2006-11-27

Почему местная вытяжная вентиляция эффективней общеобменной? В воздух помещений зданий различного назначения, как правило, поступает какое-то количество вредных выделений (теплоты, влаги, пыли, газов) от работы оборудования и обслуживающего его персонала.





  1. ГОСТ 12.1.005–88. Общие санитарно-гигиенические требования к воздуху рабочей зоны.- М., 1981.
  2. ГН 2.2.5.1313–03. Гигиенические нормативы. Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны.- М., 2003.
  3. ГН 2.2.5.1314–03. Гигиенические нормативы. Ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны.- М., 2003.
  4. СНиП 2.04.05–91*. Отопление, вентиляция и кондиционирование. - М., 1999.
  5. СНиП 41-01–2003. Отопление, вентиляция и кондиционирование. - М., 2004.
  6. Батурин В.В. Основы промышленной вентиляции. Изд. 4-е.- М.: «Профиздат», 1990.
  7. Шепелев И.А. Аэродинамика воздушных потоков в помещении.- М.: «Стройиздат», 1978.
  8. Талиев В.Н. Аэродинамика вентиляции: Учеб. пособие для ВУЗов. - М.: «Стройиздат», 1979.
  9. Эльтерман В.М. Вентиляция химических производств. Изд. 3-е.- М.: «Химия», 1980.
  10. Посохин В.Н. Расчет местных отсосов от теплои газовыделяющего оборудования. - М.: «Машиностроение», 1984.
  11. Аэродинамические основы аспирации: Монография. И.Н. Логачев, К.И. Логачев.- СПб.: «Химиздат», 2005.
  12. Вентиляция и отопление цехов машиностроительных предприятий. М.И. Гримитлин, Г.М.Позин, О.Н. Тимофеева и др. - М.: «Машиностроение», 1993.
  13. Лифшиц Г.Д. Исследование вытяжных факелов местных отсосов методом «особенностей».- Известия ВУЗов. Серия «Строительство и архитектура», №4/1977.
  14. Лифшиц Г.Д. О расчете всасывающих потоков местных отсосов. - «Инженерные системы» АВОК Северо-Запад, №4(19)/2005.
  15. Методические указания по конструированию местных воздухоприемников, встроенных в оборудование для пайки и лужения. Е.М.Эльтерман, Г.М. Позин.- Л.: ВНИИОТ, 1980.
  16. Позин Г.М. Расчет влияния ограничивающих плоскостей на спектры всасывания. Научные работы институтов охраны труда. - М.: «Профиздат», 1977.
  17. Вентиляция и кондиционирование воздуха: Справочник проектировщика. Ч. 3, кн. 1, гл. 8. Местные отсосы.- Изд. 4-е.- М.: «Стройиздат», 1992.
  18. Гримитлин М.И., Позин Г.М. Оценка эффективности вентиляционных систем. Технические испытания и наладка систем вентиляции и кондиционирования воздуха.- Л.: ЛДНТП, 1980.

Воздухообмен в помещениях (распределение приточного воздуха и удаление воздуха из помещений) производственных и административно-бытовых зданий предусматривается с учетом режима их использования в течение суток или года, а также имеющихся поступлений тепла, влаги и вредных веществ.

Приточный воздух для компенсации удаляемого вытяжной системой следует подавать непосредственно в помещение с постоянным пребыванием людей. Для общественных и административно-бытовых помещений допускается до 50 % расхода воздуха подавать в коридоры или смежные помещения.

В производственных помещениях, в зависимости от характера и выраженности факторов производственной среды, приточный воздух следует подавать в рабочую зону:

В помещениях со значительными влаго- и теплоизбытками – в зоны конденсации влаги на ограждающих конструкциях зданий;

В помещениях с выделением пыли – струями, направленными сверху вниз из воздухораспределителей, расположенных в верхней зоне;

В помещениях различного назначения без выделения пыли допускается подача приточного воздуха струями, направленными снизу вверх из воздухораспределителей, расположенных в обслуживаемой или рабочей зоне;

В помещениях с незначительными теплоизбытками допускается подача воздуха из воздухораспределителей, расположенных в верхней зоне струями (вертикальными, направленными сверху вниз; горизонтальными или наклонными – вниз);

В помещениях с источниками выделений вредных веществ, которые невозможно оборудовать местными отсосами, приточный воздух подается непосредственно на постоянные рабочие места, если они находятся у этих источников.

Приточный воздух следует направлять таким образом, чтобы он не поступал через зоны с большим загрязнением в зоны с меньшим загрязнением и не нарушал баланса при работе местных отсосов.

Подача приточного воздуха вентиляцией, а также системами кондиционирования и воздушного отопления должна осуществляться из расчета, чтобы температура и скорость движения воздуха соответствовали нормам метеорологических условий в рабочей зоне, чтобы не было туманообразования и конденсации влаги на окружающих конструкциях.

Для производственных помещений, в которых выделяются вредные вещества или резко выраженные неприятные запахи, следует предусматривать отрицательный дисбаланс, то есть превышения объема вытяжки над объемом притока.

В холодный период года в производственных зданиях при обосновании допускается отрицательный дисбаланс в объеме не более однократного воздухообмена в 1 ч в помещениях высотой 6 м и менее и из расчета 6 м 3 /ч на 1 м 2 площади пола в помещениях высотой более 6 м.

Системы приточной вентиляции с искусственным побуждением для производственных помещений, работа в которых производится более 8 часов в сутки, необходимо совмещать с воздушным отоплением.

Системы приточной вентиляции, совмещенные с воздушным отоплением, а также системы воздушного отопления следует проектировать с резервным вентилятором или отопительным агрегатом, или предусматривать не менее двух систем, объединенных воздуховодом.

Распределение воздуха в помещениях зависит от размещения приточных и вытяжных отверстий. Вентиляция помещений представляет собой процесс переноса объемов воздуха из приточных отверстий, а также движение воздуха, обусловленное всасывающими отверстиями. Воздухообмен, создаваемый в помещениях вентиляционными устройствами, сопровождается циркуляционным движением воздушной среды, объем которой в несколько раз больше объема вентиляционного воздуха, поступающего в помещение и удаляемого из него. Циркуляция воздушных масс имеет значение для эффективности вентиляции, так как она является основной причиной распространения по помещению вредных выделений, поступающих откуда-либо в воздух.

