ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА - (клеточная мембрана плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей её средой.


Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) - эластическая молекулярная структура, состоящая из белков и липидов. Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану. Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды - фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные - наружу.

Структура мембраны клетки

Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи.

Смотреть что такое «плазматическая мембрана» в других словарях:

Эксперименты с искусственными билипидными пленками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трехслойное строение всех клеточных мембран.

Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств.

Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол.

Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран.

Особенности обмена веществ в мембране

Рядом с белками находятся аннулярные липиды - они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают. Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход.

Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионовнатрия. Служит не только механическим барьером, но, главное, ограничивает свободный двусторонний поток в клетку и из нее низко- и высокомолекулярных веществ. Более того, плазмалемма выступает как структура, «узнающая» различные химические вещества и регулирующая избирательный транспорт этих веществ в клетку.

Механическая устойчивость плазматической мембраны определяется не только свойствами самой мембраны, но и свойствами прилежащих к ней гликокаликса и кортикального слоя цитоплазмы. Внешняя поверхность плазматической мембраны покрыта рыхлым волокнистым слоем вещества толщиной 3-4 нм - гликокаликсом.

В этом случае некоторые мембранные транспортные белки образуют молекулярные комплексы, каналы, через которые ионы проходят сквозь мембрану за счет простой диффузии. В других случаях специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом и переносят его через мембрану.

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА - наружный слой цитоплазмы клетки более плотной консистенции. Заякоривающие соединения, или контакты, не только соединяют плазматические мембраны соседних клеток, но и связываются с фибриллярными элементами цитоскелета. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) - внутрь.

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции - одни из них являются ферментами, другие - транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) - одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K - выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.


У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом .

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками .

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

Функция Описание
Защитный барьер Отделяет внутренние органеллы клетки от внешней среды
Регулирующая Производит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация) Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая - Накопление и трансформация энергии;
- световые реакции фотосинтеза в хлоропластах;
- Всасывание и секреция.
Рецепторная (информационная) Участвует в формировании возбуждения и его проведения.
Двигательная Осуществляет движение клетки или отдельных ее частей.

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) - вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая - пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков . Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.


Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO 2 , O 2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример - натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз - это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) - синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Плазматическая мембрана занимает особое положение, так как ограничивает клетку снаружи и непосредственно связана с внеклеточной средой. Она имеет толщину около 10 нм и представляет собой самую толстую из клеточных мембран. Основными компонентами являются белки (более 60%), липиды (около 40%) и углеводы (около 1%). Как и все остальные мембраны клетки синтезируется в каналах ЭПС.

Функции плазмалеммы.

Транспортная.

Плазматическая мембрана является полупроницаемой, т.е. через нее с различной скоростью проходят избирательно разные молекулы. Существует два способа переноса веществ через мембрану: пассивный и активный транспорт .

Пассивный транспорт. Пассивный транспорт или диффузия не требует затрат энергии. Незаряженные молекулы диффундируют по градиенту концентрации, транспорт заряженных молекул зависит от градиента концентрации протонов водорода и трансмембранной разности потенциалов, которые объединяются в электрохимический протонный градиент. Как правило, внутренняя цитоплазматическая поверхность мембраны несет отрицательный заряд, что облегчает проникновение в клетку положительно заряженных ионов. Различают два типа диффузии: простую и облегченную.

Простая диффузия характерна для небольших нейтральных молекул (Н 2 О, СО 2 , О 2), а также для гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков-переносчиков по принципу унипорта .

Облегченная диффузия отличается высокой избирательностью, так как белок-переносчик имеет центр связывания, комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии следующий: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт. Такой транспорт имеет место в случае, когда перенос осуществляется против градиента концентрации. Он требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТФ. Для активного транспорта, кроме источника энергии, необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na и К + через клеточную мембрану. Эта система называется Na + - К*-насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация ионов К + выше, чем ионов Na*.

Градиент концентрации обоих ионов поддерживается путем переноса К + внутрь клетки, a Na + наружу. Оба транспорта происходят против градиента концентрации. Такое распределение ионов определяет содержание воды в клетках, возбудимость нервных клеток и клеток мышц и другие свойства нормальных клеток. Na + -К + -насос представляет собой белок - транспортную АТФазу. Молекула этого фермента является олигомером и пронизывает мембрану. За полный цикл работы насоса из клетки в межклеточное вещество переносится 3 иона Na + , а в обратном направлении - 2 иона К + , при этом используется энергия молекулы АТФ. Существуют транспортные системы для переноса ионов кальция (Са 2+ -АТФазы), протонные насосы (Н + -АТФазы) и др.

Активный перенос вещества через мембрану, осуществляемый за счет энергии градиента концентрации другого вещества называется симпортом . Транспортная АТФаза в этом случае имеет центры связывания для обоих веществ. Антипорт - это перемещение вещества против градиента своей концентрации. При этом другое вещество движется в противоположном направлении по градиенту своей концентрации. Симпорт и антипорт (котранспорт) могут происходить при всасывании аминокислот из кишечника и реабсорбции глюкозы из первичной мочи, при этом используется энергия градиента концентрации ионов Na + , создаваемого Na + , K + -АТФазой.

