т. е. случайный, характер и являются важнейшим источником наследственных изменений, без которых невозможна эволюция организмов. В конце XVIII в. в Америке родилась овца с укороченными конечностями, давшая начало новой анконской породе (рис. 95). В Швеции в начале XX в. на звероводческой ферме родилась норка с платиновой окраской меха. Огромное разнообразие признаков у собак и кошек – это результат мутационной изменчивости. Мутации возникают скачкообразно, как новые качественные изменения: из остистой пшеницы образовалась безостая, у дрозофилы появились короткие крылья и полосковидные глаза, у кроликов из естественной природной окраски агути в результате мутаций возникла белая, коричневая, чёрная окраска.

По месту возникновения различают соматические и генеративные мутации. Соматические мутации возникают в клетках тела и не передаются при половом размножении следующим поколениям. Примерами таких мутаций являются пигментные пятна и бородавки кожи. Генеративные мутации появляются в половых клетках и передаются по наследству.


Рис. 95. Овца анконской породы

По уровню изменения генетического материала различают генные, хромосомные и геномные мутации. Генные мутации вызывают изменения в отдельных генах, нарушая порядок нуклеотидов в цепи ДНК, что приводит к синтезу изменённого белка.

Хромосомные мутации затрагивают значительный участок хромосомы , нарушая функционирование сразу многих генов. Отдельный фрагмент хромосомы может удвоиться или потеряться, что вызывает серьёзные нарушения в работе организма, вплоть до гибели эмбриона на ранних стадиях развития.

Геномные мутации приводят к изменению числа хромосом в результате нарушений расхождения хромосом в делениях мейоза. Отсутствие хромосомы или наличие лишней приводит к неблагоприятным последствиям. Наиболее известным примером геномной мутации является синдром Дауна, нарушение развития, которое возникает при появлении лишней 21-й хромосомы. У таких людей общее число хромосом равно 47.

У простейших и у растений часто наблюдается увеличение числа хромосом, кратное гаплоидному набору. Такое изменение хромосомного набора носит название полиплоидия (рис. 96). Возникновение полиплоидов связано, в частности, с нерасхождением гомологичных хромосом в мейозе, в результате чего у диплоидных организмов могут образовываться не гаплоидные, а диплоидные гаметы.

Мутагенные факторы. Способность мутировать – это одно из свойств генов, поэтому мутации могут возникать у всех организмов. Одни мутации несовместимы с жизнью, и получивший их эмбрион гибнет ещё в утробе матери, другие вызывают стойкие изменения признаков, в разной степени значимые для жизнедеятельности особи. В обычных условиях частота мутирования отдельного гена чрезвычайно мала (10 –5), но существуют факторы среды, значительно увеличивающие эту величину, вызывая необратимые нарушения в структуре генов и хромосом. Факторы, воздействие которых на живые организмы приводит к увеличению частоты мутаций, называют мутагенными факторами или мутагенами.


Рис. 96. Полиплоидия. Цветки хризантемы: А – диплоидная форма (2n ); Б – полиплоидная форма

Все мутагенные факторы можно разделить на три группы.

Физическими мутагенами являются все виды ионизирующих излучений (?-лучи, рентгеновские лучи), ультрафиолетовое излучение, высокая и низкая температуры.

Химические мутагены – это аналоги нуклеиновых кислот, перекиси, соли тяжёлых металлов (свинца, ртути), азотистая кислота и некоторые другие вещества. Многие из этих соединений вызывают нарушения в редупликации ДНК. Мутагенное действие оказывают вещества, используемые в сельском хозяйстве для борьбы с вредителями и сорняками (пестициды и гербициды), отходы промышленных предприятий, отдельные пищевые красители и консерванты, некоторые лекарственные препараты, компоненты табачного дыма.

В России и в других странах мира созданы специальные лаборатории и институты, проверяющие на мутагенность все новые синтезированные химические соединения.

К группе биологических мутагенов относят чужеродную ДНК и вирусы, которые, встраиваясь в ДНК хозяина, нарушают работу генов.

Вопросы для повторения и задания

1. Какие виды изменчивости вам известны?

2. Что такое норма реакции?

3. Объясните, почему фенотипическая изменчивость не передаётся по наследству.

4. Что такое мутации? Охарактеризуйте основные свойства мутаций.

5. Приведите классификацию мутаций по уровню изменений наследственного материала.

6. Назовите основные группы мутагенных факторов. Приведите примеры мутагенов, относящихся к каждой группе. Оцените, есть ли в окружающей вас среде мутагенные факторы. К какой группе мутагенов они относятся?

Подумайте! Выполните!

1. Как вы считаете, могут ли факторы внешней среды повлиять на развитие организма, несущего летальную мутацию?

2. Может ли комбинативная изменчивость проявиться в отсутствие полового процесса?

3. Обсудите в классе, какие существуют способы снижения действия мутагенных факторов на человека в современном мире.

4. Можете ли вы привести примеры модификаций, которые не имеют адаптивного характера?

5. Объясните человеку, незнакомому с биологией, чем мутации отличаются от модификаций.

6. Выполните исследование: «Изучение модификационной изменчивости у учащихся (на примере температуры тела и частоты пульса, периодически измеряемых на протяжении 3 суток)».