Характер воздушных потоков зависит от формы и количества приточных отверстий, их расположения, а также температуры, скорости, с которыми воздух поступает в помещения. Варианты схем движения воздуха в производственных помещениях приведены на рис. 5.8.

Рис. 5.8. Схемы организации воздухообмена в помещении:

а – сверху-вверх; б – снизу-вниз; в –сверху-вниз; г – с низу-вверх;
д – комбинированная; е – комбинированная

На характер распространения воздушных потоков оказывая влияние работа технологического оборудования и, кроме того – конструктивные элементы здания. Задача специалиста, проектирующего вентиляционные устройства, учесть характер движения воздушных масс в помещении, с тем, чтобы в пределах рабочей зоны были обеспечены удовлетворительные параметры микроклимата, а именно, температура и скорость движения воздуха.

Приточные струи. Приточные насадки

При небольшой скорости движения воздух перемещается параллельными, не смешивающимися между собой струйками. Такой вид движения называется ламинарным и наблюдается главным образом в небольших каналах, тонких щелях, а также при отсутствии направленного движения воздуха в различных сооружениях. С увеличением скорости струйки начинают перемешиваться, воздушные частицы движутся более беспорядочно. В потоке возникают вихри – такое движение называется турбулентным. Для турбулентного движения характерно наличие поперечных пульсаций скоростей.

Переход от ламинарного движения к турбулентному наблюдается при определенных значениях комплексного параметра, который называется критерием Рейнольдса:

где V – скорость движения воздуха, м/с; d – размер, определяющий движение воздуха (диаметр или гидравлический диаметр воздуховода, воздуховыпускного отверстия), м; ν – кинематическая вязкость воздуха, м 2 /с.

Ламинарное движение в гладких трубах переходит в турбулентное при Re = 2300. С увеличение шероховатости этот переход происходит при меньших значениях критерия Re.

Организация воздухообмена в значительной степени зависит характера струй вентиляционного воздуха.

Классификация струй

Воздушной струей называют направленный поток с конечными поперечными размерами. В основном струи делятся на свободные и несвободные, изотермические и не изотермические, ламинарные и турбулентные.

Свободные струи не имеют препятствий для своего свободного развития. Свободной является струя, не ограниченная стенками. Свободные струи образуются при истечении в пространство, заполненное той же средой, находящейся в относительно спокойном состоянии. Так как струи воздуха движутся в воздушной же среде, с точки зрения гидравлики они являются затопленными. Если плотность струи и окружающего воздуха одинакова, то ось струи прямолинейна а при различной плотности ось струи искривляется. Несвободные (стесненные) струи – те, на развитие и аэродинамическую структуру которых оказывают влияние ограждения; эти струи распространяются в пространстве, имеющем конечные размеры. В изотермических струях начальная температура равна температуре окружающего воздуха, т. е. в этом случае струя не участвует в теплообмене с окружающей средой. В неизотермических струях начальная температура приточного воздуха выше или ниже температуры окружающего воздуха. Ламинарная или турбулентная струя характеризуется соответственно ламинарным или турбулентным режимом. В вентиляционных устройствах, как правило, применяют турбулентные воздушные струи.

На перемещение воздуха затрачивается энергия: тепловая, источником которой являются нагретые поверхности, или механическая, источником которой можно считать, например, вентилятор или сочетание тепловой и механической энергий вместе.

Формирование полей температур, концентраций вредных веществ (газов) и скоростей зависит от закономерностей распространения струй и их взаимодействия.

По виду энергии, расходуемой на образование струи, различают механические приточные струи изотермические, неизотермические, а также конвективные струи.

Свободную изотермическую струю применяют для раздачи приточного воздуха. Струя по выходе из отверстия расширяется, ширина ее растет пропорционально увеличению расстояния от места истечения. Скорость по мере удаления постепенно уменьшается и затухает. Измерениями давлений установлено, что статическое давление в струе остается постоянным и равным статическому давлению в окружающей среде.

Следовательно, так как статическое давление вдоль струи остается постоянным, то потери энергии компенсируются в ней за счет кинетической энергии, поэтому скорость затухает. Так как струя эжектирует (подсасывает) частицы окружающего воздуха, расход в ней увеличивается по мере удаления от приточного отверстия и поперечное сечение ее возрастет. При этом скорость частиц вследствие торможения, оказываемого окружающим воздухом, постоянно падает.

На рис. 5.9 представлена схема свободной изотермической струи, которая вытекает из круглого отверстия.

Рис. 5.9. Структура свободной изотермической струи

В струе различают два участка – начальный и основной. В начальном сечении а-б скорость потока во всех точках сечения одинакова. Осевая скорость на протяжении длины l о начального участка одинакова и равна скорости в выходном сечении V o .

В области треугольника абс (на расстоянии l о) во всех точках струи сохраняется одинаковая скорость V o .

На структуру струи оказывает влияние начальная турбулентность. Чем выше турбулентность струи перед выходом из насадка, тем интенсивнее протекает перемешивание её с окружающим воздухом, тем больше угол расширения струи α на начальном участке, тем короче длина начального участка, и наоборот. В основном участке благодаря турбулентному перемешиванию с окружающим воздухом масса приточной струи по мере удаления от приточного отверстия возрастает, а скорость в ней непрерывно уменьшается как на оси струи, так и в периферийной части. Боковые границы струи соответствуют приблизительно лучам, исходящим из точки, называемой полюсом (точка 0 ). Так как положение полюса струи и граница начального участка зависят от степени турбулентности струи, то полюса начального и основного участков струи могут не совпадать. Угол бокового расширения основного участка струи составляет 12º25´.

Свободная струя практически не зависит от критерия Рейнольдса () (струи автомодельны). Одним из основных свойств турбулентной свободной струи является сохранение постоянства количества движения по её длине:

m V = const , (5.42)

где m – масса приточной струи в ее поперечном сечении; V – скорость воздуха в этом же сечении струи.

Это позволяет перемещать большие массы воздуха на значительные расстояния, что широко используется в вентиляционной практике.

Известно, что свободная струя, выходящая из прямоугольного отверстия, деформируется, принимая в сечении форму, приближающуюся к кругу.

В производственных помещениях, камерах и т.п. за счет наличия ограждающих поверхностей свободная струя деформируется и её параметры меняются. Условия поступления струи в то или иное помещение могут быть разнообразны, а это определяет скорость, температуру, а также распределение воздуха.