Еще 2 разновидности транспорта - эндоцитоз и экзоцитоз.

Эндоцитоз - захват клеткой крупных частиц. Существует несколько способов зндоцитоза: пиноцитоз и фагоцитоз. Обычно под пиноцитозом понимают захват клеткой жидких коллоидных частиц, под фагоцитозом - захват корпускул (более плотных и крупных частиц вплоть до других клеток). Механизм пино- и фагоцитоза различен.

В общем виде поступление в клетку твердых частиц или капель жидкости извне называется гетерофагией. Этот процесс наиболее широко распространен у простейших, но очень важен и у человека (равно как и у других млекопитающих). Гетерофагия играет существенную роль в защите организма (сегментоядерные нейтрофилы - гранулоциты; макрофагоциты), перестройке костной ткани (остеокласты), образовании тироксина фолликулами щитовидной железы, реабсорбции белка и других макромолекул в проксимальном отделе нефрона и других процессах.

Пиноцитоз.

Для того чтобы внешние молекулы поступили в клетку, должны быть сначала связаны рецепторами гликокаликса (совокупность молекул, связанных с поверхностными белками мембраны) (рис.).

В месте такого связывания под плазмалеммой обнаруживаются молекулы белка клатрина. Плазмалемма вместе с присоединенными извне молекулами и подстилаемая со стороны цитоплазмы клатрином начинает впячиваться. Впячивание становится все глубже, его края сближаются и затем смыкаются. В результате от плазмалеммы отщепляется пузырек, несущий в себе захваченные молекулы. Клатрин на его поверхности выглядит на электронных мнкрофотографиях как неровная каемка, поэтому такие пузырьки получили название окаймленных.

Клатрин не дает возможности пузырькам присоединятся к внутриклеточным мембранам. Поэтому окаймленные пузырьки могут беспрепятственно транспортироваться в клетке именно к тем участкам цитоплазмы, где должно использоваться их содержимое. Так к ядру доставляются, в частности, стероидные гормоны. Однако обычно окаймленные пузырьки сбрасывают кайму вскоре после отщепления от плазмалеммы. Клатрин переносится к плазмалемме и снова может участвовать в реакциях эндоцитоза.

У поверхности клетки в цитоплазме имеются более постоянные пузырьки - эндосомы. Окаймленные пузырьки сбрасывают клатрин и сливаются с эндосомами, при этом объем и поверхность эндосом увеличивается. Затем избыточная часть эндосом отщепляется в виде нового пузырька, в котором нет поступивших в клетку веществ, они остаются в эндосоме. Новый пузырек направляется к поверхности клетки и сливается с мембраной. В результате убыль плазмалеммы, возникшая при отщеплении окаймленного пузырька, восстанавливается, при этом в плазмалемму возвращаются и ее рецепторы.

Эндосомы погружаются в цитоплазму и сливаются с мембранами лизосомы. Поступившие вещества внутри такой вторичной лизосомы подвергаются различным биохимическим превращениям. По завершении процесса мембрана лизосомы может распадаться на фрагменты, а продукты распада и содержимого лизосомы становятся доступными для внутриклеточных метаболических реакций. Так, например, аминокислоты связываются тРНК и доставляются к рибосомам, а глюкоза может поступать в комплекс Гольджи, либо в канальцы агранулярной ЭПС.

Хотя эндосомы и не обладают клатриновой каймой, не все они сливаются с лизосомами. Часть из них направляется от одной поверхности клетки к другой (если клетки образуют эпителиальный пласт). Там мембрана эндосомы сливается с плазмолеммой и содержимое выводится вовне. В результате вещества переносятся через клетку из одной среды в другую без изменений. Этот процесс называют трансцитозом . Путем трансцитоза могут переноситься и белковые молекулы, в частности иммуноглобулины.

Фагоцитоз.

Если крупная частица имеет на поверхности молекулярные группировки, которые могут распознаваться рецепторами клетки, она связывается. Далеко не всегда чужеродные частицы сами обладают такими группировками. Однако, попадая в организм, они окружаются молекулами иммуноглобулинов (опсонинами), которые всегда содержатся и в крови, и в межклеточной среде. Иммуноглобулины всегда распознаются клетками-фагоцитами.

После того как покрывающие чужеродную частицу опсонины связались с рецепторами фагоцита, активируется его поверхностный комплекс. Актиновые микрофиламенты начинают взаимодействовать с миозином, и конфигурация поверхности клетки изменяется. Вокруг частицы вытягиются выросты цитоплазмы фагоцита. Они охватывают поверхность частицы и объединяются над ней. Наружные листки выростов сливаются, замыкая поверхность клетки.