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

<<< Назад
Вперед >>>

Наследственность и изменчивость – свойства организмов. Генетика как наука


Наследственность – способность организмов передавать свои признаки и особенности развития потомству.
Изменчивость – разнообразие признаков среди представителей данного вида, а также свойство потомков приобретать отличия от родительских форм.
Генетика – наука о закономерностях наследственности и изменчивости.

2. Охарактеризуйте вклад известных вам ученых в развитие генетики как науки, заполнив таблицу.

История развития генетики

3. Какие методы генетики как науки вам известны?
Основной метод генетики – гибридологический. Это скрещивание определенных организмов и анализ их потомства. Этот метод использовал Г. Мендель.
Генеалогический – изучение родословных. Позволяет определить закономерности наследования признаков.
Близнецовый – сравнение однояйцевых близнецов, позволяет изучать модификационную изменчивость (определять воздействие генотипа и среды на развитие ребенка).
Цитогенетический – изучение под микроскопом хромосомного набора – числа хромосом, особенностей их строения. Позволяет выявлять хромосомные болезни.

4. В чем состоит сущность гибридологического метода изучения наследования признаков?
Гибридологический метод – один из методов генетики, способ изучения наследственных свойств организма путем скрещивания его с родственной формой и последующим анализом признаков потомства.

5. Почему горох можно считать удачным объектом генетических исследований?
Виды гороха отличаются друг от друга малым количеством хорошо отличимых признаков. Горох легко выращивать, в условиях Чехии он размножается несколько раз в год. Кроме того, в природе горох является самоопылителем, но в эксперименте самоопыление легко предотвратить, и исследователь легко может опылить растение одной пыльцой с другого растения.

6. Наследование каких пар признаков у гороха изучал Г. Мендель?
Мендель использовал 22 чистые линии гороха. Растения этих линий имели сильно выраженные отличия друг от друга: форма семян (круглые – морщинистые); окраска семян (желтые – зеленые); форма бобов (гладкие – морщинистые); расположение цветков на стебле (пазушные – верхушечные); высота растения (нормальные – карликовые).

7. Что понимают в генетике под чистой линией?
Чистая линия в генетике – это группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей.

Закономерности наследования. Моногибридное скрещивание

1. Дайте определения понятий.
Аллельные гены – гены, ответственные за проявление одного признака.
Гомозиготный организм – организм, содержащий два одинаковых аллельных гена.
Гетерозиготный организм – организм, содержащий два различных аллельных гена.

2. Что понимают под моногибридным скрещиванием?
Моногибридное скрещивание - скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.

3. Сформулируйте правило единообразия гибридов первого поколения.
При скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.

4. Сформулируйте правило расщепления.
При скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют ¼ часть от всего числа потомков первого поколения.

5. Сформулируйте закон чистоты гамет.
При образовании в каждую из них попадает только один из двух «элементов наследственности», отвечающий за данный признак.

6. Используя общепринятые условные обозначения, составьте схему моногибридного скрещивания.


Охарактеризуйте на данном примере цитологические основы моногибридного скрещивания.
Р – родительское поколение, F1 – первое поколение потомков, F2 – второе поколение потомков, А – ген, отвечающий за доминантный признак, а – ген, отвечающий за рецессивный признак.
В результате мейоза в гаметах родительских особей будет присутствовать по одному гену, отвечающему за наследование определенного признака (А или а). В первом поколении соматические клетки будут гетерозиготными (Аа), поэтому половина гамет первого поколения будет содержать ген А, а другая половина – ген а. В результате случайных комбинаций гамет во втором поколении возникнут следующие комбинации: АА, Аа, аА, аа. Особи с тремя первыми комбинациями генов будут иметь одинаковый фенотип (из-за наличия доминантного гена), а с четвертой – иной (рецессивный).

7. Решите генетическую задачу на моногибридное скрещивание.
Задача 1.
У арбуза зеленая окраска плода доминирует над полосатой. От скрещивания зеленоплодного сорта с полосатоплодным получены гибриды первого поколения, имеющие плоды зеленой окраски. Гибриды переопылили и получили 172 гибрида второго поколения. 1) Сколько типов гамет образует растение зеленоплодного сорта? 2) Сколько растений F2 будут гетерозиготными? 3) Сколько разных генотипов будет в F2? 4) Сколько в F2 будет растений с полосатой окраской плодов? 5) Сколько гомозиготных растений с зеленой окраской плодов будет в F2?
Решение
А – зеленая окраска, а – полосатая окраска.
Так как при скрещивании растений с зелеными и полосатыми плодами получили растения с зеленым плодом, можно сделать вывод, что родительские особи были гомозиготными (АА и аа) (по правилу единообразия гибридов первого поколения Менделя).
Составим схему скрещивания.


Ответы:
1. 1 или 2 (в случае гетерозиготы)
2. 86
3. 3
4. 43
5. 43.

