До сих пор рассматривались уравнения линий на плоскости, связывающие непосредственно текущие координаты точек этих линий. Однако часто применяется другой способ задания линии, в котором текущие координаты рассматриваются как функции третьей переменной величины.

Пусть даны две функции переменной

рассматриваемые для одних и тех же значений t. Тогда любому из этих значений t соответствует определенное значение и определенное значение у, а следовательно, и определенная точка . Когда переменная t пробегает все значения из области определения функций (73), точка описывает некоторую линию С в плоскости Уравнения (73) называются параметрическими уравнениями этой линии, а переменная - параметром.

Предположим, что функция имеет обратную функцию Подставив эту функцию во второе из уравнений (73), получим уравнение

выражающее у как функцию

Условимся говорить, что эта функция задана параметрически уравнениями (73). Переход от этих уравнений к уравнению (74) называется исключением параметра. При рассмотрении функций, заданных параметрически, исключение параметра не только не обязательно, но и не всегда практически возможно.

Во многих случаях гораздо удобнее, задаваясь различными значениями параметра вычислять затем по формулам (73) соответствующие значения аргумента и функции у.

Рассмотрим примеры.

Пример 1. Пусть - произвольная точка окружности с центром в начале координат и радиусом R. Декартовы координаты х и у этой точки выражаются через ее полярный радиус и полярный угол, который мы здесь обозначим через t, следующим образом (см. гл. I, § 3, п. 3):

Уравнения (75) называются параметрическими уравнениями окружности. Параметром в них является полярный угол , который меняется в пределах от 0 до .

Если уравнения (75) почленно возвести в квадрат и сложить, то в силу тождества параметр исключится и получится уравнение окружности в декартовой системе координат определяющее две элементарные функции:

Каждая из этих функций задается параметрически уравнениями (75), но области изменения параметра для этих функций различны. Для первой из них ; графиком этой функции служит верхняя полуокружность. Для второй функции графиком ее является нижняя полуокружность.

Пример 2. Рассмотрим одновременно эллипс

и окружность с центром в начале координат и радиусом а (рис. 138).

Каждой точке М эллипса сопоставим точку N окружности, имеющую ту же абсциссу, что и точка М, и расположенную с ней по одну сторону от оси Ох. Положение точки N, а следовательно, и точки М, вполне определяется полярным углом t точки При этом для их общей абсциссы получим следующее выражение: х = a. Ординату у точки М найдем из уравнения эллипса:

Знак выбран потому, что ордината у точки М и ордината точки N должны иметь одинаковые знаки.

Таким образом, для эллипса получены следующие параметрические уравнения:

Здесь параметр t изменяется от 0 до .

Пример 3. Рассмотрим окружность с центром в точке а) и радиусом а, которая, очевидно, касается оси абсцисс в начале координат (рис. 139). Предположим, это эта окружность катится без скольжения по оси абсцисс. Тогда точка М окружности, совпадавшая в начальный момент с началом координат, описывает линию, которая называется циклоидой.

Выведем параметрические уравнения циклоиды, приняв за параметр t угол МСВ поворота окружности при перемещении ее фиксированной точки из положения О в положение М. Тогда для координат и у точки М мы получим следующие выражения:

Вследствие того что окружность катится по оси без скольжения, длина отрезка ОВ равна длине дуги ВМ. Так как длина дуги ВМ равна произведению радиуса а на центральный угол t, то . Поэтому . Но Следовательно,

Эти уравнения и являются параметрическими уравнениями циклоиды. При изменении параметра t от 0 до окружность совершит один полный оборот. Точка М при этом опишет одну арку циклоиды.

Исключение параметра t приводит здесь к громоздким выражениям и практически нецелесообразно.

Параметрическое задание линий особенно часто используется в механике, причем роль параметра играет время.

Пример 4. Определим траекторию снаряда, выпущенного из орудия с начальной скоростью под углом а к горизонту. Сопротивлением воздуха и размерами снаряда, считая его материальной точкой, пренебрегаем.