Глубокие листки выростов образуют мембрану вокруг поглощенной частицы - формируется фагосома. Фагосома сливается с лизосомами, в результате чего возникает их комплекс - гетеролизосома (гетеросома, или фаголизосома). В ней происходит лизис захваченных компонентов частицы. Часть продуктов лизиса выводится из гетеросомы и утилизируется клеткой, часть же может оказаться не поддающейся действию лизосомных ферментов. Эти остатки образуют остаточные тельца.

Потенциально все клетки обладают способностью к фагоцитозу, но в организме лишь некоторые специализируются в этом направлении. Таковы нейтрофильные лейкоциты и макрофаги.

Экзоцитоз.

Это выведение веществ из клетки. Сначала крупномолекулярные соединения сегрегируются в комплексе Голъджи в виде транспортных пузырьков. Последние с участием микротрубочек направляются к клеточной поверхности. Мембрана пузырька встраивается в плазмалемму, и содержимое пузырька оказывается за пределами клетки (рис.) Слияние пузырька с плазмалеммой может совершать без каких-либо дополнительных сигналов. Такой экзоцитоз называют конститутивным. Так выводится из клетгсд большинство продуктов ее собственного метаболизма. Ряд клеток, однако, предназначен для синтеза специальных соединений - секретов, которые используются в организме в других его частях. Для того чтобы транспортный пузырек с секретом слился с плазмалеммои, необходимы сигналы извне. Только тогда произойдет слияние и секрет освободится. Такой экзоцитоз называют регулируемым . Сигнальные молекулы, способствующие выведению секретов, называются либеринами (рилизинг-факторами), а препятствующие выведению - статинами.

Рецепторные функции.

В основном обеспечиваются гликопротеинами, расположенными на поверхности плазмалеммы и способными связываться со своими лигандами. Лиганд соответствует своему рецептору как ключ - замку. Связывание лиганда с рецептором вызывает изменение конформации полипептида. При таком изменении трансмембранного белка устанавливается сообщение между вне- и внутриклеточной средой.

Типы рецепторов.

Рецепторы, связанные с белковыми ионными каналами. Они взаимодействуют с сигнальной молекулой, временно открывающей или закрывающей канал для прохождения ионов. (Например, рецептор нейромедиатора ацетилхолина - белок, состоящий из 5 субъединиц, образующих ионный канал. В отсутствии ацетилхолина канал закрыт, а после присоединения открывается и пропускает ионы натрия).

Каталитические рецепторы. Состоят из внеклеточной части (собственно рецептор) и внутриклеточной цитоплазматической части, которая функционирует как фермент пролинкиназа (например, рецепторы гормона роста).

Рецепторы, связанные с G-белками. Это трансмембранные белки, состоящие из рецептора, взаимодействующего с лигандом, и G-белка (гуанозинтрифосфат-связанного регуляторного белка), который передает сигнал на связанный с мембраной фермент (аденилатциклазу) или на ионный канал. В результате активируется циклический АМФ или ионы кальция. (Так работает аденилатциклазная система. Например, в клетках печени находится рецептор гормона инсулина. Надклеточная часть рецептора связывается с инсулином. Это вызывает активацию внутриклеточной части - фермента аденилатциклазы. Она синтезирует из АТФ циклический АМФ, регулирующий скорость различных внутриклеточных процессов, вызывая активацию или ингибирование тех или иных ферментов метаболизма).

Рецепторы, воспринимающие физические факторы. Например, фоторецепторный белок родопсин. При поглощении света он меняет свою конформацию и возбуждает нервный импульс.

Лекция № 4.

Количество часов: 2

Плазматическая мембрана

1.

2.

3. Межклеточные контакты.

1. Строение плазматической мембраны

Плазматическая мембрана, или плазмалемма, представляет собой поверхностную периферическую структуру, ограничивающую клетку снаружи и обеспечивающую ее связь с другими клетками и внеклеточной средой. Она имеет толщину около 10 нм. Среди других клеточных мембран плазмалемма является самой толстой. В химическом отношении плазматическая мембрана представляет собой липопротеиновый комплекс. Основными компонентами являются липиды (около 40%), белки (более 60%) и углеводы (около 2-10%).

К липидам относится большая группа органических веществ, обладающих плохой растворимостью в воде (гидрофобность) и хорошей растворимостью в органических растворителях и жирах (липофильность). Характерными представителями липидов, встречающимися в плазматической мембране, являются фосфолипиды, сфингомиелины и холестерин. В растительных клетках холестерин замещается фитостерином. По биологической роли белки плазмалеммы можно разделить на белки-ферменты, рецепторные и структурные белки. Углеводы плазмалеммы входят в состав плазмалеммы в связанном состоянии (гликолипиды и гликопротеины).

