Цель урока: ввести уравнение окружности, научить учащихся составлять уравнение окружности по готовому чертежу, строить окружность по заданному уравнению.

Оборудование : интерактивная доска.

План урока:

  1. Организационный момент – 3 мин.
  2. Повторение. Организация мыслительной деятельности – 7 мин.
  3. Объяснение нового материала. Вывод уравнения окружности – 10 мин.
  4. Закрепление изученного материала– 20 мин.
  5. Итог урока – 5 мин.

Ход урока

2. Повторение:

− (Приложение1 Слайд 2 ) записать формулу нахождения координат середины отрезка;

(Слайд 3) З аписать формулу расстояние между точками (длины отрезка).

3. Объяснение нового материала.

(Слайды 4 – 6) Дать определение уравнения окружности. Вывести уравнения окружности с центром в точке (а ;b ) и с центром в начале координат.

(х а ) 2 + (у b ) 2 = R 2 − уравнение окружности с центром С (а ;b ) , радиусом R , х и у координаты произвольной точки окружности.

х 2 + у 2 = R 2 − уравнение окружности с центром в начале координат.

(Слайд 7)

Для того чтобы составить уравнение окружности, надо:

  • знать координаты центра;
  • знать длину радиуса;
  • подставить координаты центра и длину радиуса в уравнение окружности.

4. Решение задач.

В задачах № 1 – № 6 составить уравнения окружности по готовым чертежам.

(Слайд 14)

№ 7. Заполнить таблицу.

(Слайд 15)

№ 8. Построить в тетради окружности, заданные уравнениями:

а) (х – 5) 2 + (у + 3) 2 = 36;
б ) (х + 1) 2 + (у – 7) 2 = 7 2 .

(Слайд 16)

№ 9. Найти координаты центра и длину радиуса, если АВ – диаметр окружности.

Дано: Решение:
R Координаты центра
1 А (0 ; -6)
В (0 ; 2)
АВ 2 = (0 – 0) 2 + (2 + 6) 2 ;
АВ 2 = 64;
АВ = 8 .
А (0; -6)
В (0 ; 2)
С (0 ; – 2) центр
2 А (-2 ; 0)
В (4 ; 0)
АВ 2 = (4 + 2) 2 + (0 + 0) 2 ;
АВ 2 = 36;
АВ = 6.
А (-2;0)
В (4 ;0)
С (1 ; 0) центр

(Слайд 17)

№ 10. Составьте уравнение окружности с центром в начале координат, проходящей через точку К (-12;5).

Решение.

R 2 = ОК 2 = (0 + 12) 2 + (0 – 5) 2 = 144 + 25 = 169;
R = 13;

Уравнение окружности: х 2 + у 2 = 169.

(Слайд 18)

№ 11. Составьте уравнение окружности, проходящей через начало координат с центром в точке С (3; - 1).

Решение.

R 2 = ОС 2 = (3 – 0) 2 + (–1–0) 2 = 9 + 1 = 10;

Уравнение окружности: (х – 3) 2 + (у + 1) 2 = 10.

(Слайд 19)

№ 12. Составьте уравнение окружности с центром А (3;2), проходящей через В (7;5).

Решение.

1. Центр окружности – А (3;2);
2. R = АВ ;
АВ 2 = (7 – 3) 2 + (5 – 2) 2 = 25; АВ = 5;
3. Уравнение окружности (х – 3) 2 + (у − 2) 2 = 25.

(Слайд 20)

№ 13. Проверьте, лежат ли точки А (1; -1), В (0;8), С (-3; -1) на окружности, заданной уравнением (х + 3) 2 + (у − 4) 2 = 25.

Решение.

I . Подставим координаты точки А (1; -1) в уравнение окружности:

(1 + 3) 2 + (−1 − 4) 2 = 25;
4 2 + (−5) 2 = 25;
16 + 25 = 25;
41 = 25 – равенство неверно, значит А (1; -1) не лежит на окружности, заданной уравнением (х + 3) 2 + (у − 4) 2 = 25.