Задача 2.
Длинная шерсть у кошек рецессивна по отношению к короткой. Длинношерстная кошка, скрещенная с гетерозиготным короткошерстным котом, принесла 8 котят. 1) Сколько типов гамет образуется у кота? 2) Сколько типов гамет образуется у кошки? 3) Сколько фенотипически разных котят в помете? 4) Сколько генотипически разных котят в помете? 5) Сколько котят в помете с длинной шерстью?
Решение
А – короткая шерсть, а – длинная шерсть. Так как у кошки была длинная шерсть, она гомозиготна, ее генотип аа. У кота генотип Аа (гетерозиготный, короткая шерсть).
Составим схему скрещивания.


Ответы:
1. 2
2. 1
3. 4 с длинной и 4 с короткой
4. 4 с генотипом Аа, и 4 с генотипом аа
5. 4.

Множественные аллели. Анализирующее скрещивание

1. Дайте определения понятий.
Фенотип – совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.
Генотип – это совокупность всех генов организма, являющихся его наследственной основой.

2. Почему понятия о доминантном и рецессивном генах являются относительными?
У гена какого-либо признака могут быть и другие «состояния», которые нельзя назвать ни доминантными, ни рецессивными. Это явление может произойти в результате мутаций и называется «множественный аллелизм».

3. Что понимают под множественным аллелизмом?

Множественный аллелизм - это существование в популяции более двух аллелей данного гена.

4. Заполните таблицу.

Типы взаимодействия аллельных генов


5. Что такое анализирующее скрещивание и каково его практическое значение?
Анализирующее скрещивание используют для установления генотипа особей, которые не различаются по фенотипу. При этом особь, генотип которой нужно установить, скрещивают с особью, гомозиготной по рецессивному гену (аа).

6. Решите задачу на анализирующее скрещивание.
Задача.

Белая окраска венчика у флокса доминирует над розовой. Скрещено растение с белой окраской венчика с растением, имеющим розовую окраску. Получено 96 гибридных растений, из которых 51 имеет белую окраску, а 45 – розовую. 1) Какие генотипы имеют родительские растения? 2) Сколько типов гамет может образовывать растение с белой окраской венчика? 3) Сколько типов гамет может образовывать растение с розовой окраской венчика? 4) Какое соотношение по фенотипу можно ожидать в поколении F2 от скрещивания между собой гибридных растений F1 с белыми цветками?
Решение.
А – белая окраска, а – розовая окраска. Генотип одного растения А.. – белый, второго аа – розовый.
Так как в первом поколении наблюдается расщепление 1:1 (51:45), генотип первого растения Аа.
Составим схему скрещивания.

Ответы:
1. Аа и аа.
2. 2
3. 1
4. 3 с белым венчиком:1 с розовым венчиком.

Дигибридное скрещивание

1. Дайте определения понятий.
Дигибридное скрещивание – скрещивание особей, у которых учитывают отличия друг от друга по двум признакам.
Решетка Пеннета – это таблица, предложенная английским генетиком Реджинальдом Пеннетом в качестве инструмента, представляющего собой графическую запись для определения сочетаемости аллелей из родительских генотипов.

2. Какое соотношение фенотипов получается при дигибридном скрещивании дигетерозигот? Ответ проиллюстрируйте, расписав решетку Пеннета.
А – Желтая окраска семян
а – Зеленая окраска семян
В – Гладкая форма семян
в – Морщинистая форма семян.
Желтый гладкий (ААВВ) × Зеленый морщинистый (аавв) =
Р: АаВв×АаВв (дигетерозиготы)
Гаметы: АВ, Ав, аВ, ав.
F1 в таблице:

Ответ: 9 (желтых гладких):3 (зеленых гладких):3 (желтых морщинистых):1 (зеленых морщинистых).

3. Сформулируйте закон независимого наследования признаков.
При дигибридном скрещивании гены и признаки, за которые эти гены отвечают, наследуются независимо друг от друга.

4. Решите генетические задачи на дигибридное скрещивание.
Задача 1.

Черная окраска у кошек доминирует над палевой, а короткая шерсть – над длинной. Скрещивались чистопородные персидские кошки (черные длинношерстные) с сиамскими (палевые короткошерстные). Полученные гибриды скрещивались между собой. Какова вероятность получения в F2 чистопородного сиамского котенка; котенка, фенотипически похожего на персидского; длинношерстного палевого котенка (выразить в частях)?
Решение:
А – черная окраска, а – палевая.
В – короткая шерсть, в – длинная.

Составим решетку Пеннета.

Ответ:
1) 1/16
2) 3/16
3) 1/16.

Задача 2.

У томатов округлая форма плодов доминирует над грушевидной, а красная окраска плодов – над желтой. От скрещивания гетерозиготного растения с красной окраской и грушевидной формой плодов и желтоплодного с округлыми плодами получено 120 растений. 1) Сколько типов гамет образует гетерозиготное растение с красной окраской плодов и грушевидной формой? 2) Сколько разных фенотипов получилось от такого скрещивания? 3) Сколько разных генотипов получилось от такого скрещивания? 4) Сколько получилось растений с красной окраской и округлой формой плодов? 5) Сколько растений получилось с желтой окраской и округлой формой плодов?
Решение
А – округлая форма, а – грушевидная форма.
В – красная окраска, в – желтая окраска.
Определим генотипы родителей, типы гамет и запишем схему скрещивания.

Составим решетку Пеннета.


Ответ:
1. 2
2. 4
3. 4
4. 30
5. 30.