В настоящее время общепринятой является жидкостно-мозаичная модель строения биологической мембраны. Согласно этой модели структурную основу мембраны образует двойной слой фосфолипидов, инкрустированный белками. Хвосты молекул обращены в двойном слое друг к другу, а полярные головки остаются снаружи, образуя гидрофильные поверхности. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь на разную глубину (есть периферические белки, часть белков пронизывает мембрану насквозь, часть погружена в слой липидов). Большинство белков не связаны с липидами мембраны, т.е. они как бы плавают в «липидном озере». Поэтому молекулы белков способны перемещаться вдоль мембраны, собираться в группы или, наоборот, рассеиваться на поверхности мембраны. Это говорит о том, что плазматическая мембрана не является статичным, застывшим образованием.

Снаружи от плазмолеммы располагается надмембранный слой - гликокаликс. Толщина этого слоя составляет около 3-4 нм. Гликокаликс обнаружен практически у всех животных клеток. Он представляет собой связанный с плазмолеммой гликопротеиновый комплекс. Углеводы образуют длинные, ветвящиеся цепочки полисахаридов, связанные с белками и липидами плазматической мембраны. В гликокаликсе могут располагаться белки-ферменты, участвующие во внеклеточном расщеплении различных веществ. Продукты ферментативной активности (аминокислоты, нуклеотиды, жирные кислоты и др.) транспортируются через плазматическую мембрану и усваиваются клетками.

Плазматическая мембрана постоянно обновляется. Это происходит путем отшнуровывания мелких пузырьков с ее поверхности внутрь клетки и встраивания в мембрану вакуолей, поступивших изнутри клетки. Таким образом, в клетке постоянно происходит поток мембранных элементов: от плазматической мембраны внутрь цитоплазмы (эндоцитоз) и поток мембранных структур из цитоплазмы к поверхности клетки (экзоцитоз). В круговороте мембран ведущая роль отводится системе мембранных вакуолей комплекса Гольджи.

4. Функции плазматической мембраны. Механизмы транспорта веществ через плазмолемму. Рецепторная функция плазмалеммы

Плазматическая мембрана выполняет ряд важнейших функций:

1) Барьерная. Барьерная функция плазматической мембраны заключается в ог­ раничении свободной диффузии веществ из клетки в клетку, предот­ вращении утечки водорастворимого содержимого клетки. Но посколь­ ку клетка должна получать необходимые питательные вещества, вы­ делять конечные продукты метаболизма, регулировать внутриклеточ­ ные концентрации ионов, то в ней образовались специальные меха­низмы переноса веществ через клеточную мембрану.

2) Транспортная. К транспортной функции относится обеспечение поступления и выведения различных веществ в клетку и из клетки. Важное свойство мембраны - избирательная проницаемость , или полупроницаемость. Она легко пропускает воду и водораствори­ мые газы и отталкивает полярные молекулы, такие как глюкоза или аминокислоты.

Существует несколько механизмов транспорта веществ через мем­брану:

пассивный транспорт;

активный транспорт;

транспорт в мембранной упаковке.

Пассивный транспорт. Диффузия - это движение частиц среды, приводящее к переносу ве­ щества из зоны, где его концентрация высока в зону с низкой концентра­ цией. При диффузионном транспорте мембрана функционирует как осмотический барьер. Скорость диффузии зависит от величины молекул и их относительной растворимости в жирах. Чем меньше раз­ меры молекул и чем более они жирорастворимы (липофильны), тем быстрее произойдет их перемещение через липидный бислой. Диффузия может быть нейтральной (перенос незаряженных молекул) и облегченной (с помощью специальных белков пере­ носчиков). Скорость облегченной диффузии выше, чем нейтральной. Максимальной проникающей способностью обладает вода, так как ее молекулы малы и незаряже­ны. Диффузия воды через клеточ­ ную мембрану называется осмо­ сом. Предполагается, что в клеточ­ ной мембране для проникновения воды и некоторых ионов существу­ ют специальные "поры". Число их невелико, а диаметр составляет около 0,3-0,8 нм. Наиболее быст­ро диффундируют через мембра­ну легко растворимые в липидном бислое молекулы, например О, и незаряженные полярные молеку­ лы небольшого диаметра (СО, мо­ чевина).

Перенос полярных молекул (с ахаров, аминокислот), осуще­ ствляемый с помощью специальных мембранных транспортных белков называется облегченной диффузией. Такие белки обна­ ружены во всех типах биологических мембран, и каждый конкрет­ный белок предназначен для переноса молекул определенного клас­ са. Транспортные белки являются трансмембранными, их полипеп­тидная цепь пересекает липидный бислой несколько раз, формируя в нем сквозные проходы. Это обеспечивает перенос специфичес­ ких веществ через мембрану без непосредственного контакта с ней. Существует два основных класса транспортных белков: белки- переносчики (транспортеры) и каналообразующие белки (бел­ ки-каналы). Белки-переносчики переносят молекулы через мембра­ну, предварительно изменяя их конфигурацию. Каналообразующие белки формируют в мембране заполненные водой поры. Когда поры открыты, молекулы специфических веществ (обычно неорганические ионы подходящего размера и заряда) про­ходят сквозь них. Если молекула транспортируемого вещества не имеет заряда, то направление транспорта определяется градиентом концентрации. Если молекула заряжена, то на ее транспорт, кроме градиента кон­центрации, влияет и электрический заряд мембраны (мембранный потенциал). Внутренняя сторона плазмалеммы обычно заряжена от­ рицательно по отношению к наружной. Мембранный потенциал об­легчает проникновение в клетку положительно заряженных ионов и препятствует прохождению ионов заряженных отрицательно.

