На поверхности жидкости, вблизи границы, разделяющей жидкость и ее пар, взаимодействие между молекулами жидкости отличается от взаимодействия молекул внутри объема жидкости. Для иллюстрации этого утверждения рассмотрим рис. 20 . Молекула 1, окруженная со всех сторон другими молекулами той же жидкости испытывает в среднем одинаковые силы притяжения ко всем своим соседям. Равнодействующая этих сил близка к нулю. Молекула 2 испытывает меньшее притяжение вверх со стороны молекул пара и большее притяжение вниз со стороны молекул жидкости. В результате на молекулы, расположенные в поверхностном слое действует направленная вниз в глубь жидкости равнодействующая R сил, которую принято относить к единице площади поверхностного слоя.

Для перенесения молекул из глубины жидкости в ее поверхностный слой необходимо совершить работу по преодолению силы R . Эта работа идет на увеличение поверхностной энергии , т.е. избыточной потенциальной энергии, которой обладают молекулы в поверхностном слое по сравнению с их потенциальной энергией внутри остального объема жидкости.

Обозначим потенциальную энергию одной молекулы в поверхностном слое, - потенциальную энергию молекулы в объеме жидкости, число молекул в поверхностном слое жидкости. Тогда поверхностная энергия равна

Коэффициентом поверхностного натяжения (или просто поверхностным натяжением ) жидкости называют изменение поверхностной энергии при изотермическом увеличении площади поверхности на одну единицу:

,

где – число молекул на единице площади поверхности жидкости.

Если поверхность жидкости ограничена периметром смачивания (см. 4.3), то коэффициент поверхностного натяжения численно равен силе, действующей на единицу длины периметра смачивания и направленной перпендикулярно к этому периметру:

где – длина периметра смачивания, сила поверхностного натяжения, действующая на длине периметра смачивания. Сила поверхностного натяжения лежит в плоскости, касательной к поверхности жидкости.

Сокращение площади поверхности жидкости уменьшает поверхностную энергию. Условием устойчивого равновесия жидкости, как и любого тела, является минимум потенциальной поверхностной энергии. Это значит, что в отсутствие внешних сил жидкость должна иметь при заданном объеме наименьшую площадь поверхности. Такой поверхностью является сферическая поверхность.

Для уменьшения поверхностного натяжения жидкости к ней добавляют специальные примеси (поверхностно-активные вещества), которые располагаются на поверхности и уменьшают поверхностную энергию. К ним относятся мыло и другие моющие средства, жирные кислоты и т.п.



Смачивание и несмачивание

На границе соприкосновения жидкостей с твердыми телами наблюдаются явления смачивания , состоящие в искривлении свободной поверхности жидкости около твердой стенки сосуда. Поверхность жидкости, искривленная на границе с твердым телом, называется мениском. Линия, по которой мениск пересекается с твердым телом, называется периметром смачивания.

Явление смачивания характеризуется краевым углом q между поверхностью твердого тела и мениском в точках их пересечения, т.е. в точках периметра смачивания. Жидкость называется смачивающей твердое тело, если краевой угол острый 0£qне смачивающих твердое тело, краевой угол тупой: p¤2смачивание и несмачивание отсутствует.

Различие краевых углов в явлениях смачивания и несмачивания объясняется соотношением сил притяжения между молекулами твердых тел и жидкостей и сил межмолекулярного притяжения в жидкостях. Если силы притяжения между молекулами твердого тела и жидкости больше, чем силы притяжения молекул жидкости друг к другу, то жидкость будет смачивающей. Если молекулярное притяжение в жидкости превышает силы притяжения молекул жидкости к молекулам твердого тела, то жидкость не смачивает твердое тело.

Искривление поверхности жидкости создает дополнительное (избыточное) давление на жидкость по сравнению с давлением под плоской поверхностью (Лапласово давление). Для сферической поверхности жидкости это давление выражается формулой:



,

где s - коэффициент поверхностного натяжения, – радиус сферической поверхности; > 0, если мениск выпуклый; < 0, если мениск вогнутый (рис. 23). При выпуклом мениске увеличивает то давление, которое существует под плоской поверхностью жидкости (например, атмосферное давление на свободную поверхность жидкости). При вогнутом мениске давление под плоской поверхностью уменьшается на величину (рис. 24). Дополнительное давление внутри сферического пузыря радиуса R вызывается избыточным давлением на обеих поверхностях пузыря и равно = 4s ¤ R .