Воздушный поток в зоне всасывающего отверстия ведет себя иначе. К всасывающему отверстию воздух подтекает со всех сторон. Эффективность всасывания характеризуется спектрами всасывания и проявляется на небольших расстояниях от всасывающих отверстий. Поведение воздушного потока возле всасывающего отверстия рассматривается в разделе 5.9.

Специфические особенности приточных и всасывающих струй должны учитываться и использоваться в вентиляции.

На динамику воздушной среды помещения большое влияние оказывают конвективные токи, возникающие вследствие наличия в помещении различного рода поверхностей, температура которых отлична от температуры окружающего воздуха. Конвективные токи могут быть восходящие и нисходящие.

При создании специально организованных искусственных (механических) струй нужно учитывать конвективные токи воздуха, т. е. использовать конвективные потоки в качестве фактора, могущего в определенных условиях в значительной степени способствовать оздоровлению труда в рабочей зоне.

Приточные отверстия обычно оформляются насадками, которые выполнены в виде решеток, плафонов, диффузоров, патрубков с возможностью регулирования направления раздачи приточного воздуха. Некоторые варианты оформления приточных отверстий приведены на рис. 5.10.

Рис. 5.10.Формы струй:

а - плоскопараллельная настилающаяся; б - осесимметричная; в - коническая; г - веерная (радиальная); д - настилающаяся; е - кольцевого сечения; ж - вытекающая через решетку; α - угол принудительного рассеивания

Плоские приточные струи образуются при истечении воздуха из длинного щелевидного воздухораспределителя.

Необходимо отметить, что при соотношении сторон отверстий менее чем 1: 3 струя, принимающая в месте ее возникновения форму отверстия, быстро трансформируется в осесимметричную. При соотношении сторон более чем 1: 10 струя рассматривается как плоская. Но и в этом случае струи могут превратиться в осесимметричные, но только на большом расстоянии от места их образования.

Кроме осесимметричных и плоских могут быть следующие виды струй, отличающиеся также по форме отверстия для выхода воздуха:

Веерные струи под углом α = 90°, которые образуются при принудительном рассеивании потока под некоторым углом. У полных веерных струй угол распределения воздуха в пространстве составляет 360°, при меньшем угле струя будет неполной веерной;

Кольцевые, если струя истекает из кольцевой щели под углом к оси подводящего воздух канала β < 180°, при β около 135° – полой конической, при β = 90° – полной веерной;

Пучковые, когда воздух поступает в помещение через большое количество равновеликих отверстий в виде потока, состоящего из параллельных струек. Однако на некотором расстоянии от приточного устройства из отдельных струек образуется общая струя.

Кроме того, в зависимости от расположения воздухораспределителя струи могут не настилаться или настилаться на плоскости ограждений.

Стесненные струи могут быть разделены еще на тупиковые, транзитные, транзитно-тупиковые. В тупиковых приточный воздух поступает и уходит из помещения через приточные и вытяжные отверстия, расположенные на одной и той же стороне помещения. В транзитных струя поступает в ограничивающее ее пространство с одной стороны, а уходит – с другой; в транзитно-тупиковых воздух выходит из помещения как со стороны его входа, так и с противоположной.

Перфорированные (дырчатые) панели применяют преимущественно в невысоких помещениях для равномерного распределения приточного воздуха. При таком способе подачи воздуха обеспечивается резкое снижение скорости и выравнивание температур, несмотря на высокие параметры распределяемого по помещению воздуха. Так, допустимый перепад температур подаваемого воздуха и помещения Δt меньше или равен 15°С, скорость подачи V меньше или равна 4 м/с (с проверкой скорости в рабочей зоне). Пример организации воздухообмена приведен на рис. 5.11.

Рис. 5.11. Распределение воздуха через перфорированный (дырчатый)

а – расчетная схема потолка; б – размещение отверстий в потолке; в, г – способы устройства распределения воздуха через перфорированные решетки

Отверстия в потолке, через которые происходит подача воздуха, должны иметь небольшие размеры, чтобы обеспечить выдавливание воздуха из распределительного воздуховода (камеры) преимущественно под воздействием статического давления. При этом с целью наилучшего перемешивания воздушных струй режим движения воздуха в отверстия должен быть турбулентным. При истечении воздуха через отверстия перфорированного потолка, согласно исследованиям, турбулентный режим обеспечивается уже при значении критерия Re = 1500.

Ниспадающий поток, может применяться для создания соответствующей метеорологической обстановки на фиксированных рабочих местах (или в местах отдыха). В зону нахождения человека подается сверху вниз воздушная струя большого диаметра с малой скоростью. Такая подача воздуха называется воздушным душированием по способу ниспадающего потока, рис. 5.12.

Рис. 5.12. Приточная вентиляция для фиксированного рабочего места

способом ниспадающего потока (размеры указаны в метрах)

Воздухообменом называется частичная или полная замена воздуха, содержащего вредные выделения чистым воздухом. Количество воздуха отнесенное к его внутренней кубатуре принято называть кратностью воздухообмена. При этом +обозначается воздухообмен по притоку, - воздухообмен по вытяжке. Так, если говорят, что кратность воздухообмена рав­на, например, +2 и -3, то это значит, что в это помеще­ние за 1 ч подается двукратное и уделяется из него трех­кратное к объему помещения количество воздуха.

Воздухообмен в помещениях определяется отдельно для теплого и холодного периодов года и пере­ходных условий при плотности приточного и удаляемоговоздуха 1,2 кг/м 3
а) по избыткам явной теплоты

б) по массе выделяющихся вредных вешеств

Если в помещение выделяется несколько вредных ве­ществ, обладающих эффектом суммэции действия, необ­ходимо воздухообмен определять, суммируя расходы воздуха, рассчитанные по каждому из этих веществ; : ,

в) по избыткам влаги (водяного пара)

В помещениях с избыточной влагой (театрах, столо­вых, банях, прачечных л т. п.) необходимо делать про­верку достаточности воздухообмена для предупреждения образования конденсата на внутренней поверхности на­ружных ограждений при расчетных параметрах наруж­ного воздуха в холодный период года;

г) по избыткам полной теплоты

д) по нормируемой кратности воздухообмена

е) по нормируемому удельному расходу приточного воздуха

За расчетное значение воздухообмена следует принять большую из величин, полученных по приведенным формулам.