Активный транспорт. Активным транспортом называется перенос веществ против элек­трохимического градиента. Он всегда осуществляется белками-транс портерами и тесно свя­зан с источником энер гии. В белках-перенос­ чиках имеются участки связывания с транспор­ тируемым веществом. Чем больше таких учас­тков связывается с веще­ ством, тем выше ско­ рость транспорта. Селективный перенос одного вещества называется унипортом. Перенос нескольких веществ осуществляют котран спортные системы. Если перенос идет в одном направлении - это симпорт, если в противоположных – антипорт. Так, например, глюкоза из внеклеточной жидкости в клетку переносится унипортно. Перенос же глюкозы и Na 4 из полости кишечника или канальцев почек соответственно в клетки кишечника или кровь осу­ществляется симпортно, а перенос С1~ и НСО" антипортно. Предпо­лагается, что при переносе возникают обратимые конформационные изменения в транспортере, что и позволяет премещать соединенные с ним вещества.

Примером белка-переносчика, использующего для транспорта веществ энергию выделившуюся при гидролизе АТФ, является Na + -К + насос, обнаруженный в плазматической мембране всех клеток. Na + - K насос работает по принципу антипорта, перекачи­ вая Na " из клетки и К т внутрь клетки против их электрохимических градиентов. Градиент Na + создает осмотическое давление, поддер­живает клеточный объем и обеспечивает транспорт сахаров и ами­ нокислот. На работу этого насоса тратится треть всей энергии не­обходимой для жизнедеятельности клеток. При изучении механизма действия Na + - K + насоса было установ­ лено, что он является ферментом АТФазой и трансмембранным ин­тегральным белком. В присутствии Na + и АТФ под действием АТФа- зы от АТФ отделяется концевой фосфат и присоединяется к остатку аспарагиновой кислоты на молекуле АТФазы. Молекула АТФазы фос форилируется, изменяет свою конфигурацию и Na + выводится из клетки. Вслед за выведением Na из клетки всегда происходит транс­порт К" в клетку. Для этого от АТФазы в присутствии К отщепляется ранее присоединенный фосфат. Фермент дефосфорилируется, восста­навливает свою конфигурацию и К 1 "закачивается" в клетку.

АТФаза образована двумя субъединицами, большой и малой. Большая субъединица состоит из тысячи аминокислотных остатков, пересекающих бислой несколько раз. Она обладает каталитической активностью и способна обратимо фосфорилироваться и дефосфо рилироваться. Большая субъединица на цитоплазматической сторо­ не имеет участки для связывания Na + и АТФ, а на внешней стороне - участки для связывания К + и уабаина. Малая субъединица является гликопротеином и функция его пока не известна.

Na + - K насос обладает электрогенным эффектом. Он удаляет три положительно заряженных иона Na f из клетки и вносит в нее два иона К В результате через мембрану течет ток, образующий элект­ рический потенциал с отрицательным значением во внутренней час­ти клетки по отношению к ее наружной поверхности. Na "- K + насос регулирует клеточный объем, контролирует концентрацию веществ внутри клетки, поддерживает осмотическое давление, участвует в создании мембранного потенциала.

Транспорт в мембранной упаковке. Перенос через мембрану макромолекул (белков, нуклеиновых кис­ лот, полисахаридов, липопротеидов) и других частиц осуществляет­ся посредством последовательного образования и слияния окружен­ ных мембраной пузырьков (везикул). Процесс везикулярного транспор­ та проходит в две стадии. Вначале мембрана пузырька и плазмалемма слипаются, а затем сливаются. Для протекания 2 стадии необхо­ димо чтобы молекулы воды были вы­ теснены взаимодействующими липидными бислоями, которые сближаются до расстояния 1-5 нм. Считает­ ся, что данный процесс активизируют специальные белки слияния (они выделены пока только у вирусов). Везикулярный транспорт имеет важную особенность - поглощенные или секретируемые макромолекулы, находящиеся в пузырьках, обычно не смешиваются с другими макромоле­ кулами или органеллами клетки. Пу­ зырьки могут сливаться со специфи­ческими мембранами, что и обеспе­ чивает обмен макромолекулами меж­ ду внеклеточным пространством и содержимым клетки. Аналогично происходит перенос макромолекул из одного компартмента клетки в другой.