Выберем систему координат. За начало координат примем точку вылета снаряда из дула. Ось Ох направим горизонтально, а ось Оу - вертикально, расположив их в одной плоскости с дулом орудия. Если бы не было силы земного тяготения, то снаряд двигался бы по прямой, составляющей угол а с осью Ох и к моменту времени t прошел бы путь Координаты снаряда в момент времени t были бы соответственно равны: . Вследствие земного тяготения снаряд должен к этому моменту вертикально опуститься на величину Поэтому в действительности в момент времени t координаты снаряда определяются по формулам:

В этих уравнениях - постоянные величины. При изменении t будут изменяться также координаты у точки траектории снаряда. Уравнения являются параметрическими уравнениями траектории снаряда, в которых параметром является время

Выразив из первого уравнения и подставив его во

второе уравнение, получим уравнение траектории снаряда в виде Это - уравнение параболы.

Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, я сразу запишу конкретный пример. В параметрической форме функция задается двумя уравнениями: . Частенько уравнения записывают не под фигурными скобками, а последовательно: , .

Переменная называется параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение и подставим его в оба уравнения: . Или по человечески: «если икс равен четырем, то игрек равно единице». На координатной плоскости можно отметить точку , и эта точка будет соответствовать значению параметра . Аналогично можно найти точку для любого значения параметра «тэ». Как и для «обычной» функции, для американских индейцевпараметрически заданной функции все права тоже соблюдены: можно построить график, найти производные и т.д. Кстати, если есть надобность построить график параметрически заданной функции, закачайте мою геометрическую прогу на странице Математические формулы и таблицы .

В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр: – и подставим его во второе уравнение: . В результате получена обыкновенная кубическая функция.

В более «тяжелых» случаях такой фокус не прокатывает. Но это не беда, потому что для нахождения производной параметрической функции существует формула:

Находим производную от «игрека по переменной тэ»:

Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы , таким образом, какой-то новизны в самом процессе нахождения производных нет . Просто мысленно замените в таблице все «иксы» на букву «тэ».

Находим производную от «икса по переменной тэ»:

Теперь только осталось подставить найденные производные в нашу формулу:

Готово. Производная, как и сама функция, тоже зависит от параметра .

Что касается обозначений, то в формуле вместо записи можно было просто записать без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант , поэтому я не буду отклоняться от стандарта.

Пример 6

Используем формулу

В данном случае:

Таким образом:

Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать . Так, в рассмотренном примере при нахождении я раскрыл скобки под корнем (хотя мог этого и не делать). Велик шанс, что при подстановке и в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.


Пример 7

Найти производную от функции, заданной параметрически

Это пример для самостоятельного решения.

В статье Простейшие типовые задачи с производной мы рассматривали примеры, в которых требовалось найти вторую производную функции. Для параметрически заданной функции тоже можно найти вторую производную, и находится она по следующей формуле: . Совершенно очевидно, что для того чтобы найти вторую производную, нужно сначала найти первую производную.

Пример 8

Найти первую и вторую производные от функции, заданной параметрически

Сначала найдем первую производную.
Используем формулу

В данном случае:

Подставляет найденные производные в формулу. В целях упрощений используем тригонометрическую формулу :

Я заметил, что в задаче на нахождение производной параметрической функции довольно часто в целях упрощений приходится использовать тригонометрические формулы . Помните их или держите под рукой, и не пропускайте возможность упростить каждый промежуточный результат и ответы. Зачем? Сейчас нам предстоит взять производную от , и это явно лучше, чем находить производную от .

Найдем вторую производную.
Используем формулу: .

Посмотрим на нашу формулу. Знаменатель уже найден на предыдущем шаге. Осталось найти числитель – производную от первой производной по переменной «тэ»:

Осталось воспользоваться формулой:

Для закрепления материала предлагаю еще пару примеров для самостоятельного решения.

Пример 9

Пример 10

Найти и для функции, заданной параметрически

Желаю успехов!