Капиллярные явления

Узкие цилиндрические трубки малого диаметра (< 1 мм) называются капиллярами .

Если опустить такой капилляр в несмачивающую жидкость, то под действием Лапласова давления ее уровень в капилляре понизится по сравнению с уровнем в сообщающемся с ним широком сосуде (рис. 25).

Если капилляр опустить в смачивающую жидкость, то ее уровень в капилляре по той же причине повысится (рис. 26). В случае идеального смачивания , а при идеальном несмачивании . Тогда из условия равновесия жидкости можно найти высоту подъема (или опускания) жидкости в капилляре:

Здесь - плотность жидкости, – ускорение силы тяжести, – радиус капилляра. Изменения высоты уровня жидкости в капиллярах называются капиллярными явлениями. Этими явлениями объясняется гигроскопичность, т.е. способность впитывать влагу, ряда тел (вата, ткани, почвы, бетон).


Литература

1. Трофимова Т.И. Курс физики. - М.: Высш. школа, 2001.

2. Савельев И.В. Курс общей физики. Механика. Молекулярная физика.
– СПб.: Лань, 2006.

3. Сивухин Д.В. Общий курс физики. Молекулярная физика и термодинамика. - М.: Физматлит, 2005.

4. Детлаф А.А., Яворский Б.М. Курс физики. - М.: Высш. школа, 2001.

5. Федосеев В.Б. Физика: учебник. – Ростов н/Д: Феникс, 2009.


Введение. Предмет и задачи молекулярной физики и термодинамики…………………….3

1. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНЫХ ГАЗОВ……………4

1.1. Основные положения молекулярно-кинетической теории………..4

1.2. Масса и размеры молекул. Количество вещества…………………... 5

1.3. Законы идеального газа ………………………………………………..……….7

1.4. Уравнение состояния идеального газа ……………………………….…10

1.5. Основное уравнение МКТ идеальных газов …………………….…….12

1.6. Закон Максвелла о распределении молекул по скоростям.…...15

1.7. Распределение Больцмана ……………………………………………………18

1.8. Средняя длина свободного пробега молекул. Явления переноса………………………………………………………………………………20

2. ОСНОВЫ ТЕРМОДИНАМИКИ…………………………………………………………….23

2. 1. Внутренняя энергия системы Степени свободы молекул ………….23

2. 2. Первое начало термодинамики. Удельная и молярная теплоемкости.…………………………………………………………………………….26

2.3. Работа газа по перемещению поршня. Теплоемкость при постоянных объеме и давлении ……………………………………………………..27

2.4. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс. Политропный процесс …………………………………..29

2.5. Круговой процесс. Обратимые и необратимые процессы………….31

2.6. Энтропия………………………………………………………………………………….33

2.7. Второе и третье начала термодинамики……………………………………..37

2.8. Тепловые двигатели и холодильные машины..………………………….38

3. РЕАЛЬНЫЕ ГАЗЫ …………………………………………………………………………….41

3.1. Уравнение Ван-дер-Ваальса …………………………………………………….41

3.2. Внутренняя энергия реального газа………………………………………….42

4. Свойства жидкостей.……………………………………………………………………...44

4.1. Особенности жидкого состояния вещества

4.2. Энергия поверхностного слоя и поверхностное натяжение жидкостей………………………………………………………………………………………45

4.3. 3 Смачивание и несмачивание………………………………………………….47

4.4. Капиллярные явления………………………………………………………………49

Литература…………………………………………………………………………………………51


Рис. 9.3. Действие межмолекулярных сил в объеме и на поверхности

Равнодействующая всех этих сил равна 0. Молекула, находящаяся на поверхности, испытывает притяжение только внутренних молекул (газ из-за своей разряженности взаимодействует слабо), равнодействующая этих сил направлена внутрь тела, т.е. явно выражено стремление к втягиванию поверхностных молекул внутрь тела, поверхность тела как бы находится в натянутом состоянии и стремится к своему сокращению. Поскольку действие сил на поверхностные молекулы не скомпенсировано, такие молекулы обладают свободной поверхностной энергией. Дадим определение.