II . Подставим координаты точки В (0;8) в уравнение окружности:

(0 + 3) 2 + (8 − 4) 2 = 25;
3 2 + 4 2 = 25;
9 + 16 = 25;
В (0;8) лежит х + 3) 2 + (у − 4) 2 = 25.

III. Подставим координаты точки С (-3; -1) в уравнение окружности:

(−3 + 3) 2 + (−1− 4) 2 = 25;
0 2 + (−5) 2 = 25;
25 = 25 – равенство верно, значит С (-3; -1) лежит на окружности, заданной уравнением (х + 3) 2 + (у − 4) 2 = 25.

Итог урока.

  1. Повторить: уравнение окружности, уравнение окружности с центром в начале координат.
  2. (Слайд 21) Домашнее задание.

Уравнение линии на плоскости

Введем для начала понятие уравнения линии в двумерной системе координат. Пусть в декартовой системе координат построена произвольная линия $L$ (Рис. 1).

Рисунок 1. Произвольная линия в системе координат

Определение 1

Уравнение с двумя переменными $x$ и $y$ называется уравнением линии $L$, если этому уравнению удовлетворяют координаты любой точки, принадлежащей линии $L$ и не удовлетворяет ни одна точка, не принадлежащая линии $L.$

Уравнение окружности

Выведем уравнение окружности в декартовой системе координат $xOy$. Пусть центр окружности $C$ имеет координаты $(x_0,y_0)$, а радиус окружности равен $r$. Пусть точка $M$ с координатами $(x,y)$ -- произвольная точка этой окружности (рис. 2).

Рисунок 2. Окружность в декартовой системе координат

Расстояние от центра окружности до точки $M$ вычисляется следующим образом

Но, так как $M$ лежит на окружности, то получаем $CM=r$. Тогда получим следующее

Уравнение (1) и есть уравнение окружности с центром в точке $(x_0,y_0)$ и радиусом $r$.

В частности, если центр окружности совпадает с началом координат. То уравнение окружности имеет вид

Уравнение прямой.

Выведем уравнение прямой $l$ в декартовой системе координат $xOy$. Пусть точки $A$ и $B$ имеют координаты $\left\{x_1,\ y_1\right\}$ и $\{x_2,\ y_2\}$ соответственно, причем точки $A$ и $B$ выбраны так, что прямая $l$ - серединный перпендикуляр к отрезку $AB$. Выберем произвольную точку $M=\{x,y\}$, принадлежащую прямой $l$ (рис. 3).

Так как прямая $l$ - серединный перпендикуляр к отрезку $AB$, то точка $M$ равноудалена от концов этого отрезка, то есть $AM=BM$.

Найдем длины данных сторон по формуле расстояния между точками:

Следовательно

Обозначим через $a=2\left(x_1-x_2\right),\ b=2\left(y_1-y_2\right),\ c={x_2}^2+{y_2}^2-{x_1}^2-{y_1}^2$, Получаем, что уравнение прямой в декартовой системе координат имеет следующий вид:

Пример задачи на нахождение уравнений линий в декартовой системе координат

Пример 1

Найти уравнение окружности с центром в точке $(2,\ 4)$. Проходящей через начало координат и прямую, параллельную оси $Ox,$ проходящей через её центр.

Решение.

Найдем сначала уравнение данной окружности. Для этого будем использовать общее уравнение окружности (выведенное выше). Так как центр окружности лежит в точке $(2,\ 4)$, получим

\[{(x-2)}^2+{(y-4)}^2=r^2\]

Найдем радиус окружности как расстояние от точки $(2,\ 4)$ до точки $(0,0)$

Получаем, уравнение окружности имеет вид:

\[{(x-2)}^2+{(y-4)}^2=20\]

Найдем теперь уравнение окружности, используя частный случай 1. Получим

Окружностью называется множество точек плоскости, равноудаленных от данной точки, называемой центром.

Если точка С - центр окружности, R - ее радиус, а М - произвольная точка окружности, то по определению окружности

Равенство (1) есть уравнение окружности радиуса R с центром в точке С.