Надеюсь, это занятие было полезным, и Вы теперь с лёгкость сможете находить производные от функций, заданных неявно и от параметрических функций

Решения и ответы:

Пример 3: Решение:






Таким образом:

Функцию можно задать несколькими способами. Это зависит от правила, которое используется при ее задании. Явный вид задания функции имеет вид y = f (x) . Бывают случаи, когда ее описание невозможно или неудобно. Если есть множество пар (х; у) ,которые необходимо вычислять для параметра t по промежутку (а; b) . Для решения системы x = 3 · cos t y = 3 · sin t с 0 ≤ t < 2 π необходимо задавать окружность с центром координат с радиусом равным 3 .

Определение параметрической функции

Отсюда имеем, что x = φ (t) , y = ψ (t) определены на при значении t ∈ (a ; b) и имеют обратную функцию t = Θ (x) для x = φ (t) , тогда идет речь о задании параметрического уравнения функции вида y = ψ (Θ (x)) .

Бывают случаи, когда для исследования функции требуется заниматься поиском производной по х. Рассмотрим формулу производной параметрически заданной функции вида y x " = ψ " (t) φ " (t) , поговорим о производной 2 и n -ого порядка.

Вывод формулы производной параметрически заданной функции

Имеем, что x = φ (t) , y = ψ (t) , определенные и дифферецируемые при значении t ∈ a ; b , где x t " = φ " (t) ≠ 0 и x = φ (t) , тогда существует обратная функция вида t = Θ (x) .

Для начала следует переходить от параметрического задания к явному. Для этого нужно получить сложную функцию вида y = ψ (t) = ψ (Θ (x)) , где имеется аргумент x .

Исходя из правила нахождения производной сложной функции, получаем, что y " x = ψ Θ (x) = ψ " Θ x · Θ " x .

Отсюда видно, что t = Θ (x) и x = φ (t) являются обратными функциями из формулы обратной функции Θ " (x) = 1 φ " (t) , тогда y " x = ψ " Θ (x) · Θ " (x) = ψ " (t) φ " (t) .

Перейдем к рассмотрению решения нескольких примеров с использованием таблицы производных по правилу дифференцирования.

Пример 1

Найти производную для функции x = t 2 + 1 y = t .

Решение

По условию имеем, что φ (t) = t 2 + 1 , ψ (t) = t , отсюда получаем, что φ " (t) = t 2 + 1 " , ψ " (t) = t " = 1 . Необходимо использовать выведенную формулу и записать ответ в виде:

y " x = ψ " (t) φ " (t) = 1 2 t

Ответ: y x " = 1 2 t x = t 2 + 1 .

При работе с производной функции ч параметром t указывается выражение аргумента x через этот же параметр t , чтобы не потерять связь между значениями производной и параметрически заданной функции с аргументом, которому и соответствуют эти значения.

Чтобы определить производную второго порядка параметрически заданной функции, нужно использовать формулу производной первого порядка на полученной функции, тогда получаем, что

y "" x = ψ " (t) φ " (t) " φ " (t) = ψ "" (t) · φ " (t) - ψ " (t) · φ "" (t) φ " (t) 2 φ " (t) = ψ "" (t) · φ " (t) - ψ " (t) · φ "" (t) φ " (t) 3 .

Пример 2

Найти производные 2 и 2 порядка заданной функции x = cos (2 t) y = t 2 .

Решение

По условию получаем, что φ (t) = cos (2 t) , ψ (t) = t 2 .

Тогда после преобразования

φ " (t) = cos (2 t) " = - sin (2 t) · 2 t " = - 2 sin (2 t) ψ (t) = t 2 " = 2 t

Отсюда следует, что y x " = ψ " (t) φ " (t) = 2 t - 2 sin 2 t = - t sin (2 t) .

Получим, что вид производной 1 порядка x = cos (2 t) y x " = - t sin (2 t) .