По высоте помещения влажность воздуха не одинакова. Она уменьшается в его верхних слоях из-за повышения температуры воздуха по мере приближения к потолку. Влажность воздуха в помещении с естественной циркуляцией обуславливается следующими причинами:

1) выделением влаги людьми и комнатными растениями (повышается с увеличением количества людей в помещении);

2) выделением влаги при приготовлении пищи, стирке и сушке белья, мытье полов и т.д. При этом выделении влаги может быть настолько значительно, что вызывает резкое повышение влажности воздуха против нормальной;

3) производственными условиями, то есть выделением влаги в процессе того или иного производства;

4) влажностью ограждающих конструкций. Обычно в первый год после окончания строительства кирпичных зданий, когда испарение строительной влаги с внутренней поверхности ограждения повышает влажность внутреннего воздуха. В этих зданиях в первый год эксплуатации относительная влажность воздуха достигает 70-75%, поэтому в первую зиму следует обратить внимание на усиленную вентиляцию здания.

Конец работы -

Эта тема принадлежит разделу:

Теоретические основы создания микроклимата в помещении

Федеральное государственное бюджетное образовательное учреждение.. высшего профессионального образования.. владимирский государственный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ведение
Обоснование актуальности и социальной значимости курса в подготовке кадров.Уровень развития строительного производства в настоящее время определяется в числе других условий наличие

Параметры состояния и термодинамический процесс
Основные т/д параметры состояния Р, υ, Т однородного тела зависят друг от друга и взаимно связаны между собой определенным математическим уравнением, который называется уравнением состояния: f

Первый закон термодинамики
Первый закон термодинамики является основой термодинамической теории и имеет огромное прикладное значение при исследовании термодинамических процессов. Для термодинамических процессов закон устанав

Универсальное уравнение состояния идеального газа
Идеальным газом называется такой газ, у которого отсутствуют силы взаимного притяжения и отталкивания между молекулами, и в котором пренебрегают размерами молекул. Все реальные газы при высоких тем

Основные положения второго закона термодинамики
Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту и не устанавливает условий, при которых возможны эти превращения. Превращение работы в теплот

Цикл и теоремы Карно
Циклом Карно называется круговой цикл, состоящий из 2-х изотермических и из 2-х адиабатных процессов. Обратимый цикл Карно в p,υ- и T,s- диаграммах показан на рис. 3.1.

Политропный процесс
Политропным процессом называется процесс, все состояния которого удовлетворяют условию: P· nn = Const, (4.24) где n – показатель политропы, постоянная для данного проце

Свойства реальных газов
Реальные газы отличаются от идеальных газов тем, что молекулы этих газов имеют объемы и связаны между собой силами взаимодействия, которые уменьшаются с увеличением расстояния между молекулами. При

Понятия о водяном паре
Распространенным рабочим телом в паровых турбинах, паровых машинах, в атомных установках и теплоносителем в различных теплообменниках является водяной пар. Пар - газообразное тело в состоя

Процесс парообразования в координатах i-s
Рис. 1.14 i-s - диаграмма водяного пара Для решения прак­тических задач, связанных со свойствами водяного па­ра,

Термодинамические процессы влажного воздуха
Влажным воздухом называется парогазовая смесь, состоящая из сухого воздуха и водяных паров. Влажный воздух по содержанию в нем водяного пара может быть насыщенным, ненасыщенным и пе

Теплоносители
Теплоносителем для отопления может быть любая жидкая или газообразная среда, обладающая теплоаккумулирующей способностью, а также подвижная и де­шевая. Теплоноситель должен соответствовать требова­

Санитарно-гигиенические требования к теплоносителям
Одним из санитарно-гигиенических требований, как указывалось, является поддержание в помещениях рав­номерной температуры. По этому показателю преимуще­ство перед другими теплоносителями имеет возду

Экономические требования к теплоносителям
Важным экономическим показателем является расход металла на теплопроводы и отопительные приборы. Рас­ход металла на теплопроводы возрастает с увеличением площади их поперечного сечения. Вычислим со

Эксплуатационные показатели
Из-за высокой плот­ности воды (больше плотности пара в 600-1500 раз и воз­духа в 900 раз) в системах водяного отопления высоких зданий может возникнуть опасное для их нормальной ра­боты гидростатич

Пористость и объемный вес
Подавляющее большинство строительных материалов - пористые тела. Пористость определяет процентное содержание пор (ρ в %) в материале и выражается процентным отношением объема пор к общему объе

Влажность
Влажность характеризуется наличием в материале несвязанной химически воды. Влажность оказывает большое влияние на теплопроводность и теплоемкость материала, а также имеет большое значение для оценк

Теплопроводность
Теплопроводность есть способность материала проводить тепло через свою массу. Степень теплопроводности материала характеризуется величиной его коэффициента теплопроводности λ. Коэффициент тепл

Теплоемкость
Теплоемкость - это свойство материалов поглощать тепло при повышении температуры. Показателем теплоемкости является удельная теплоемкость материала с, она показывает количество тепла в кДж, которое

Перечень нормативных документов и область их применения
Перечень основных нормативных документов по климатологии, строительной теплотехнике и СКМ приведен в таблице Перечень нормативных документов.

Термины и определения
Согласно ГОСТ 30494-96 при изучении микроклимата помещений применяют следующие термины и их определения: - обслуживаемая зона помещения (зона обитания)-пространство в помещении, ограниченн

Параметры микроклимата
ГОСТ 30494-96 определяет условия формирования параметров микроклимата помещений. В помещениях зданий следует обеспечивать оптимальные или допустимые нормы микроклимата в обслуживаемой зоне

Термины и определения
Основные положения взяты из данного СНиП (с учетом информации из утратившему силу СНиП2.01-01-82) Согласно СНиП применяют следующие термины: - повторяемость-отношение числа случае

Расчетные параметры наружного воздуха для проектирования систем ОВК
Расчетные параметры наружного воздуха при проектировании отопления, вентиляции и кондиционировании следует принимать в соответствии с таблицей 6* (со ссылками на табл. 1* для холодного табл. 2* для

Термины и их определение
Перечисленные ниже термины касаются рабочей (обслуживаемой)зоны помещений, параметров внутреннего и наружного воздуха, систем ОВК для создания микроклимата Вентиляция - об