Пусть на плоскости задана прямоугольная декартова система координат (рис. 104) и точка С(а; b ) - центр окружности радиуса R. Пусть М(х; у ) - произвольная точка этой окружности.

Так как |СМ| = \(\sqrt{(x - a)^2 + (у - b)^2} \), то уравнение (1) можно записать так:

\(\sqrt{(x - a)^2 + (у - b)^2} \) = R

(x - a ) 2 + (у - b ) 2 = R 2 (2)

Уравнение (2) называют общим уравнением окружности или уравнением окружности радиуса R с центром в точке (а; b ). Например, уравнение

(x - l) 2 + (y + 3) 2 = 25

есть уравнение окружности радиуса R = 5 с центром в точке (1; -3).

Если центр окружности совпадает с началом координат, то уравнение (2) принимает вид

x 2 + у 2 = R 2 . (3)

Уравнение (3) называют каноническим уравнением окружности .

Задача 1. Написать уравнение окружности радиуса R = 7 с центром в начале координат.

Непосредственной подстановкой значения радиуса в уравнение (3) получим

x 2 + у 2 = 49.

Задача 2. Написать уравнение окружности радиуса R = 9 с центром в точке С(3; -6).

Подставив значение координат точки С и значение радиуса в формулу (2), получим

(х - 3) 2 + (у - (-6)) 2 = 81 или (х - 3) 2 + (у + 6) 2 = 81.

Задача 3. Найти центр и радиус окружности

(х + 3) 2 + (у -5) 2 =100.

Сравнивая данное уравнение с общим уравнением окружности (2), видим, что а = -3, b = 5, R = 10. Следовательно, С(-3; 5), R = 10.

Задача 4. Доказать, что уравнение

x 2 + у 2 + 4х - 2y - 4 = 0

является уравнением окружности. Найти ее центр и радиус.

Преобразуем левую часть данного уравнения:

x 2 + 4х + 4- 4 + у 2 - 2у +1-1-4 = 0

(х + 2) 2 + (у - 1) 2 = 9.

Это уравнение представляет собой уравнение окружности с центром в точке (-2; 1); радиус окружности равен 3.

Задача 5. Написать уравнение окружности с центром в точке С(-1; -1), касающейся прямой АВ, если A (2; -1), B(- 1; 3).

Напишем уравнение прямой АВ:

или 4х + 3y -5 = 0.

Так как окружность касается данной прямой, то радиус, проведенный в точку касания, перпендикулярен этой прямой. Для отыскания радиуса необходимо найти расстояние от точки С(-1; -1) - центра окружности до прямой 4х + 3y -5 = 0:

Напишем уравнение искомой окружности

(x +1) 2 + (y +1) 2 = 144 / 25

Пусть в прямоугольной системе координат дана окружность x 2 + у 2 = R 2 . Рассмотрим ее произвольную точку М(х; у ) (рис. 105).

Пусть радиус-вектор OM > точки М образует угол величины t с положительным направлением оси Ох , тогда абсцисса и ордината точки М изменяются в зависимости от t

(0 t х и у через t , находим

x = R cos t ; y = R sin t , 0 t

Уравнения (4) называются параметрическими уравнениями окружности с центром в начале координат .

Задача 6. Окружность задана уравнениями

x = \(\sqrt{3}\)cos t , y = \(\sqrt{3}\)sin t , 0 t

Записать каноническое уравнение этой окружности.

Из условия следует x 2 = 3 cos 2 t , у 2 = 3 sin 2 t . Складывая эти равенства почленно, получаем

x 2 + у 2 = 3(cos 2 t + sin 2 t )

или x 2 + у 2 = 3

Инструкция

Расстояние от точки (x, y) до центра координат равно длине отрезка, соединяющего ее с точкой (0, 0). Этот отрезок вместе с его проекциями на координатные оси составляют прямоугольный треугольник, катеты которого равны x0 и y0, а гипотенуза, по теореме Пифагора, равна √(x^2 + y^2).