Транспорт макромолекул и частиц в клетку называется эндо цитозом. При этом транспортируемые вещества обволакиваются ча­ стью плазматической мембраны, образуется пузырек (вакуоль), ко­ торый перемещается внутрь клетки. В зависимости от размера обра­ зующихся пузырьков различают два вида эндоцитоза - пиноцитоз и фагоцитоз.

Пиноцитоз обеспечивает поглощение жидкости и растворенных веществ в виде небольших пузырьков (d =150 нм). Фагоцитоз - это поглощение больших частиц, микрооргани зов или обломков органелл, клеток. При этом образуют­ ся крупные пузырьки, фагосомы или вакуоли (d -250 нм и более). У простейших фагоцитарная функция - форма питания. У млекопита­ющих фагоцитарная функция осуществляется макрофагами и нейт рофилами, защищающими организм от инфекции путем поглоще­ния вторгшихся микробов. Макрофаги участвуют также в утилиза­ ции старых или поврежденных клеток и их обломков (в организме человека макрофаги ежедневно поглощают более 100 старых эрит­ роцитов). Фагоцитоз начинается только тогда, когда поглощаемая частица свяжется с поверхностью фагоцита и активирует специализирован­ ные рецепторные клетки. Связывание частиц со специфическими ре­ цепторами мембраны вызывает образование псевдоподии, кото­ рые обволакивают частицу и, сливаясь краями, образуют пузырек - фагосому. Образование фагосомы и собственно фагоцитоз проис­ ходит лишь в том случае, если в процессе обволакивания частица постоянно контактирует с рецепторами плазмалеммы, как бы "засте­ гивая молнию".

Значительная часть материала, поглощенного клеткой путем эн­ доцитоза, заканчивает свой путь в лизосомах. Большие частицы вклю­ чаются в фагосомы, которые затем сливаются с лизосомами и обра­зуют фаголизосомы. Жидкость и макромолекулы, поглощенные при пиноцитозе, первоначально переносятся в эндосомы, которые так­ же сливаются с лизосомами, образуя эндолизосомы. Присутствую­щие в лизосомах разнообразные гидролитические ферменты быст­ ро разрушают макромолекулы. Продукты гидролиза (аминокис­ лоты, сахара, нуклеотиды) транспортируются из лизосом в цитозоль, где используются клеткой. Большинство мембранных компонентов эндоцитозных пузырьков из фагосом и эндосом возвращаются с по­мощью экзоцитоза к плазматической мембране и там повторно ути­ лизируются. Основным биологическим значением эндоцитоза явля­ ется получение строительных блоков за счет внутриклеточного пе­реваривания макромолекул в лизосомах.

Поглощение веществ в эукариотических клетках начинается в спе­ циализированных областях плазматической мембраны, так называе­ мых окаймленных ямках. На электронных микрофотографиях ямки выглядят как впячивания плазматической мембраны, цитоплаз матическая сторона которых покрыта волокнистым слоем. Слой как бы окаймляет небольшие ямки плаз малеммы. Ямки занимают около 2% об­ щей поверхности клеточной мебра ны эукариотов. В течении минуты ямки растут, все глубже впячивают­ ся, втягиваются в клетку и затем, сужаясь у основания, отщепляются, образуя окаймленные пузырьки. Установлено, что из плаз­ матической мембраны фиброблас тов в течении одной минуты отщеп­ ляется примерно четвертая часть мембраны в виде окаймленных пу­ зырьков. Пузырьки быстро теряют свою кайму и приобретают способ­ ность сливаться с лизосомой.

Эндоцитоз может быть неспецифическим (конститутивным) и специфическим (рецепторным). При неспецифическом эндоцитозе клетка захватывает и поглощает совершенно чуждые ей вещества, например, частицы сажи, красители. Вначале происходит осаждение частиц на гликокаликсе плазмалеммы. Особенно хорошо осаждаются (адсорбируются) по­ ложительно заряженные группы белков, так как гликокаликс несет отрицательный заряд. Затем изменяется морфология клеточной мембраны. Она может либо погружаться, образуя впячивания (инвагинации), либо, наоборот, формировать выросты, которые как бы складываются, отделяя небольшие объемы жидкой среды. Образование инвагинаций более характерно для клеток кишечного эпителия, амеб, а выростов - для фагоцитов и фибробластов. Заблокировать эти процессы можно ингибиторами дыхания. Образовавшиеся пузырьки - первичные эндосомы, могут сливать­ ся между собой, увеличиваясь в размере. В дальнейшем они соеди­няются с лизосомами, превращаясь в эндолизосому - пищеваритель­ ную вакуоль. Интенсивность жидкофазного неспецифического пиноцитоза до­ вольно высока. Макрофаги образуют до 125, а клетки эпителия тонко­ го кишечника до тысячи пиносом в минуту. Обилие пиносом приво­дит к тому, что плазмалемма быстро тратится на образование множе­ ства мелких вакуолей. Восстановление мембраны идет довольно быс­ тро при рециклизации в процессе экзоцитоза за счет возвращения ва­ куолей и их встраивания в плазмалемму. У макрофагов вся плазмати­ ческая мембрана замещается за 30 минут, а у фибробластов за 2 часа.