Хромосомная теория наследственности. Современные представления о гене и геноме

1. Дайте определения понятий.
Кроссинговер – процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза.
Хромосомная карта – это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.

2. В каком случае происходит нарушение закона независимого наследования признаков?
При кроссинговере происходит нарушение закона Моргана, и гены одной хромосомы не наследуются сцепленно, так как часть из них заменяется на аллельные гены гомологичной хромосомы.

3. Напишите основные положения хромосомной теории наследственности Т. Моргана.
Ген представляет собой участок хромосомы.
Аллельные гены (гены, отвечающие за один признак) расположены в строго определенных местах (локусах) гомологичных хромосом.
Гены располагаются в хромосомах линейно, то есть друг за другом.
В процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, то есть может происходить кроссинговер.

4. Сформулируйте закон Моргана.
Гены, находящиеся в одной хромосоме, при мейозе попадают в одну гамету, то есть наследуются сцепленно.

5. От чего зависит вероятность расхождения двух неаллельных генов при кроссинговере?
Вероятность расхождения двух неаллельных генов при кроссинговере зависит от расстояния между ними в хромосоме.

6. Что лежит в основе составления генетических карт организмов?
Подсчет частоты кроссинговера между какими-либо двумя генами одной хромосомы, отвечающими за различные признаки, дает возможность точно определить расстояние между этими генами, а значит, и начать построение генетической карты, которая представляет собой схему взаимного расположения генов, составляющих одну хромосому.

7. Для чего составляют хромосомные карты?
При помощи генетических карт можно узнать расположение генов животных и растений и информацию из них. Это поможет в борьбе с различными неизлечимыми пока заболеваниями.

Наследственная и ненаследственная изменчивость

1. Дайте определения понятий.

Норма реакции – способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида.
Мутация – стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды.
2. Заполните таблицу.


3. От чего зависят пределы модификационной изменчивости?
Пределы модификационной изменчивости зависят от нормы реакции, которая обусловлена генетически и наследуется.

4. Что имеют общего и чем отличаются комбинативная и мутационная изменчивость?
Общее: оба вида изменчивости обусловлены изменениями в генетическом материале.
Отличия: комбинативная изменчивость возникает из-за рекомбинации генов во время слияния гамет, а мутационная вызвана действием на организм мутагенов.

5. Заполните таблицу.

Виды мутаций

6. Что понимают под мутагенными факторами? Приведите соответствующие примеры.
Мутагенные факторы – воздействия, приводящие к возникновениям мутаций.
Это могут быть физические воздействия: ионизирующее излучение и ультрафиолетовое излучение, повреждающее молекулы ДНК; химические вещества, нарушающие структуры ДНК и процессы репликации; вирусы, встраивающие свои гены в ДНК клетки-хозяина.

Наследование признаков у человека. Наследственные болезни у человека

1. Дайте определения понятий.
Генные заболевания – болезни, причинами которых являются генные или хромосомные мутации.
Хромосомные болезни – болезни, вызванные изменением числа хромосом или их строением.

2. Заполните таблицу.

Наследование признаков у человека


3. Что понимают под наследованием, сцепленным с полом?
Наследованием, сцепленное с полом – это наследование признаков, гены которых расположены в половых хромосомах.

4. Какие признаки у человека наследуются сцепленно с полом?
Сцепленно с полом у человека наследуются гемофилия и дальтонизм.

5. Решите генетические задачи на наследование признаков у человека, в том числе на наследование, сцепленное с полом.
Задача 1.

У человека ген длинных ресниц доминирует над геном коротких ресниц. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчин с короткими ресницами. 1) Сколько типов гамет образуется у женщины? 2) Сколько типов гамет образуется у мужчин? 3) Какова вероятность рождения в данной семье ребенка с длинными ресницами (в %)? 4) Сколько разных генотипов и сколько фенотипов может быть среди детей данной супружеской пары?
Решение
А – длинные ресницы
а – короткие ресницы.
Женщины гетерозиготна (Аа), так как у отца были короткие ресницы.
Мужчина гомозиготен (аа).


Ответ:
1. 2
2. 1
3. 50
4. 2 генотипа (Аа) и 2 фенотипа (длинные и короткие ресницы).

Задача 2.

У человека свободная мочка уха доминирует над несвободной, а гладкий подбородок рецессивен по отношению к подбородку с треугольной ямкой. Эти признаки наследуются независимо. От брака мужчины с несвободной мочкой уха и треугольной ямкой на подбородке и женщины, имеющей свободную мочку уха и гладкий подбородок, родился сын с гладким подбородком и несвободной мочкой уха. Какова вероятность рождения в этой семье ребенка с гладким подбородком и свободной мочкой уха; с треугольной ямкой на подбородке (в %)?
Решение
А – свободная мочка уха
а – несвободная мочка уха
В – треугольная ямка
в – гладкий подбородок.
Так как у пары родился ребенок, с гомозиготными признаками (аавв), генотип матери Аавв, а отца – ааВв.
Запишем генотипы родителей, типы гамет и схему скрещивания.


Составим решетку Пеннета.


Ответ:
1. 25
2. 50.

Задача 3.