Свободная поверхностная энергия – это избыток энергии молекул поверхностного слоя по сравнению с молекулами, находящимися внутри DE = E* – E ср.

Эта энергия зависит от природы вещества соприкасающихся фаз, от температуры и площади раздела фаз.

S – площадь раздела фаз, м 2 ;

s – коэффициент пропорциональности, называемый коэффициентом поверхностного натяжения (или просто поверхностное натяжение), Дж/м 2 .

Как известно, любая система стремится к минимуму энергии. Чтобы уменьшить свободную поверхностную энергию (F s = sS) у системы есть два пути: уменьшить поверхностное натяжение s или

площадь поверхности раздела фаз S .

Уменьшение s происходит при адсорбции веществ на твердых и жидких поверхностях (это является движущей силой адсорбции), при растекании одной жидкости по другой.

Стремление к уменьшению площади поверхности S приводит к слиянию частиц дисперсной фазы, к их укрупнению (при этом удельная поверхность сокращается), т.е. в этом кроется причина термодинамической неустойчивости дисперсных систем.

Стремление жидкости к уменьшению поверхности приводит к тому, что она стремится принять форму шара. Математические расчеты показывают, что наименьшую площадь при постоянном объеме имеет шар, поэтому частицы жидкости принимают шарообразную форму, если только эти капли не расплющиваются под действием силы тяжести. Капли ртути на поверхности приобретают форму шариков. Сферическую форму планет также приписывают действию поверхностных сил.

Поверхностное натяжение

Физический смысл коэффициента поверхностного натяжения (s) можно истолковать с разных точек зрения.

1.Свободная поверхностная энергия (удельная поверхностная энергия)

Из выражения 9.3. следует

[Дж/м 2 ], (9.4)

где F s – свободная поверхностная энергия, Дж;

Отсюда следует физический смысл s – это свободная поверхностная энергия молекул поверхностного слоя на площади 1 м 2 (или на другой единичной площади), т.е. удельная поверхностная энергия.

Чем больше коэффициент s, тем больше величина поверхностной энергии (см. табл. 9.1.).

2. Работа по созданию новой поверхности

Поскольку энергия – это мера работоспособности, то, заменяя F s на W, получаем:

[Дж/м 2 ], (9.5)

где W – работа по созданию новой поверхности раздела фаз, Дж;

S – площадь поверхности раздела фаз, м 2 .

Из выражения 9.5 следует, что s – это работа, которую надо совершить, чтобы в изотермических условиях увеличить на единицу площадь поверхности раздела фаз при неизменном объеме жидкости (т.е. перенести соответствующее число молекул жидкости из объема в поверхностный слой).

Например, при разбрызгивании жидкости совершается работа, которая переходит в свободную поверхностную энергию (при разбрыз-гивании поверхность раздела фаз многократно увеличивается). Такая же работа затрачивается при дроблении твердых тел.

Так как поверхностное натяжение связано с работой, расходуемой на разрыв межмолекулярных связей при переводе молекул из объема в поверхностный слой, то очевидно, что поверхностное натяжение является мерилом сил межмолекулярного взаимодействия внутри жидкости. Чем полярнее жидкость, тем сильнее взаимодействие между молекулами, тем сильнее поверхностные молекулы втягиваются внутрь, тем выше значение s.

Из жидкостей наибольшее значение s у воды (см. табл. 9.1.). Это неслучайно, поскольку между молекулами воды образуются достаточно прочные водородные связи. В неполярных углеводородах между молекулами существуют только слабые дисперсионные взаимодействия, поэтому поверхностное натяжение у них небольшое. Еще больше значение s у жидкой ртути. Это свидетельствует о значительном межатомном взаимодействии (и о большой величине свободной поверхностной энергии).

Высоким значением s характеризуются твердые тела.

Поверхностная сила

Есть также силовое толкование поверхностного натяжения. Исходя из размерности коэффициента поверхностного натяжения Дж/м 2 , можно записать

Таким образом, поверхностное натяжение – это поверхностная сила, приложенная к единице длины контура, ограничивающего поверхность и направленная на сокращение поверхности раздела фаз .