Параметры внутреннего воздуха при отоплении и вентиляции помещений
Параметры микроклимата при отоплении и вентиляции помещений (кроме тех для которых метеорологические условия установлены другими нормативными документами) следует принимать по ГОСТ 30494, ГОСТ 12.1

Параметры микроклимата при кондиционировании помещений
Параметры микроклимата при кондиционировании помещений (кроме помещений, для которых метеорологические условия установлены другими нормативными документами или заданием на проектирование) следует п

Параметры внутреннего воздуха в производственных помещениях с автоматизированным технологическим оборудованием
Для производственных помещений с полностью автоматизированным технологическим оборудованием, функционирующим без присутствия людей(кроме дежурного персонала, находящегося в специальном помещении и

Параметры внутреннего воздуха при других технологических и тепловых условиях
В других зданиях и сооружениях (животноводческих, звероводческих, птицеводческих, для выращивания растений, для хранения сельскохозяйственной продукции) параметры микроклимата следует принимать в с

Параметры наружного воздуха
Заданные параметры микроклимата и частоту воздуха в помещениях жилых, общественных, административно-бытовых и производственных зданий (выше указанных в разделе 2.4) следует обеспечивать в пределах

Термины и определения
- производственные помещения - замкнутые пространства в специально предназначенных зданиях и сооружениях, в которых постоянно (по сменам) или периодически (в течение рабочего дня) осуществляется тр

Общие требования и показатели микроклимата
Санитарные правила устанавливают гигиенические требования к показателям микроклимата рабочих мест производственных помещений с учетом интенсивности энерготрат работающих, времени выполнения работы,

Перечень наиболее гигиенически значимых веществ, загрязняющих воздушную среду помещений жилых зданий
Приложение 2 № п/п Наименование вещества Формула Величина ПДК среднесуточная, мг/м3 Класс опасности

Понятие микроклимата и физиологические предпосылки для его создания
Во всех помещениях, где живёт, трудится или отдыхает человек, должны выдерживаться определенные комфортные внутренние климатические условия (микроклимат). От санитарно-гигиенических услови

Условия комфортности
Интенсивность теплоотдачи человека зависит от тепловой обстановки в помещении (от микроклимата помещения), который характеризуется радиацион

Нормативные требования к микроклимату в помещении
Основные нормативные требования к микроклимату помещений содержатся в следующих нормативных документах: - СНиП 41.01- 2003 “Отопление, вентиляция и кондиционирование. (дата введения 2004 г

Системы создания микроклимата в помещении

Факторы, определяющие микроклимат в помещениях
Здание (как сложная архитектурно-конструктивная система) представляет собой совокупность многообразных ограждающих конструкций и инженерного оборудования, в которых протекают различные по физическо

Назначение теплового режима
Тепловым режимом здания называется совокупность всех факто­ров и процессов, определяющих тепловую обстановку в его помещениях. Помещения здания (рис. 1.1) изолированы от внешней среды огра

Тепловые условия в помещении
Тепловые условия в помещениях создаются при взаимодействии поверхностей нагретых и охлажденных ог­раждений, материалов, приборов и оборудования, масс нагретого и холодного воздуха. Между поверхност

Теплообмен в помещении
При эксплуатации зданий определяющим является тепловой режим помещений, от которого зависит ощущение теплового комфорта людей, нормальное протекание производственных процессов, состояние и долговеч

Зимний воздушно-тепловой режим помещений
Расчётные климатические условия. Для зимнего периода определяющими параметрами климата являются температура наружного воздуха tн и скорость ветра ʋн

Влияние теплозащитных свойств ограждений на воздушно-тепловой режим помещения
Теплозащитные качества ограждения принято характеризовать величиной сопротивления теплопередаче Rо, которая численно равна падению температуры в градусах (К) при прохождении теплового по

Тепловой баланс помещения в летний период года
Тепловой баланс помещения для тёплого периода года выражают следующим образом: Qогр + Qвент + Qтехн = 0, где Qогр – теплопоступления в

Общие закономерности
Обычно при теплотехнических расчетах наружных ограждений зданий принимается, что теплопередача происходит при стационарном тепловом потоке (не зависит от времени); при этом наружные ограждения расс

Сопротивления теплообмену и коэффициенты теплоотдаче у поверхности ограждения
Величины, обратные сопротивлениям теплоотдаче (теплопереходу) иногда называемых сопротивлением теплопереходу называются коэффициентами теплоотдачи и обозначаются как коэффициент теп

Термическое сопротивление ограждения
Если сопротивления теплоотдаче зависят главным образом от внешних факторов и лишь в незначительной степени от материала поверхности ограждения, то термическое сопротивление ограждения R зависит иск

Нормирование сопротивления теплопередаче
При проектировании наружных ограждений зданий необходимо знать минимальные значения (называемые нормативными), при которых ограждения оказыв

Теплоустойчивость ограждающих конструкций
Ограждающие конструкции зданий (в условиях нестационарной теплопередачи) обладают теплоустойчивостью (свойство сопротивляться изменениям температуры наружного воздуха) и характеризуются показателям

Гравитационное давление (тепловой напор)
В зимнее время наружный воздух имеет большую плотность (из-за низкой температуры) чем воздух в помещении (с более высокой температурой). Раз

Ветровое давление
Под действием ветра на наветренных сторонах здания (смотри рисунок) возникает избыточное давление, а на заветренных сторонах - разрежение. Величина избыточного статического давления (ветрового)

Воздухопроницаемость ограждений
Воздухопрницаемость ограждений не всегда соответствует воздухопроницаемости их материалов. Воздухопроницаемость ограждающей конструкции оценивается по величине сопротивления воздухопроницанию:

Определение и область применения воздуха
Во́здух - естественная смесь газов, главным образом азота и кислорода, образующая земную атмосферу. Воздух необходим для нормального существования подавляющего числа наземных живых организмов:

Состояние и состав воздуха
Влажным воздухом называется парогазовая смесь, состоящая из сухого воздуха и водяных паров. Знание его свойств инженеру-строителю необходимо для понимания и расчета таких технических устройств, как

Определение характеристик воздуха
К основным характеристикам влажного воздуха относятся: - Абсолютная влажность D, которая определяет массу водяного пара (влаги), содержащегося в 1 м3 влажного воздуха.