Чтобы получить окружность, вам уравнение, определяющее все точки, для которых это расстояние будет равно R. Таким образом:√(x^2 + y^2) = R, а следовательно,
x^2 + y^2 = R^2.

Аналогичным способом составляется уравнение окружности радиусом R, центр которой находится в точке (x0, y0). Расстояние от произвольной точки (x, y) до заданной точки (x0, y0) равно √((x - x0)^2 + (y - y0)^2). Следовательно, уравнение нужной вам окружности будет выглядеть так:(x - x0)^2 + (y - y0)^2 = R^2.

Вам может понадобиться также составить уравнение окружности с центром в точке координат, проходящей через заданную точку (x0, y0). В этом случае радиус искомой окружности не задан в явном виде, и его придется вычислять. Очевидно, он будет равен расстоянию от точки (x0, y0) до начала координат, то есть √(x0^2 + y0^2). Подставляя это значение в уже выведенное уравнение окружности , вы получите:x^2 + y^2 = x0^2 + y0^2.

Если вам предстоит построить окружность по выведенным формулам, то их придется разрешать относительно y. Даже самое простое из этих уравнений при этом превращается в:y = ±√(R^2 - x^2).Знак ± необходим здесь , что квадратный числа всегда неотрицателен, а , что без знака ± уравнение описывает только верхнюю полуокружность.Чтобы построить окружность, удобнее составить ее параметрическое уравнение, в котором обе координаты x и y зависят от параметра t.

Согласно определению тригонометрических функций, если гипотенуза равна 1, а один из углов при гипотенузе равен φ, то прилежащий к нему катет равен cos(φ), а противолежащий - sin(φ). Таким образом, sin(φ)^2 + cos(φ)^2 = 1 для любого φ.

Предположим, вам дана окружность единичного радиуса с центром в начале координат. Возьмем любую точку (x, y) на этой окружности и проведем от нее отрезок к центру. Этот отрезок образует угол с положительной полуосью x, который может быть равен от 0 до 360° или от 0 до 2π . Обозначая этот угол t, вы получите зависимость:x = cos(t),
y = sin(t).

Эту формулу можно обобщить на случай окружности радиуса R с центром в произвольной точке (x0, y0):x = R*cos(t) + x0,
y = R*sin(t) + y0.

Источники:

  • уравнение окружности с заданным центром и радиусом

Стандартное уравнение окружности позволяет узнать несколько важных сведений об этой фигуре, например, координаты ее центра, длину радиуса. В некоторых задачах, наоборот, по заданным параметрам требуется составить уравнение.

Инструкция

Определите, сведениями об окружности вы располагаете, исходя из данной вам задачи. Запомните, что конечной целью является необходимость определить координаты центра, а также диаметр. Все ваши действия должны быть направлены на достижение именно этого результата.

Используйте данные о наличии точек пересечения с координатными прямыми или другими прямыми. Обратите внимание, что, если окружность проходит через ось абсцисс, вторая будет иметь координату 0, а если через ось ординат – то первая. Эти координаты позволят вам найти координаты центра окружности, а также вычислить радиус.

Не забывайте об основных свойствах секущих и касательных. В частности, наиболее полезной оказывается теорема о том, что в точке касания радиус и касательная образуют прямой угол. Но обратите внимание на то, что вас могут попросить доказать все использованные в ходе теоремы.

Прорешайте наиболее стандартные типы , чтобы научиться сразу видеть, как использовать те или иные данные для уравнения окружности. Так, помимо уже указанных задач с прямо заданными координатами и теми, в условиях которых даны сведения о наличии точек пересечения, для составления уравнения окружности можно воспользоваться знаниями о центре окружности, длине хорды и , на которой эта хорда лежит.

Для решения постройте равнобедренный треугольник, основанием которого будет данная хорда, а равные стороны – радиусами. Составьте , из которой вы легко найдете необходимые данные. Для этого достаточно воспользоваться формулой для нахождения длины отрезка в плоскости.