Существование этой силы наглядно иллюстрируется опытом Дюпре. На жесткой проволочной рамке закреплена подвижная перемычка (рис. 9.2). В рамке натянута мыльная пленка (положение 1). Чтобы растянуть эту пленку до положения 2, надо приложить силу F 1 , которой противодействует сила поверхностного натяжения F 2 . Эта сила направлена вдоль поверхности (по касательной), перпендикулярно к контуру, ограничивающему поверхность. Для пленки на рис. 9.2 роль части контура играет подвижная перемычка.


Рис. 9.3. Действие сил поверхностного натяжения

Таким образом, силы поверхностного натяжения обладают следующими свойствами:

1) равномерно распределены по линии раздела фаз;

Поверхностное натяжение возникает на всех поверхностях раздела фаз. В соответствии с агрегатным состоянием этих фаз введены следующие обозначения:

s Ж-Г (на границе жидкость – газ)

s Ж1-Ж2 (на границе двух несмешивающихся жидкостей)

s Т-Г (на границе твердое тело – газ)

s Т-Ж (на границе твердое тело – жидкость)

Значения коэффициентов поверхностного натяжения некоторых веществ на границе с воздухом и на некоторых межжидкостных границах приведены в табл. 9.3.

Непосредственно экспериментально можно определить поверхност-ное натяжение на границе жидкость – газ и жидкость – жидкость. Методы определения поверхностного натяжения на границе с твердым телом основаны на косвенных измерениях.

Методы определения поверхностного натяжения делятся на три группы: статические, полустатические и динамические.

Статическими методами определяется поверхностное натяжение практически неподвижных поверхностей, образованных задолго до начала измерений и поэтому находящихся в равновесии с объемом жидкости. К этим методам относятся метод капиллярного поднятия и метод лежащей или висящей капли (пузырька).

Динамические методы основаны на том, что некоторые виды механических воздействий на жидкость сопровождаются периодическими растяжениями и сжатиями ее поверхности, на которые влияет поверхностное натяжение. Этими методами определяется неравновесное значение s. К динамическим методам относятся методы капиллярных волн и колеблющейся струи.

Полустатическими называются методы определения поверхностного натяжения границы раздела фаз, возникающей и периодически обновляемой в процессе измерения (метод максимального давления пузырька и сталагмометрический метод), а также методы отрыва кольца и втягивания пластины. Эти методы позволяют определить равновесное значение поверхностного натяжения, если измерения проводятся в таких условиях, что время в течение которого происходит формирование поверхности раздела, значительно больше времени установления равновесия в системе.

Таблица 9.3

Поверхностное натяжение (удельная поверхностная энергия)

некоторых веществ на границе с воздухом (298 К)

Вещество s, мДж/м 2 Вещество s, мДж/м 2
Жидкость Твердые тела
Гексан 18,4 Лед (270 К)
Октан 21,8 Кварц
Этанол 22,0 MgO
Бензин 25,0 Алюминий
Бензол 28,2 Железо
Уксусная кислота 27,8 Вольфрам
Муравьиная кислота 36,6 Алмаз
Анилин 43,2 Полимеры
Вода 71,95 Политетрафторэтилен 18,5
Ртуть 473,5 Полиэтилон 31,0
Жидкость – жидкость Полистирол 33,0
Бензол – вода 34,4 Поливинилхлорид 40,0
Анилин – вода 4,8 Плексиглас 38,0
Хлороформ – вода 33,8 Эмаль К-2 31,7

Метод капиллярного поднятия

Поднятие жидкости в капилляре (если жидкость хорошо смачивает стенки капилляра) обуславливается поверхностным натяжением. Между поверхностным натяжением и высотой поднятия жидкости в капилляре (рис. 9.4) существует следующая зависимость

, (9.7)

где s – поверхностное натяжение; h – высота поднятия столба жидкости; r 2 и r 1 – плотности жидкости и насыщенного пара; g – ускорение свободного падения; q – краевой угол смачивания; r – радиус капилляра.

Для проведения эксперимента необходимы: капилляр диаметром 0,2-0,3 мм; сосуд, в который заливается исследуемая жидкость; катетометр для измерения высоты поднятия жидкости (точность ± 1 мкм) и устройство для подсветки мениска.

Наибольшие трудности вызывает измерение краевого угла смачивания q. Поэтому этот метод удобнее всего применять для жидкостей, у которых q = 0 0 .



Рис. 9.4. Поднятие жидкости в капилляре

Это условие соблюдается для воды и многих органических жидкостей. Так как cos 0 0 = 1, то выражение (9.7) упрощается и может быть использовано для расчета s. Метод капиллярного поднятия – один из самых точных методов определения поверхностного натяжения.