Более эффективным способом поглощения из внеклеточной жид­ кости специфических макромолекул является специфический эн доцитоз (опосредуемый рецепторами). Макромолекулы при этом связываются с комплементарными рецепторами на поверхности клетки, накапливаются в окаймленной ямке, и затем, образуя эндосому, погружаются в цитозоль. Рецепторный эндоцитоз обеспечи­вает накопление специфических макромолекул у своего рецептора. Молекулы, которые связываются на поверхности плазмалеммы с рецеп­ тором, называются лигандами. При помощи рецепторного эндоцитоза во многих живот­ных клетках идет поглощение холестерина из внеклеточной среды.

Плазмолемма принимает участие в выведении веществ из клетки (экзоцитоз). В этом случае вакуоли подходят к плазмолемме. В местах контактов плазмолемма и мембрана вакуоли сливаются и содержимое вакуоли поступает в окружающую среду. У некоторых простейших места на клеточной мембране для экзоцитоза заранее предопределены. Так, в плазматической мембране некоторых ресничных инфузорий есть определенные участки с пра­вильным расположением крупных глобул интегральных белков. У мукоцист и трихоцист инфузорий полностью готовых к секреции, на верхней части плазмалеммы имеется венчик из глобул интегральных белков. Этими участками мембраны мукоцист и трихоцист соприка­ саются с поверхностью клетки. Своеобразный экзоцитоз наблюдается в нейтрофилах. Они спо­ собны при определенных условиях выбрасывать в окружающую сре­ ду свои лизосомы. При этом в одних случаях образуются небольшие выросты плазмалеммы, содержащие лизосомы, которые затем отры­ваются и переходят в среду. В других случаях наблюдается инваги­нация плазмалеммы вглубь клетки и захват ею лизосом, распложен­ ных далеко от поверхности клетки.

Процессы эндоцитоза и экзоцитоза осуществляется при участии связанной с плазмолеммой системы фибриллярных компонентов цитоплазмы.

Рецепторная функция плазмалеммы. Это одна из главных, универсальных для всех клеток, является ре цепторная функция плазмалеммы. Она определяет взаимодействие клеток друг с другом и с внешней средой..

Все многообразие информационных межклеточных взаимодей­ствий схематически можно представить как цепь последовательных реакций сигнал-рецептор-вторичный посредник-ответ (концепция сигнал-ответ). Передачу информации от клетки к клетке осуществляют сигналь­ ные молекулы, которые вырабатываются в одних клетках и специ­ фически влияют на другие, чувствительные к сигналу (клетки-ми­шени). Сигнальная молекула - первичный посредник связыва­ ется с находящимися на клетках-мишенях рецепторами, реагирую­щими только на определенные сигналы. Сигнальные молекулы -лиганды- подходят к своему рецептору как ключ к замку. Лиганда- ми для мембранных рецепторов (рецепторов плазмалеммы) явля­ ются гидрофильные молекулы, пептидные гормоны, нейромедиа- торы, цитокины, антитела, а для ядерных рецепторов - жирораство­римые молекулы, стероидные и тиреоидные гормоны, витамин Д В качестве рецепторов на поверх­ ности клетки могут выступать белки мембраны или элементы гликокалик- са - полисахариды и гликопротеиды. Считается, что чувствительные к от­ дельным веществам участки, разбро­ саны по поверхности клетки или со­ браны в небольшие зоны. Так, на по­ верхности прокариотических клеток и клеток животных имеется ограни­ ченное число мест с которыми могут связываться вирусные частицы. Мем­ бранные белки (переносчики и кана­ лы) узнают, взаимодействуют и пере­ носят лишь определенные вещества. Клеточные рецепторы участвуют в пе­ редаче сигналов с поверхности клет­ки внутрь ее. Разнообразие и специфичность набо­ ров рецепторов на поверхности клеток ведет к созданию очень сложной систе­ мы маркеров, позволяющих отличать свои клетки от чужих. Сходные клетки взаимодействуют друг с другом, поверх­ности их могут слипаться (конъюгация у простейших, образование тканей у мно­гоклеточных). Клетки не воспринимаю­ щие маркеры, а также отличающиеся на­ бором детерминантных маркеров унич­ тожаются или отторгаются. При образовании комплекса рецептор-лиганд активируются трансмембранные белки: белок преобразователь, белок усилитель. В результате рецептор изменяет свою конформацию и взаимодейству­ ет с находящимся в клетке предшественником вторичного посредни­ ка - мессенджером. Мессенджерами могут быть ионизированный кальций, фосфолипа за С, аденилатциклаза, гуанилатциклаза. Под влиянием мессенджера происходит активация ферментов, участвующих в синтезе циклических монофосфатов - АМФ или ГМФ. Последние изменяют актив­ ность двух типов ферментов протеинкиназ в цитоплазме клетки, веду­щих к фосфорилированию многочисленных внутриклеточных белков.