Для решения нужно применить формулу производной второго порядка. Получаем выражение вида

y x "" = - t sin (2 t) φ " t = - t " · sin (2 t) - t · (sin (2 t)) " sin 2 (2 t) - 2 sin (2 t) = = 1 · sin (2 t) - t · cos (2 t) · (2 t) " 2 sin 3 (2 t) = sin (2 t) - 2 t cos (2 t) 2 sin 3 (2 t)

Тогда задание производной 2 порядка с помощью параметрической функции

x = cos (2 t) y x "" = sin (2 t) - 2 t cos (2 t) 2 sin 3 (2 t)

Аналогичное решение возможно решить другим методом. Тогда

φ " t = (cos (2 t)) " = - sin (2 t) · 2 t " = - 2 sin (2 t) ⇒ φ "" t = - 2 sin (2 t) " = - 2 · sin (2 t) " = - 2 cos (2 t) · (2 t) " = - 4 cos (2 t) ψ " (t) = (t 2) " = 2 t ⇒ ψ "" (t) = (2 t) " = 2

Отсюда получаем, что

y "" x = ψ "" (t) · φ " (t) - ψ " (t) · φ "" (t) φ " (t) 3 = 2 · - 2 sin (2 t) - 2 t · (- 4 cos (2 t)) - 2 sin 2 t 3 = = sin (2 t) - 2 t · cos (2 t) 2 s i n 3 (2 t)

Ответ: y "" x = sin (2 t) - 2 t · cos (2 t) 2 s i n 3 (2 t)

Аналогичным образом производится нахождение производных высших порядков с параметрически заданными функциями.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пусть функция задана параметрическим способом:
(1)
где некоторая переменная, называемая параметром. И пусть функции и имеют производные при некотором значении переменной . Причем и функция имеет обратную функцию в некоторой окрестности точки . Тогда функция (1) имеет в точке производную , которая, в параметрическом виде, определяется по формулам:
(2)

Здесь и - производные функций и по переменной (параметру) . Их часто записывают в следующем виде:
;
.

Тогда систему (2) можно записать так:

Доказательство

По условию, функция имеет обратную функцию. Обозначим ее как
.
Тогда исходную функцию можно представить как сложную функцию:
.
Найдем ее производную, применяя правила дифференцирования сложной и обратной функций:
.

Правило доказано.

Доказательство вторым способом

Найдем производную вторым способом, исходя из определения производной функции в точке :
.
Введем обозначение:
.
Тогда и предыдущая формула принимает вид:
.

Воспользуемся тем, что функция имеет обратную функцию , в окрестности точки .
Введем обозначения:
; ;
; .
Разделим числитель и знаменатель дроби на :
.
При , . Тогда
.

Правило доказано.

Производные высших порядков

Чтобы найти производные высших порядков, надо выполнять дифференцирование несколько раз. Допустим, нам надо найти производную второго порядка от функции, заданной параметрическим способом, следующего вида:
(1)

По формуле (2) находим первую производную, которая также определяется параметрическим способом:
(2)

Обозначим первую производную, посредством переменной :
.
Тогда, чтобы найти вторую производную от функции по переменной , нужно найти первую производную от функции по переменной . Зависимость переменной от переменной также задана параметрическим способом:
(3)
Сравнивая (3) с формулами (1) и (2), находим:

Теперь выразим результат через функции и . Для этого подставим и применим формулу производной дроби :
.
Тогда
.

Отсюда получаем вторую производную функции по переменной :

Она также задана в параметрическом виде. Заметим, что первую строку также можно записать следующим образом:
.

Продолжая процесс, можно получить производные функции от переменной третьего и более высоких порядков.

Заметим, что можно не вводить обозначение для производной . Можно записать так:
;
.

Пример 1

Найдите производную от функции, заданной параметрическим способом:

Решение

Находим производные и по .
Из таблицы производных находим:
;
.
Применяем :

.
Здесь .

.
Здесь .

Искомая производная:
.

Ответ

Пример 2

Найдите производную от функции, выраженной через параметр :

Решение

Раскроим скобки, применяя формулы для степенных функций и корней :
.

Находим производную :

.

Находим производную . Для этого введем переменную и применим формулу производной сложной функции .

.

Находим искомую производную:
.

Ответ

Пример 3

Найдите производные второго и третьего порядков от функции, заданной параметрическим способом в примере 1:

Решение

В примере 1 мы нашли производную первого порядка:

Введем обозначение . Тогда функция является производной по . Она задана параметрическим способом:

Чтобы найти вторую производную по , нам надо найти первую производную по .