Молекулы в жидкости обладают кинетической энергией теплового движения и потенциальной энергией межмолекулярного взаимодействия. Для перемещения молекулы из глубины жидкости к поверхности надо совершить работу по преодолению силы молекулярного давления. Эта работа совершается молекулой за счет запаса кинетической энергии и идет на увеличение ее потенциальной энергии. Поэтому молекулы поверхностного слоя обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эта дополнительная потенциальная энергия, которой обладают молекулы поверхностного слоя, называется поверхностной энергией .

Если поверхность жидкости растянуть, то на поверхность будут выходить все новые молекулы, и потенциальная энергия поверхностного слоя будет увеличиваться. Следовательно, поверхностная энергия пропорциональна площади самой поверхности жидкости (рис.4).

где А – работа силы поверхностного натяжения; F – сила поверхностного натяжения; Dx – растяжение пленки; DS – изменение площади поверхности пленки.

Из этого выражения можно дать еще одно определение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения равен свободной поверхностной энергии, приходящейся на единицу площади поверхности. В этом случае единица измерения [a]=[Дж/м 2 ].

Большое влияние на поверхностное натяжение оказывают находящиеся в жидкости примеси. Например, мыло, растворенное в воде, уменьшает коэффициент поверхностного натяжения до 0,045 Н/м, а сахар или соль повышают. Изменяющие поверхностное натяжение вещества называют поверхностно – активными . К ним можно отнести нефть, мыло, спирт.. Это явление объясняется межмолекулярным взаимодействием между молекулами. Если взаимодействие между молекулами самой жидкости больше, чем между молекулами жидкости и примеси, то молекулы примеси выталкиваются на поверхность и концентрация примеси на поверхности оказывается больше; чем в объеме, что и приводит к уменьшению поверхностного натяжения.

Поверхностно–активные вещества широко применяют при резке металлов, бурении горных пород, и т.д., так как разрушение горных пород в их присутствии происходит легче, адсорбируясь на поверхности твердого тела, они проникают внутрь микротрещин и способствуют дальнейшему развитию этих трещин вглубь.

Описание установки и выполнение работы

В данной работе определяют коэффициент поверхностного натяжения методом отрыва кольца от поверхности, смачивающей ее жидкости.

Лабораторная установка (рис.5) представляет собой торсионные весы, к которым подвешено тонкое кольцо. Под кольцом расположен сосуд с исследуемой жидкостью. Кольцо с известными размерами опускают в исследуемую жидкость.

Поворачивая рычаг весов, отрывают кольцо из жидкости. В момент отрыва рычаг весов останавливают и измеряют силу отрыва кольца, которая по сути является силой разрыва поверхностной пленки. Разрыв происходит по двум линиям: по внешнему диаметру и внутреннему. Поэтому, суммарная линия отрыва будет равна

Поскольку проще замерять внешний диаметр и толщину то d 2 =d 1 –2h

Тогда коэффициент поверхностного натяжения будет равен

F , H d 1, м h , м a, H/м Da, H/м
Среднее значение

Задачи

1. При определении силы поверхностного натяжения капельным методом число капель глицерина, вытекающего из капилляра, составляет n =50. Общая масса глицерина m =1 кг, а диаметр шейки капли в момент отрыва d =1 мм. Определите коэффициент поверхностного натяжения глицерина.

Ответы: 1) 72,3 мН/м; 2) 52 мН/м; 3) 62,3 мН/м; 4) 62,5 мН/м; 5) 43,4 мН/м;

2. Тонкое кольцо радиусом 7,8 см соприкасается с мыльным раствором. Каким усилием можно оторвать кольцо от раствора? Температуру раствора считать комнатной. Масса кольца 7 г.

Ответы: 1) 1,32 Н; 2) 0,11 Н; 3) 0,42 Н; 4) 0,33 Н; 5) 0,25 Н.

3. Какую массу имеет капля воды, вытекающая из стеклянной трубки диаметром 1 мм? Считать диаметр капли равным диаметру шейки трубки.

Ответы: 1) 2,25 . 10 –5 кг; 2) 7,2 . 10 –4 кг; 3) 8,3 . 10 –3 кг; 4) 3,5 . 10 –5 кг; 5) 4,2 . 10 –5 кг.