Видео по теме

В зависимости от условий задачи и требований, предъявленных в ней, может потребоваться обратиться к каноническому или параметрическому способу задания прямой. Решая геометрические задачи, пробуйте заранее выписать все возможные варианты уравнений.

Инструкция

Проверьте наличие всех необходимых параметров для составления параметрического уравнения. Соответственно, вам потребуются координаты точки, принадлежащей этой прямой, а также направляющего вектора. Таковым будет любой , проходящий параллельно этой прямой. Параметричское задание прямой представляет собой систему из двух уравнений х = х0+txt, y = y0+tyt, где (х0, у0) - координаты точки, лежащей на данной прямой, а (tx, ty) - координаты направляющего вектора по осям абсцисс и ординат, соответственно.

Запишите каноническое уравнение прямой, исходя из имеющихся у вас данных: координаты направляющего вектора на соответствующих осях являются множителями параметрической переменной, а координаты принадлежащей прямой точки – свободными членами параметрического уравнения.

Обратите внимание на все условия, прописанные в задаче, если вам кажется, что не хватает данных. Так, подсказкой для составления параметрического уравнения прямой может стать указание , перпендикулярных направляющему или расположенных к ней под определенным углом. Используйте условия перпендикулярности векторов: это возможно только в случае, если их равно нулю.

Составьте параметрическое уравнение прямой, проходящей через две точки: дают вам необходимые данные для определения направляющего вектора. Запишите две : в числителе должна стоять разность х и координаты по оси абсцисс одной из точек, принадлежащих прямой, в знаменателе – разность между координатами по оси абсцисс обеих данных точек. Запишите таким же образом для значений по оси ординат. Полученные дроби приравняйте к параметру (его принято обозначать буквой t) и выразите через него сперва х, затем у. Система уравнений, ставшая итогом этих преобразований, и будет параметрическим уравнением прямой.

Видео по теме

Совет 4: Как составить уравнение плоскости через точку и прямую

Любая плоскость может быть задана линейным уравнением Ax+By+Cz+D=0. Обратно, каждое такое уравнение определяет плоскость. Чтобы составить уравнение плоскости , проходящей через точку и прямую, надо знать координаты точки и уравнение прямой.

Вам понадобится

  • - координаты точки;
  • - уравнение прямой.

Инструкция

Из трех точек можно составить , однозначно задающее плоскость. Пусть имеются три точки с координатами (x1,y1,z1), (x2,y2,z2), (x3,y3,z3). Запишите детерминант:(x-x1) (y-y1) (z-z1)(x2-x1) (y2-y1) (z2-z1)(x3-x1) (y3-y1) (z3-z1)Приравняйте определитель нулю. Это и будет . Его можно оставить и в таком виде, а можно , раскрыв детерминант:(x-x1)(y2-y1)(z3-z1)+(x3-x1)(y-y1)(z2-z1)+(z-z1)(x2-x1)(y3-y1)-(z-z1)(y2-y1)(x3-x1)-(z3-z1)(y-y1)(x2-x1)-(x-x1)(z2-z1)(y3-y1). Работа кропотливая и, как правило, излишняя, ведь проще вспомнить о свойствах определителя, равного нулю.

Пример. Составьте уравнение плоскости, если известно, что она проходит через точку M(2,3,4) и прямую (x-1)/3=y/5=(z-2)/4.Решение. Вначале надо преобразовать уравнение прямой.(x-1)/(4-1)=(y-0)/(5-0)=(z-2)/(6-2). Отсюда легко выделить две точки, явно принадлежащие данной прямой. Это (1,0,2) и (4,5,6). Всё, три точки есть, можно составлять уравнение плоскости.(x-1) (y-0) (z-2)(4-1) (5-0) (6-2)(2-1) (3-0) (4-2)Детерминант приравнять нулю и упростить.

Итого: (x-1) y (z-2)3 5 41 3 2 =(x-1)·5·2+1·y·4+(z-2)·3·3-(z-2)·5·1-(x-1)·4·3-2·y·3=10x-10+4y+9z-18-5z+10-12x+12-6y=-2x-2y+4z-6=0.Ответ. Искомое уравнение плоскости -2x-2y+4z-6=0.