Средства и методы контроля влажности воздуха
Для определения влажности воздуха используются приборы, которые называются психрометрами (в которых одновременно измеряют температуры «сухого» и «мокрого» термометров, по разности которых определяю

Значение параметра влажности воздуха как экологического показателя среды
Относительная влажность воздуха - важный экологический показатель среды. При слишком низкой или слишком высокой влажности наблюдается быстрая утомляемость человека, ухудшение восприятия и памяти. В

I-d диаграмма влажного воздуха
Вопросы, относящиеся к влажному воздуху (определение параметром, построение процессов), могут быть решены с помощью i-d диаграммы, предложенной в 1918 году профессором Л.К. Рамзиным.

Принцип определения параметров воздуха по i-d диаграмме
По i-d диаграмме можно определить температуру точки росы (на пересечении с линией φ = const линии d = const, идущей от точки, характеризующей исходное состояние воздуха) и температуру “мокрого

Сущность аспирационного метода определения относительной влажности
Сущность аспирационного метода определения относительной влажности заключается в следующем (рисунок 3.13). Ри

Теплофизические свойства сухого воздуха
при нормальном атмосферном давлении * t, °C r, кг/м3 cp, кДж/кг/К

Причины появления влаги в наружных ограждениях
В ограждающих конструкциях зданий может находиться влага следующих видов: - строительная влага – вносится при возведении зданий или при изготовлении сборных железобетонных конструкций;

Влажностные характеристики внутреннего и наружного воздуха
Влага (в виде водяного пара), содержащаяся в атмосферном воздухе обуславливает его влажность. Количество влаги, содержащееся в 1 м3 воздуха, выражает его абсолютную влажность. Д

Конденсация влаги на поверхности ограждения
Если охлаждать какую-либо поверхность в воздухе с данной влажностью, то при падении температуры этой поверхности ниже точки росы соприкасающийся с ней воздух при охлаждении будет конденсировать вод

Меры против конденсации влаги на поверхности ограждения
Основной мерой против конденсации влаги на внутренней поверхности ограждения является снижение влажности воздуха в помещении, что может быть достигнуто усилением его вентиляции. Во избежан

Сорбция и десорбция
Понятие сорбции охватывает два явления поглощения материалом водяного пара: 1) поглощение пара поверхностью его пор в результате соударения молекул пара с поверхностью пор и как бы прилипа

Физическая сущность паропроницаемости
Отсутствие конденсации влаги на внутренней поверхности не гарантирует ограждение от увлажнения, так как оно может происходить вследствие сорбции и конденсации водяных паров в толще самого ограждени

Количественные зависимости для расчета паропроницаемости
По аналогии с формулой передачи тепла теплопроводностью через плоскую стенку в стационарных условиях, представленной в виде зависимости поверхностной плотности теплового потока (удельного)

Особенности расчета влажностного режима
Для расчетов влажностного режима наружных ограждений на увлажнение их парообразной влагой необходимо знать температуры и влажности внутреннего и наружного воздуха. Температура и влажность внутренне

Методика расчета влажностного режима
Методика расчета влажностного режима в ограждении (с целью проверки отсутствия конденсации и накопления влаги в нем) выполняется следующим образом. Для построения линии падения упругости в

Факторы, влияющие на влажностный режим ограждения
Для предупреждения конденсации влаги на внутренней поверхности наружного ограждения необходимо, чтобы Температура точки росы

Анализ условий для просыхания ограждения
Изложенный метод расчета влажностного режима наружных ограждений дает возможность рассчитать и скорость последующего просыхания ограждения после прекращения конденсации в нем водяного пара, а именн

Оценка результатов расчета влажностного режима
Расчет влажностного режима по стационарным условиям является простым и может дать достаточно точный ответ на два следующих вопроса: - будет ли гарантировано ограждение от конденсации влаги

Расчет влажностного режима при нестационарных условиях диффузии водяного пара
Изложенный расчет влажностного режима ограждений в стационарных условиях диффузии водяного пара не учитывает изменения влажности материалов в ограждении во времени, а также влияния начальной влажно

Меры против конденсации в ограждениях
Основным конструктивным мероприятием для обеспечения ограждения от конденсации в нем влаги является рациональное расположение в ограждении слоев различных материалов. Для предупреждения ко

Влажностный режим бесчердачных перекрытий
Большое влияние на влажностный режим бесчердачных покрытий оказывает гидроизоляционный ковер, назначение которого предохранять покрытие от увлажнения его дождевой или талой водой. Гидроизоляционный

Механизм перемещения влаги
Перемещение влаги в материале начинается с момента образования в нем конденсационной влаги, так как сорбированная влага, находящаяся в материале в связанном состоянии, перемещаться в жидком виде не

Условия для перемещения влаги в строительных материалах
Для возможности капиллярного передвижения влаги в материале необходим градиент влажности, т. е. изменение влажности материала по направлению движения в нем влаги. При этом влага в материале будет п

Санитарно-гигиенические основы систем кондиционирования микроклимата
Современные условия жизни человека требуют эффективных искусственных средств оздоровления воздушной среды (с помощью техники отопления, вентиляции и кондиционирования). С помощью отопления

Понятие о способах организации воздухообмена и устройстве систем вентиляции
Воздушная, среда в помещении удовлетврряюшая са­нитарным нормам, обеспечивается в результате удаления загрязненного воздуха из помещения и подачи чистого наружного воздуха. Соответвенно этому систе

Воздухораспределение струями
Струёй называют поток жидкости или газа с конечными поперечными размерами (рис. 9.2). В технике вентиляции имеют дело со струями воздуха, истекающего в помещение, заполненное воздухом. Так

Общие замечания
Здания (как сложная архитектурно-конструктивная система) характеризуются тепловым режимом, обусловленным различными по физической сущности процессами поглощения теплоты. Под действием разн

Назначение систем кондиционирования микроклимата в помещениях
Требуемый микроклимат в помещении создается следующими системами инженерного оборудования зданий: отопления, вентиляции и кондиционирования воздуха. Системы отопления предназначены для соз

Виды и область применения систем отопления
Система отопления жилых зданий должна обеспечивать равномерное поддержание расчётных температур отапливаемых помещений в течение всего отопительного сезона, а также: возможность регулирования тепло

Энергосбережение и микроклимат в помещении
Расходы на энергию, являются основной статьей расходов связанных с эксплуатацией дома, кроме того цены на энергоносители продолжают неуклонно расти, вместе с этим увеличиваются и расходы на содержа

Типы вентиляции представлены большим разнообразием систем различных видов и назначений. Системы разделяются на несколько типов исходя из общих признаков. Главными из них являются способы циркуляции воздуха в здании, зона обслуживания агрегата, и особенности конструкции средства .