У человека ген, вызывающий гемофилию, рецессивен и находится в Х-хромосоме, а альбинизм обусловлен аутосомным рецессивным геном. У родителей, нормальных по этим признакам, родился сын альбинос и гемофилик. 1) Какова вероятность того, что у их следующего сына проявятся эти два аномальных признака? 2) Какова вероятность рождения здоровых дочерей?
Решение:
Х° - наличие гемофилии (рецессивен), Х – отсутствие гемофилии.
А – нормальный цвет кожи
а – альбинос.
Генотипы родителей:
Мать - Х°ХАа
Отец – ХУАа.
Составим решетку Пеннета.


Ответ: вероятность проявления признаков альбинизма и гемофилии (генотип Х°Уаа) – у следующего сына - 6,25%. Вероятность рождения здоровых дочерей – (генотип ХХАА) – 6,25%.

Задача 4.

Гипертония у человека определяется доминантным аутосомным геном, а оптическая атрофия вызывается рецессивным геном, сцепленным с полом. Женщина с оптической атрофией вышла замуж за мужчину с гипертонией, у которого отец также был с гипертонией, а мать была здорова. 1) Какова вероятность, что ребенок в этой семье будет страдать обеими аномалиями (в %)? 2) Какова вероятность рождения здорового ребенка (в %)?
Решение.
Х° - наличие атрофии (рецессивен), Х – отсутствие атрофии.
А – гипертония
а – нет гипертонии.
Генотипы родителей:
Мать - Х°Х°аа (так как больна атрофией и без гипертонии)
Отец – ХУАа (так как не болен атрофией и его отец был с гипертонией, а мать здорова).
Составим решетку Пеннета.

Ответ:
1. 25
2. 0 (только 25% дочерей не будут иметь данных недостатков, но они будут носителями атрофии и без гипертонии).

Существует 2 типа наследственной изменчивости: мутационная и комбинативная.

В основе комбинативной изменчивости лежит образование рекомби­наций, т.е. таких соединений генов, каких не было у родителей. Фенотипически это может проявляться не только в том, что родительские при­знаки встречаются у части потомков в других комбинациях, но и в обра­зовании у потомков новых признаков, отсутствующих у родителей. Это случается, когда два или больше неаллельных гена, которыми отличают­ся родители, влияют на формирование одного и того же признака.

Основными источниками комбинативной изменчивости являются:

Независимое расхождение гомологичных хромосом в первом мейотическом делении;

Рекомбинация генов, основанная на явлении перекреста хромосом (рекомбинационные хромосомы, попав в зиготу, вызывают появление признаков, не типичных для родителей);

Случайная встреча гамет при оплодотворении.

В основе мутационной изменчивости лежат мутации - стойкие изме­нения генотипа, затрагивающие целые хромосомы, их части или отдель­ные гены.

1) Типы мутаций по последствиям влияния на организм делятся на полезные, вредные и нейтральные.

2) По месту возникновения мутации могут быть генеративными, если они возникают в половых клетках: они могут проявляться в том поко­лении, которое развивается из половых клеток. Соматические мутации происходят в соматических (неполовых) клетках. Потомкам такие му­тации могут передаваться только при бесполом или вегетативном раз­множении.

3) В зависимости от того, какую часть генотипа они затрагивают, мутации могут быть:

Геномные, приводящие к кратному изменению количества хромо­сом, например, полиплоидия;

Хромосомные, связанные с изменением строения хромосом, присо­единение лишнего участка вследствие перекреста, поворот определен­ного участка хромосом на 180° или со сменой количества отдельных хро­мосом. Благодаря хромосомным перестройкам происходит эволюция кариотипа, и отдельные мутанты, которые возникли вследствие таких перестроек, могут оказаться более приспособленными к условиям суще­ствования, размножиться и дать начало новому виду;

Генные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Это наиболее распространенный тип мутаций.

4) По способу возникновения мутации разделяются на спонтанные и индуцированные.

Спонтанные мутации возникают в естественных условиях под дей­ствием мутагенных факторов среды без вмешательства человека.

Индуцированные мутации возникают при направленном воздействии на организм мутагенных факторов. К физическим мутагенам относят раз­личные виды излучений, низкие и высокие температуры; к химическим - различные химические соединения; к биологическим - вирусы.



Итак, мутации являются основным источником наследственной измен­чивости - фактора эволюции организмов. Благодаря мутациям появляют­ся новые аллели (их называют мутантными). Однако большинство мута­ций вредны для живых существ, поскольку они снижают их приспособлен­ность, возможность давать потомство. Природа допускает много ошибок, создавая, благодаря мутациям, множество видоизмененных генотипов, но вместе с тем она всегда безошибочно и автоматически отбирает те геноти­пы, которые дают наиболее приспособленный к определенным условиям среды фенотип.

Таким образом, мутационный процесс является основным источни­ком эволюционных изменений.

2. Дайте общую характеристику класса Двудольные растения. Каково значение двудольных растений в природе, жизни человека?

Класс двудольные растения – растения, в зародыше семени которых присутствует

две семядоли.

Класс двудольных – 325 семейств.

Рассмотрим крупные семейства двудольных растений .