Полезный совет

Плоскость и прямую можно задать также каноническим, параметрическим, векторно-параметрическим и нормальным уравнением. Прямая может быть задана также в отрезках и через угловой коэффициент. Все способы задания могут быть переведены из одного в другой.

Характеристические уравнения, на основе которых вычисляются, прежде всего, собственные числа (значения), нашли большое применение в математике, физике и технике. Их можно встретить в решениях задач автоматического регулирования, решениях систем дифференциальных уравнений и т. п.

Инструкция

К ответу на вопрос следует подходить на основе рассмотрения простейших задач, для решения которых могут потребоваться характеристические уравнения. Прежде всего – это решение нормальной однородной системы однородных дифференциальных уравнений (ЛОДУ). Ее вид приведен на рисунке 1.Учитывая обозначения, приведенные на рис. 1. Перепишите систему в матричном виде.Получите Y’=AY.

Известно, что система решений (ФСР), рассматриваемой задачи, находится в виде Y=expB, где В - столбец постоянных. Тогда Y’=kY. Возникает система АY-kEY=0 (E – единичная матрица). Или (А-kE)Y=0. Требуются найти ненулевые решения, поэтому эта система имеет вырожденную матрицу и, соответственно, определитель такой равен нулю. В развернутом виде данный определитель (см. рис. 2).На рис. 2 в виде определителя записано алгебраическое уравнение n-го порядка и его решения позволяют составить ФСР исходной системы. Это уравнение характеристическим.

Теперь рассмотрите ЛОДУ n-го порядка (cм. рис. 3).Если левую его часть обозначить как линейный дифференциальный оператор L[y], то ЛОДУ перепишется в виде L[y]=0. Если искать решения ЛОДУ в виде y=exp(kx), то y’=kexp(kx), y’’=(k^2)exp(kx), …, y^(n-1)=(k^(n-1))exp(kx), y^n=(k^n)exp(kx) и, после сокращения на y=exp(kx), получится уравнение: k^n+(a1)k^(n-1)+…+a(n-1)k+an=0, которое также характеристическим.

Для того чтобы убедиться, что суть последнего характеристического уравнения осталась прежней (то есть что это не -то иной объект), перейдите от ЛОДУ n-го порядка к нормальной системе ЛОДУ путем последовательных подстановок. Первая из них y1=y, а далееy1’=y2, y2’1=y3, …, y(n-1)’ = yn, yn’=-an*y1-a(n-2)*yn-…-a1*y(n-1).

Запишите возникшую систему, составьте ее характеристическое уравнение в виде определителя, раскройте его и убедитесь в том, что получилось характеристическое уравнений для ЛОДУ n-го порядка. Заодно возникает и утверждение о фундаментальном смысле характеристического уравнения.

Перейдите к общей задаче поиска собственных чисел линейных преобразований (они могут быть и дифференциальными), что включает в себя составления характеристического уравнения. Число k называют собственным значением (числом) линейного преобразования А, если существует вектор х такой, что Ax=kx.Поскольку каждому линейному преобразованию однозначно может быть поставлена его матрица, то задача сводится к составлению характеристического уравнения для некоторой квадратной матрицы. Делается это в точности так как и в начальном примере для нормальных систем ЛОДУ. Просто замените y на х, если после записи характеристического уравнения последуют еще -то действия. Если же нет, то этого делать не стоит. Просто берите матрицу А (см. рис. 1) и записывайте в виде определителя (см. рис.2). После раскрытия определителя работа завершена.

Химическое – это реакция, выраженная с помощью формул. Химическое уравнение показывает, какие вещества вступают в реакцию и какие в итоге этой реакции получатся вещества. В основе составления химических уравнений лежит закон сохранения массы. Так же оно показывает количественное соотношение веществ, которые участвуют в химической реакции. Чтобы решить химическое уравнение, необходимо знать определенные способы, методы, подходы к этому процессу. Можно следовать такому алгоритму для решения химических уравнений.