Естественный способ воздухообмена

Рассматривая типы вентиляционных устройств, следует начать с данного вида. В этом случае перемещение воздуха происходит по трем причинам. Первый фактор — аэрация, то есть разность температур воздуха в помещении и наружного. Во втором случае воздухообмен осуществляется в результате воздействия ветрового давления. И в третьем случае разность давления между используемым помещением и вытяжным устройством тоже приводит к воздухообмену.

Метод аэрации используется в местах с большим тепловыделением, но только тогда, когда поступающий воздух содержит в себе не более 30% вредных примесей и газов.

Не используется этот метод и в тех случаях, если нужна обработка поступающего воздуха или приток наружного воздуха приводит к возникновению конденсата.

В вентиляционных системах, где основой для перемещения воздуха является разность давления между помещением и вытяжным устройством, минимальный перепад по высоте должен составлять не меньше 3 м.

В этом случае длина участков, расположенных горизонтально, не должна превышать 3 м, в то время как скорость воздуха равна 1 м/с.

Для данных систем не нужно дорогое оборудование, в этом случае используются вытяжки, расположенные в ванных и кухонных помещениях. Система вентиляции долговечна, для ее использования не требуется приобретать дополнительные устройства. Естественная вентиляция проста и дешева в эксплуатации, но только в том случае, если она настроена правильно.

Тем не менее такая система уязвима, так как нужно создавать дополнительные условия для поступления воздуха. С этой целью обрезают межкомнатные двери, чтобы они не мешали циркуляции воздуха. Кроме того, имеется зависимость от воздушного потока, который обдувает здание. Именно от него и зависит естественная система вентиляции.

Примером такого типа является открытое окно. Но при данном действии или врезке вытяжек появляется другая проблема — большой объем поступающего с улицы шума. Поэтому, несмотря на свою простоту и экономичность, система уязвима для ряда факторов.

Вернуться к оглавлению

Средства для искусственного воздухообмена

Искусственная система, она же механическая, для вентиляции использует дополнительные устройства, помогающие воздуху поступать в здание и покидать его, тем самым организуя постоянный обмен. С этой целью применяют разнообразные приборы: вентиляторы, электрические двигатели, нагреватели воздуха.

Большим минусом при работе таких систем являются затраты на энергию, которые могут достигать немаленьких значений. Но плюсов у этого типа больше, они полностью окупают затраты на использование средств.

К положительным моментам следует отнести перемещение воздушных масс на нужное расстояние. Кроме того, подобные системы вентиляции могут регулироваться, исходя из этого воздух может поступать или удаляться из комнат в нужном количестве.

Искусственный воздухообмен не зависит от окружающих факторов, как это наблюдается при естественной вентиляции. Система автономна, а в процессе работы могут использоваться дополнительные функции, например, нагревание или увлажнение поступающего воздуха. При естественном типе подобное невозможно.

Тем не менее в настоящий момент популярно использование обеих систем подачи воздуха сразу. Это позволяет создать необходимые условия в помещении, снизить затраты, повысить эффективность работы вентиляции в целом.

Вернуться к оглавлению

Приточный способ подачи воздуха

Этот тип вентиляционных систем используется с целью осуществления постоянного поступления свежего воздуха. Система может осуществлять подготовку воздушных масс перед их поступлением в квартиру. С этой целью осуществляется очистка воздуха, нагревание или охлаждение. Таким образом, воздух приобретает нужные качества, после чего поступает в помещение.

В состав системы входят приточные установки и воздухоотводы, а в состав установки, обеспечивающей поступление воздуха, в свою очередь, входят фильтр, калориферы, вентилятор, автоматические системы и звукоизоляция.

При выборе подобных устройств следует обращать внимание на ряд факторов. Большое значение имеет объем воздуха, поступающего в здание. Этот показатель может быть равен нескольким десяткам или нескольким десяткам тысяч кубических метров воздуха, поступающего в помещение.

Большую роль играют такие показатели, как мощность калорифера, напор воздуха и уровень шума устройства. Кроме того, подобные типы вентиляционных устройств имеют автоматическое регулирование, что позволяет регулировать расход мощности и установить уровень потребляемого воздуха. Устройства с таймерами позволяют настроить агрегат для работы по расписанию.

Вернуться к оглавлению

Сочетание двух способов: приточно-вытяжной вид

Эта система представляет собой совокупность двух способов вентиляции — приточной и вытяжной, что позволяет задействовать положительные качества обеих систем одновременно и приводит к улучшению воздухообмена.

Как и в предыдущем варианте, имеется средство фильтрации и регулирования поступающих воздушных масс. Подобный тип может создать необходимые условия в помещении, отрегулировать уровень влажности поступающих масс, создать нужную температуру, нагрев или охладив воздух. Провести фильтрацию воздушных масс, поступивших снаружи, тоже входит в функциональные возможности агрегата.

Приточно-вытяжная система поможет сократить расходы, что достигается за счет удаления тепла, которое идет на подогрев поступающего воздуха. Этот процесс происходит в рекуператоре — теплообменнике специального назначения.

Вытяжные воздушные массы, имеющие комнатную температуру, поступают в устройство, после чего передают свою температуру рекуператору, который и нагревает воздух, поступающий снаружи.

Помимо вышеназванных достоинств приточно-вытяжная вентиляция обладает еще одним качеством, хорошо подходящим для людей, страдающих перепадами артериального давления. Речь идет о возможности создавать повышенное и пониженное давление по сравнению с окружающей средой.

Устройство является автономным, независимым от условий окружающей среды, благодаря чему может использоваться круглогодично. Однако система не лишена отрицательных качеств. Среди них можно назвать необходимость точной регулировки. Если оба способа — вытяжной и приточный — не будут сбалансированы между собой, то человек, использующий такой тип вентиляции, рискует получить сквозняки в доме.

ГИГИЕНИЧЕСКИЕ ОСНОВЫ ВЕНТИЛЯЦИИ.