Семейство Особенности цветка, соцветие Формула цветка Плод Представители
Сложноцветные Цветки – мелкие, трубчатой и язычковой формы – ассиметричные Соцветие – корзинка. Ч (5) Л 5 Тn П 1 – цветки трубчатые Ч (5) Л 5 Тn П 1 – цветки язычковые Семянка, орешек Травянистые растения (лекарственные и масличные) – одуванчик, цикорий, василек, ромашка, астра и мн.др.
Крестоцветные Околоцветник – четырехчленный. Соцветие кисть, реже в виде щитка. Ч 4 Л 4 Т 4+2 П 1 Стручок, стручочек Однолетние и многолетние травянистые растения – репа, редис, турнепс, редька, брюква, капуста и мн.др.
Розоцветные Цветки – одиночные Ч (5) Л 5 Тn П 1 Ч 5+5 Л 5 Тn П 1 Костянка, костянка сложная, многоорешек, яблоко Травы, кустарники, деревья. Шиповник, малина, земляника, слива, яблоня, груша и мн.др.
Бобовые Кисть, головка Ч 5 Л 1+2+(2) Т (9)+1 П 1 Боб Кустарники. Травянистые растения – фасоль, горох, чечевица, арахис, клевер, люцерна, люпин и мн.др.
Пасленовые Одиночные цветки или соцветия – кисть, завиток Ч (5) Л (5) Т (5) П 1 Ягода, коробочка Деревья. Травянистые растения – баклажаны, томаты, перец, картофель, паслен, дурман, белена и мн. др.

ЗНАЧЕНИЕ В ПРИРОДЕ: - растения этого класса являются продуцентами в экосистемах, т. е. фотосинтезируют органические вещества; - эти растения являются началом всех пищевых цепочек; - эти растения определяют вид биогеоценоза (берёзовый лес, кипрейная степь) ; - это активные участники круговорота веществ и воды.



ЗНАЧЕНИЕ В ЖИЗНИ ЧЕЛОВЕКА: - среди растений класса Двудольные много культурных растений, органы которых используются в пищу человеком (семейство Розоцветные -вишня, яблоня, слива, малина, сем. Сложноцветные - подсолнечник, сем. Паслёновые - томат, картофель, перец, сем. Крестоцветные - различные сорта капусты, сем. Бобовые - горох, соя, фасоль) - многие растения используются на корм скоту; - при производстве натуральных нитей (лён, хлопок); - как культурно-декоративные (акация, розы); - лекарственные (горчица, ромашка, крапива, термопсис). Также среди этого класса много пряностей, из них производят табак, кофе, чай, какао, красители, канаты, верёвки, бумагу, деревянную посуду, мебель, музыкальные инструменты; - бесценна для строительства древесина некоторых двудольных (дуб, граб, липа).

В нашей статье речь пойдет об уникальном свойстве всех живых организмов, которое обеспечило возникновение огромного количества видов живых существ. Это наследственная изменчивость. Что это такое, каковы ее особенности и механизм осуществления? На эти и многие другие вопросы вы сейчас найдете ответы.

Что изучает генетика

Сравнительно молодая наука генетика в 19-м веке открыла человечеству многие тайны его происхождения и развития. А предметом ее изучения являются только два свойства живых организмов: наследственность и изменчивость. Благодаря первому обеспечивается преемственность поколений и осуществляется точная передача генетической информации в целом ряду поколений. А вот изменчивость обеспечивает возникновение новых признаков.

Значение изменчивости

Зачем же организму приобретать эти новые признаки? Ответ достаточно прост: для возможности адаптации. На фото ниже перед вами представители нескольких рас одного биологического вида - Человек Разумный. Их морфологические различия на данном этапе не имеют, естественно, никакого приспособительного значения. А вот их далеким предкам новые черты помогали выжить в тяжелых условиях. Так, представители монголоидной расы имеют узкий разрез глаз, поскольку в степях часто были пыльные бури. А негроиды имеют темную кожу в качестве защиты от палящих солнечных лучей.

Виды изменчивости

Изменчивостью называют свойство организмов приобретать новые признаки в процессе их исторического и индивидуального развития. Она бывает двух видов. Это модификационная и наследственная изменчивость. Их объединяет ряд признаков. Например, неизбежно возникают изменения во внешнем строении организмов. Но вот по продолжительности существования модификаций и степени действия они абсолютно отличаются.

Модификационная изменчивость

Этот вид изменчивости является ненаследственным. Он не закрепляется в генотипе, не носит постоянный характер и возникает под воздействием изменений условий окружающей среды. Ярким примером модификационной изменчивости может служить известный опыт с кроликом. Ему сбривали небольшой участок серой шерсти. А на голый участок кожи прикладывали лед. Через некоторое время на этом месте вырастала шерсть белого цвета, которую также сбривали. Но лед в этом случае не прикладывали. В результате на данном участке снова вырастали волосы темного цвета.

Наследственная изменчивость

Данный вид изменчивости носит постоянный характер, поскольку затрагивает структуру генотипа до уровня нуклеотидов ДНК. При этом новые признаки передаются новым поколениям. Наследственная изменчивость, в свою очередь, также бывает двух типов: комбинативная и мутационная. Первая возникает в случае появления нового сочетания генетического материала. Ее самым простым примером служит слияние гамет в ходе полового размножения. В результате организм, получая по половине генетической информации от мужского и женского организма, приобретает новые признаки.