4. Какую энергию необходимо затратить на образование поверхности мыльного пузыря радиусом 6 см при постоянной температуре?

Ответы: 1) 2,8 . 10 –3 Дж; 2) 0,77 . 10 –2 Дж; 3) 3,6 . 10 –3 Дж; 4) 0,92 . 10 –3 Дж; 5) 7 . 10 –3 Дж.

5. При измерении коэффициента поверхностного натяжения мыльного раствора при 15 0 С использовали динамометр и проволочное кольцо диаметром 12 см и массой 20 г. При отрыве кольца от поверхности жидкости динамометр показал усилие 0,227 Н. Какой коэффициент поверхностного натяжения получен в результате опыта?

Ответы: 1) 0,047 Н/м; 2) 0,04 Н/м; 3) 0,053 Н/м; 4) 0,072 Н/м; 5) 0,080 Н/м.

6. Капилляр с внутренним радиусом 2 мм опущен в жидкость. Найти коэффициент поверхностного натяжения жидкости, поднявшейся в капилляре, если ее масса равна 9 . 10 –5 кг.

Ответы: 1) 22 . 10 –3 Н/м; 2) 62 . 10 –3 Н/м; 3) 70 . 10 –3 Н/м; 4) 40 . 10 –3 Н/м; 5) 73 . 10 –3 Н/м.

Контрольные вопросы

1. Что представляют собой жидкости, твердые и газообразные вещества?

2. Чем обусловлено внутреннее давление в жидкости?

3. Как возникает сила поверхностного натяжения? Куда она направлена?

4. Физический смысл коэффициента поверхностного натяжения.

5. Почему поверхностный слой обладает избыточной энергией?

6. Вывод рабочей формулы.

7. Поверхностно-активные вещества.

8. Зависит ли поверхностное натяжение от температуры жидкости и как?

9. Имеют ли газы поверхностное натяжение?

Литература

4. Савельев И. В. Курс общей физики, т. 1. М.: Наука, 1989. с.331–337.

5. Трофимовa Т. И. Курс физики. М.: Высшая школа, 2002, с.128–130.


Лабораторная работа 1.15

Молекулы в жидкости обладают кинетической энергией теплового движения и потенциальной энергией межмолекулярного взаимодействия. Для перемещения молекулы из глубины жидкости к поверхности надо совершить работу по преодолению силы молекулярного давления. Эта работа совершается молекулой за счет запаса кинетической энергии и идет на увеличение ее потенциальной энергии. Поэтому молекулы поверхностного слоя обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эта дополнительная потенциальная энергия, которой обладают молекулы поверхностного слоя, называется поверхностной энергией .

Если поверхность жидкости растянуть, то на поверхность будут выходить все новые молекулы, и потенциальная энергия поверхностного слоя будет увеличиваться. Следовательно, поверхностная энергия пропорциональна площади самой поверхности жидкости (рис.4).

где А – работа силы поверхностного натяжения; F – сила поверхностного натяжения; Dx – растяжение пленки; DS – изменение площади поверхности пленки.

Из этого выражения можно дать еще одно определение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения равен свободной поверхностной энергии, приходящейся на единицу площади поверхности. В этом случае единица измерения [a]=[Дж/м 2 ].

Большое влияние на поверхностное натяжение оказывают находящиеся в жидкости примеси. Например, мыло, растворенное в воде, уменьшает коэффициент поверхностного натяжения до 0,045 Н/м, а сахар или соль повышают. Изменяющие поверхностное натяжение вещества называют поверхностно – активными . К ним можно отнести нефть, мыло, спирт.. Это явление объясняется межмолекулярным взаимодействием между молекулами. Если взаимодействие между молекулами самой жидкости больше, чем между молекулами жидкости и примеси, то молекулы примеси выталкиваются на поверхность и концентрация примеси на поверхности оказывается больше; чем в объеме, что и приводит к уменьшению поверхностного натяжения.

Поверхностно–активные вещества широко применяют при резке металлов, бурении горных пород, и т.д., так как разрушение горных пород в их присутствии происходит легче, адсорбируясь на поверхности твердого тела, они проникают внутрь микротрещин и способствуют дальнейшему развитию этих трещин вглубь.

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.