ЛЕКЦИЯ №9.

Современные условия труда и жизнедеятельности людей требуют эффективных искусственных средств оздоровления воздушной среды. Этой цели служит техника вентиляции.

Вредные факторы: избыточное тепло, повышенная влажность, пары химических веществ общетоксического действия, пыль, радиоактивные вещества.

Один человек при нормальных условиях выделяет до 120 Вт в окружающую среду, причём 25% от этой величины испарением влаги (пот). При отсутствии вентиляции эти и другие тепловыделения повышают значительно температуру воздуха в помещении и затрудняют процесс терморегуляции в организме человека, вредно влияют на технологический процесс производства. Количество выделяемой человеком влаги составляет 40-75 г/час. При повышенной влажности и высокой температуре уменьшается отдача тепла телом человека за счёт испарения, при пониженной температуре – охлаждение организма, т.к. влажный воздух более теплопроводен нежели сухой. Наиболее опасна пыль двуокиси кремния, асбеста, пары ртути и т.п. Воздух считается загрязнённым, если в 1

содержится более 4500 микроорганизмов.

Что касается радиоактивных веществ, то они подобны обычным промышленным химическим загрязнениям, но отличаются повышенной токсичностью. Их влияние на организм постоянно изучается и тщательно проверяется.

Санитарными нормами установлены предельно допустимые концентрации (ПДК) (СН-245-71). Положим для ртути и свинца 0,01 мг/куб. м, для бензина 100 мг/куб. м, аммиака 20 мг/куб. м.

Определение требуемого воздухообмена.

Частичная или полная замена воздуха в помещении, содержащего вредные примеси, чистым атмосферным воздухом называется воздухообменом.

Исходные данные расчёта:

Количество вредных примесей;

Допустимое количество вредных примесей на

Количество вредных примесей в воздухе на , подаваемом в помещение.

Кратность воздухообмена:

Необходимый воздухообмен по газовым вредным выделениям определяется по формуле:

Величина необходимого воздухообмена, исходя из содержания в воздухе водяных паров, определяется по формуле:

По санитарным нормам задаётся относительная влажность и температура воздуха в помещении. Для определения требуемого воздухообмена по избыточному теплу надо знать приход теплоты, количество его необходимое для восполнения потерь через ограждения. Соответственно разность между этими величинами даст величину избыточной теплоты. Требуемый воздухообмен найдём из выражения:

Для жилых помещений:

Поступления тепла в помещения.

Учитываются следующие источники тепловыделений: люди, оборудование, нагретые поверхности печей, сушилки и т.п. Q-тепловыделения людей, Q- тепловыделения от оборудования в Вт, для освещённых солнцем поверхностей


Теплопоступления за счёт солнечной радиации учитываются при солнечная радиация через стены не учитывается.

Способы организации воздухообмена.

Вентиляция бывает вытяжная и приточная. По способу перемещения воздуха естественная и механическая. Неорганизованная естественная вентиляция есть воздухообмен в помещениях, происходящий под влиянием разности давлений наружного и внутреннего воздуха и действия ветра через неплотности ограждающих конструкций, а также при открывании форточек, фрамуг и дверей. Этот вид вентиляции называется аэрацией. Подача воздуха в помещение или его удаление с помощью вентилятора называется искусственной вентиляцией. В общественных зданиях устраивают общеобменную приточно-вытяжную вентиляцию.

Определение естественного давления и расчёт

воздуховодов.

расстояние от центра вытяжного отверстия до устья вытяжной шахты. Расчётное естественное давление определяется для температуры наружного воздуха +5. Радиус действия допускается не более 8 м. Для нормальной работы

Скорости в каналах с естественной циркуляцией не превышают 0,5-0,6 м/с для верхнего этажа и каждого из последующих нижних на 0,1 м/с больше, но не более 1-1,5 м/с.

Методика расчёта воздуховодов.

1. При заданных объёмах воздуха, подлежащего перемещению по каждому участку каналов, принимают скорость его движения (W).

2. По объёму воздуха и принятой скорости определяют предварительно сечения каналов, по номограммам.

3. Сравнивают полученные суммарные сопротивления с располагаемым давлением. Если эти величины совпадают, по предварительно полученные сечения каналов могут быть приняты как окончательные.

Кондиционирование воздуха.

Кондиционирование воздуха относится к наиболее современным и технически совершенным способам создания и поддержания в помещениях условий комфорта для человека и оптимальных параметров воздушной среды для производственных процессов, обеспечения длительной сохранности ценностей культуры и искусства в общественных зданиях и т.п. Кондиционирование воздуха является большим достижением науки и техники в деле создания искусственного климата в закрытых помещениях.

Современные установки кондиционирования воздуха представляют собой комплекс технических средств, служащих для приготовления, перемещения и распределения воздуха, автоматического регулирования его параметров, дистанционного контроля и управления.

В зависимости от использования наружного и рециркуляционного воздуха различают прямоточные, рециркуляционные и частично рециркуляционные системы кондиционирования.

Газоснабжение.

Транспортирование газа на большие расстояния осуществляется газоперекачивающими станциями. Компрессорные станции строятся через каждые 120-150 км. Давление газа в магистральных трубопроводах р=5 МПа. При подходе магистральных газопроводов к населённым пунктам сооружаются ГРС (газораспределительные станции). На ГРС газ фильтруется, проходит регуляторы давления, одорируется метимеркаптаном или пропилмеркаптаном. В газораспределительных сетях давление газа не превышает 1,2 МПа. На ГРП газ поступает под давлением 0,6 МПа для питания топливом промышленных предприятий, сетей низкого давления бытовых потребителей. Назначение ГРП снижение давления газа и поддержание его на необходимом уровне. Помещение ГРП отапливается, так как для нормальной работы установленного в нём оборудования и контрольно-измерительных приборов температура воздуха в помещении должна быть не ниже +15Отопление может быть водяным от тепловой сети или от индивидуальной котельной, которая отделяется капитальной стеной от помещения, где установлено оборудование, и имеет самостоятельный вход. Вентиляция ГРП осуществляется с помощью дефлектора (вытяжка) и жалюзийной решётки (приток), устроенной внизу двери. Электрическое освещение здания ГРП может быть внутренним во взрывобезопасном исполнении или наружным в обычном исполнении (кососвет).