Второй вид - это мутационная наследственная изменчивость. Она заключается в возникновении резких ненаправленных изменений генотипа под воздействием различных факторов. Ими могут быть ионизирующее и ультрафиолетовое излучение, высокая температура, азотсодержащие химические вещества и другие.

В зависимости от уровня структуры генетического аппарата, в котором происходят изменения, различают несколько типов таких наследственных модификаций. При геномных изменяется число хромосом в общем наборе. Это ведет к анатомическим и морфологическим изменениям в организме. Так, появление третьей хромосомы в 21-й паре вызывает болезнь Дауна. При хромосомных мутациях возникает перестройка этой структуры. Они встречаются гораздо реже, чем геномные. Участки хромосом могут дублироваться или отсутствовать, перекручиваться, изменять свое положение. А вот генные мутации, которые также называют точечными, нарушают последовательность мономеров в структуре нуклеиновых кислот.

Независимо от вида мутаций, все они, как правило, не несут для организма полезных признаков. Поэтому человек учится управлять ими искусствено. Так, в селекции часло используется полиплоидия - кратное увеличение числа хромосом в наборе. В результате растение становится более мощным и дает крупные плоды в большом количестве. Никого уже не удивишь инжирным персиком и другими вкусными растительными гибридами. А ведь они являются результатом искусственно проведенной наследственной изменчивости.

Наследственная изменчивость в процессе эволюции

Развитие генетики помогло сделать значительный шаг вперед и в развитии эволюционного учения. Тот факт, что человека и обезьяну отличает лишь одна пара хромосом, стал существенным доказательством теории Дарвина. У растений и животных в историческом развитии можно проследить наследование прогрессивных черт, которые передавались и закреплялись в генотипе. К примеру, водоросли вышли на сушу благодаря тому, что в генотипе закрепился признак наличия механической и проводящей тканей. Каждое последующее поколение оставляло для себя только нужные, полезные признаки, которые корректировались в зависимости от условий обитания и окружающей среды. Так появились господствующие виды растений и животных, обладающие самыми прогрессивными чертами строения.

Итак, наследственная изменчивость - это способность организмов приобретать новые признаки, которые закрепляются в генотипе. Такие изменения носят продолжительный характер, не исчезают при изменении условий среды и передаются по наследству.

Подумайте!

Вопросы

1. Какие хромосомы называют половыми?

2. Что такое аутосомы?

3. Что такое гомогаметный и гетерогаметный пол?

4. Когда происходит генетическое определение пола у человека и чем это обусловлено?

5. Какие вам известны механизмы определения пола? Приведите примеры.

6. Объясните, что такое наследование, сцепленное с полом.

7. Как наследуется дальтонизм? Какое цветоощущение будет у детей, мать которых - дальтоник, а отец имеет нормальное зрение?

Объясните с позиции генетики, почему среди мужчин гораздо больше дальтоников, чем среди женщин.

Изменчивость - одно из важнейших свойств живого, способность живых организмов существовать в различных формах, приобретать новые признаки и свойства. Различают два вида изменчивости: ненаследственная (фенотипическая, или модификационная) и наследственная (генотипическая).

Ненаследственная (модификационная) изменчивость. Этот вид изменчивости представляет собой процесс появления новых признаков под влиянием факторов внешней среды, не затрагивающих генотип. Следовательно, возникающие при этом видоизменения признаков - модификации - по наследству не передаются. Два однояйцевых (монозиготных) близнеца, имеющие абсолютно одинаковые генотипы, но волею судьбы выросшие в разных условиях, могут сильно отличаться друг от друга. Классическим примером, доказывающим воздействие внешней среды на развитие признаков, является стрелолист. У этого растения развивается три вида листьев в зависимости от условий произрастания - на воздухе, в толще воды или на поверхности.

Под влиянием температуры окружающей среды изменяется окраска шерсти гималайского кролика. Эмбрион, развиваясь в утробе матери, находится в условиях повышенной температуры, которая разрушает фермент, необходимый для окраски шерсти, поэтому кролики рождаются совершенно белыми. Вскоре после рождения отдельные выступающие части тела (нос, кончики ушей и хвоста) начинают темнеть, потому что там температура ниже, чем в других местах, и фермент не разрушается. Если выщипать участок белой шерсти и охладить кожу, на этом месте вырастет черная шерсть.

В сходных условиях среды у генетически близких организмов модификационная изменчивость имеет групповой характер, например в летний период у большинства людей под влиянием УФ-лучей в коже откладывается защитный пигмент - меланин, люди загорают.

У одного и того же вида организмов под воздействием условий внешней среды изменчивость различных признаков может быть абсолютно разной. Например, у крупного рогатого скота удой молока, масса, плодовитость очень сильно зависят от условий кормления и содержания, а, например, жирность молока под влиянием внешних условий изменяется очень мало. Проявления модификационной изменчивости для каждого признака ограничены своей нормой реакции. Норма реакции - это пределы, в которых возможно изменение признака у данного генотипа. В отличие от самой модификационной изменчивости норма реакции наследуется, и ее границы различны для разных признаков и у отдельных индивидов. Наиболее узкая норма реакции характерна для признаков, обеспечивающих жизненно важные качества организма.