Наиболее распространено образование цАМФ, под действием ко­ торого усиливается секреция ряда гормонов - тироксина, кортизона, прогестерона, увеличивается распад гликогена в печени и мышцах, частота и сила сердечных сокращений, остеодеструкция, обратное всасывание воды в канальцах нефрона.

Активность аденилатциклазной системы очень велика - синтез цАМФ приводит к десяти тысячному усилению сигнала.

Под действием цГМФ увеличивается секреция инсулина подже­лудочной железой, гистамина тучными клетками, серотонина тром­ боцитами, сокращается гладкомышечная ткань.

Во многих случаях при образовании комплекса рецептор-лиганд происходит изменение мембранного потенциала, что в свою очередь приводит к изменению проницаемости плазмалеммы и метаболичес­ ких процессов в клетке.

На плазматической мембране находятся специфические рецеп­торы, реагирующие на физические факторы. Так, у фотосинтезирующих бактерий на поверхности клетки располагаются хлорофиллы, реагирующие на свет. У светочувствительных животных в плазмати­ ческой мембране находится целая система фогорецепторных белков- родопсинов, с помощью которых световой раздражитель трансфор­ мируется в химический сигнал, а затем электрический импульс.

3. Межклеточные контакты

У многоклеточных животных организмов плазмолемма принимает участие в образовании межклеточных соединений , обеспечивающих межклеточные взаимодействия. Различают несколько типов таких структур.

§ Простой котакт. Простой контакт встречается среди большинства прилежащих друг к другу клеток различного происхождения. Представляет собой сближение плазмолемм соседних клеток на расстояние 15-20 нм. При этом происходит взаимодействие слоев гликокаликса соседних клеток.

§ Плотный (замыкающий) контакт. При таком соединении внешние слои двух плазмолемм максимально сближены. Сближение настолько плотное, что происходит как бы слияние участков плазмолемм двух соседних клеток. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран. Роль плотного контакта заключается в механическом соединении клеток друг с другом. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды.

§ Пятно сцепления, или десмосома. Десмосома представляет собой небольшую площадку диаметром до 0,5 мкм. В зоне десмосомы со стороны цитоплазмы находится область тонких фибрилл. Функциональная роль десмосом в основном заключается в механической связи между клетками.

§ Щелевой контакт, или нексус. При таком типе контакта плазмолеммы соседних клеток на протяжении 0,5-3 мкм разделены промежутком в 2-3 нм. В структуре плазмолемм располагаются специальные белковые комплексы (коннексоны). Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки. В результате образуется канал из одной клетки в другую. Коннексоны могут сокращаться, изменяя диаметр внутреннего канала, и тем самым участвовать в регуляции транспорта молекул между клетками. Этот тип соединения встречается во всех группах тканей. Функциональная роль щелевого контакта заключается в переносе ионов и мелких молекул от клетки к клетке. Так, в сердечной мышце возбуждение, в основе которого лежит процесс изменения ионной проницаемости, передается от клетки к клетке через нексус.

§ Синаптический контакт,или синапс. Синапсы - участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому. Этот тип соединений характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом. Мембраны этих клеток разделены межклеточным пространством – синаптической щелью шириной около 20-30 нм. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой – постсинаптической. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей (синаптических пузырьков), содержащих медиатор. В момент прохождения нервного импульса синаптические пузырьки выбрасывают медиатор в синаптичекую щель. Медиатор взаимодействует с рецепторными участками постсинаптической мембраны, что в конечном итоге приводит к передаче нервного импульса. Кроме передачи нервного импульса синапсы обеспечивают жесткое соединение поверхностей двух взаимодействующих клеток.

§ Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые каналы, соединяющие две соседние клетки. Диаметр этих каналов составляет обычно 40-50 нм. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки. В молодых клетках число плазмодесм может быть очень велико (до 1000 на клетку). При старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки. Функциональная роль плазмодесм заключается в обеспечении межклеточной циркуляции растворов, содержащих питательные вещества, ионы и другие соединения. Через плазмодесмы происходит заражение клеток растительными вирусами.

Специализированные структуры плазматической мембраны

Плазмолемма многих клеток животных образует выросты различной структуры (микроворсинки, реснички, жгутики). Наиболее часто на поверхности многих животных клеток встречаются микроворсинки. Эти выросты цитоплазмы, ограниченные плазмолеммой, имеющие форму цилиндра с закругленной вершиной. Микроворсинки характерны для клеток эпителиев, но обнаруживаются и у клеток других тканей. Диаметр микроворсинок составляет около 100 нм. Число и длина их различны у разных типов клеток. Значение микроворсинок заключается в значительном увеличении площади клеточной поверхности. Это особенно важно для клеток, участвующих во всасывании. Так, в кишечном эпителии на 1 мм 2 поверхности насчитывается до 2х10 8 микроворсинок.