Благодаря тому, что большинство модификаций имеют приспособительное значение, они способствуют адаптации - приспособлению организма в пределах нормы реакции к существованию в изменяющихся условиях.

Наследственная (генотипическая) изменчивость . Этот вид изменчивости связан с изменениями генотипа, и признаки, приобретенные вследствие этого, передаются по наследству следующим поколениям. Существует две формы генотипической изменчивости: комбинативная и мутационная.

Комбинативная изменчивость заключается в появлении новых признаков в результате образования иных комбинаций генов родителей в генотипах потомков. В основе этого вида изменчивости лежит независимое расхождение гомологичных хромосом в первом мейотическом делении, случайная встреча гамет у одной и той же родительской пары при оплодотворении и случайный подбор родительских пар. Также приводит к пе-рекомбинации генетического материала и повышает изменчивость обмен участками гомологичных хромосом, происходящий в первой профазе мейоза. Таким образом, в процессе комбинативной изменчивости структура генов и хромосом не изменяется, однако новые сочетания аллелей, приводят к образованию новых генотипов и, как следствие, к появлению потомков с новыми фенотипами.

Мутационная изменчивость выражается в появлении новых качестве организма в результате образования мутаций. Впервые термин «мутация» ввел в 1901 г. голландский ботаник Гуго де Фриз. Согласно современным представлениям мутации - это внезапные естественные или вызванные искусственно наследуемые изменения генетического материала, приводящие к изменению тех или иных фенотипических признаков и свойств организма. Мутации имеют ненаправленный, т. е. случайный, характер и являются важнейшим источником наследственных изменений, без которых невозможна эволюция организмов. В конце XVIII в. в Америке родилась овца с укороченными конечностями, давшая начало новой анконской породе. В Швеции в начале XX в. на звероводческой ферме родилась норка с платиновой окраской меха. Огромное разнообразие признаков У собак и кошек - это результат мутационной изменчивости. Мутации возникают скачкообразно, как новые качественные изменения: из остистой пшеницы образовалась безостая, у дрозофилы появились короткие крылья и полосковидные глаза, у кроликов из естественной природной окраски агути в результате мутаций возникла белая, коричневая, черная окраска.

По месту возникновения различают соматические и генеративные мутации. Соматические мутации возникают в клетках тела и не передаются при половом размножении следующим поколениям. Примерами таких мутаций являются пигментные пятна и бородавки кожи. Генеративные мутации появляются в половых клетках и передаются по наследству.

По уровню изменения генетического материала различают генные, хромосомные и геномные мутации. Генные мутации вызывают изменения в отдельных генах, нарушая порядок нуклеотидов в цепи ДНК, что приводит к синтезу измененного белка.

Хромосомные мутации затрагивают значительный участок хромосомы, приводя к нарушению функционирования сразу многих генов. Отдельный фрагмент хромосомы может удвоиться или потеряться, что вызывает серьезные нарушения в работе организма, вплоть до гибели эмбриона на ранних стадиях развития.

Геномные мутации приводят к изменению числа хромосом в результате нарушений расхождения хромосом в делениях мейоза. Отсутствие хромосомы или наличие лишней приводит к неблагоприятным последствиям. Наиболее известным примером геномной мутации является синдром Дауна, нарушение развития, которое возникает при появлении лишней 21-й хромосомы. У таких людей общее количество хромосом равно 47.

У простейших и у растений часто наблюдается увеличение числа хромосом, кратное гаплоидному набору. Такое изменение хромосомного набора носит название полиплоидия . Возникновение полиплоидов связано, в частности, с нерасхождением гомологичных хромосом в мейозе, в результате чего у диплоидных организмов могут образовываться не гаплоидные, а диплоидные гаметы.

Мутагенные факторы . Способность мутировать - это одно из свойств генов, поэтому мутации могут возникать у всех организмов. Одни мутации несовместимы с жизнью, и получивший их эмбрион гибнет еще в утробе матери, другие вызывают стойкие изменения признаков, в разной степени значимые для жизнедеятельности особи. В обычных условиях частота мутирования отдельного гена чрезвычайно мала (10 -5), но существуют факторы среды, значительно увеличивающие эту величину, вызывая необратимые нарушения в структуре генов и хромосом. Факторы, воздействие которых на живые организмы приводит к увеличению числа мутаций, называют мутагенными факторами или мутагенами.

Все мутагенные факторы можно разделить на три группы.

Физическими мутагенами являются все виды ионизирующих излучений (у-лучи, рентгеновские лучи), ультрафиолетовое излучение, высокая и низкая температуры.

Химические мутагены - это аналоги нуклеиновых кислот, перекиси, соли тяжелых металлов (свинца, ртути), азотистая кислота и некоторые другие вещества. Многие из этих соединений вызывают нарушения в редупликации ДНК. Мутагенное действие оказывают вещества, используемые в сельском хозяйстве для борьбы с вредителями и сорняками (пестициды и гербициды), отходы промышленных предприятий, отдельные пищевые красители и консерванты, некоторые лекарственные препараты, компоненты табачного дыма.

В России и в других странах мира созданы специальные лаборатории и институты, проверяющие на мутагенность все новые синтезированные химические соединения.