Дифференцируем по .
.
Производную по мы нашли в примере 1:
.
Производная второго порядка по равна производной первого порядка по :
.

Итак, мы нашли производную второго порядка по в параметрическом виде:

Теперь находим производную третьего порядка. Введем обозначение . Тогда нам нужно найти производную первого порядка от функции , которая задана параметрическим способом:

Находим производную по . Для этого перепишем в эквивалентном виде:
.
Из
.

Производная третьего порядка по равна производной первого порядка по :
.

Замечание

Можно не вводить переменные и , которые являются производными и , соответственно. Тогда можно записать так:
;
;
;
;
;
;
;
;
.

Ответ

В параметрическом представлении, производная второго порядка имеет следующий вид:

Производная третьего порядка.

Рассмотрим задание линии на плоскости, при котором переменные x, y являются функциями третьей переменной t (называемой параметром):

Для каждого значения t из некоторого интервала соответствуют определенные значения x и y, а , следовательно, определенная точка M (x, y) плоскости. Когда t пробегает все значения из заданного интервала, то точка M (x, y ) описывает некоторую линию L . Уравнения (2.2) называются параметрическими уравнениями линии L .

Если функция x = φ(t) имеет обратную t = Ф(x), то подставляя это выражение в уравнение y = g(t), получим y = g(Ф(x)), которое задает y как функцию от x . В этом случае говорят, что уравнения (2.2) задают функцию y параметрически.

Пример 1. Пусть M (x, y) – произвольная точка окружности радиуса R и с центром в начале координат. Пусть t – угол между осью Ox и радиусом OM (см. рис. 2.3). Тогда x, y выражаются через t:

Уравнения (2.3) являются параметрическими уравнениями окружности. Исключим из уравнений (2.3) параметр t. Для этого каждое из уравнений возведем в квадрат и сложим, получим: x 2 + y 2 = R 2 (cos 2 t + sin 2 t) или x 2 + y 2 = R 2 – уравнение окружности в декартовой системе координат. Оно определяет две функции: Каждая из этих функций задается параметрическими уравнениями (2.3), но для первой функции , а для второй .

Пример 2 . Параметрические уравнения

задают эллипс с полуосями a, b (рис. 2.4). Исключая из уравнений параметр t , получим каноническое уравнение эллипса:

Пример 3 . Циклоидой называется линия, описанная точкой, лежащей на окружности, если эта окружность катится без скольжения по прямой (рис. 2.5). Введем параметрические уравнения циклоиды. Пусть радиус катящейся окружности равен a , точка M , описывающая циклоиду, в начале движения совпадала с началом координат.

Определим координаты x , y точки M после того, как окружность повернулась на угол t
(рис. 2.5), t = ÐMCB . Длина дуги MB равна длине отрезка OB, так как окружность катится без скольжения, поэтому

OB = at, AB = MD = asint, CD = acost, x = OB – AB = at – asint = a(t – sint),

y = AM = CB – CD = a – acost = a(1 – cost).

Итак, получены параметрические уравнения циклоиды:

При изменении параметра t от 0 до окружность поворачивается на один оборот, при этом точка M описывает одну арку циклоиды. Уравнения (2.5) задают y как функцию от x . Хотя функция x = a(t – sint) имеет обратную функцию, но она не выражается через элементарные функции, поэтому функция y = f(x) не выражается через элементарные функции.

Рассмотрим дифференцирование функции, заданной параметрически уравнениями (2.2). Функция x = φ(t) на некотором интервале изменения t имеет обратную функцию t = Ф(x) , тогда y = g(Ф(x)) . Пусть x = φ(t) , y = g(t) имеют производные, причем x"t≠0 . По правилу дифференцирования сложной функции y"x=y"t×t"x. На основании правила дифференцирования обратной функции , поэтому:

Полученная формула (2.6) позволяет находить производную для функции, заданной параметрически.

Пример 4. Пусть функция y , зависящая от x , задана параметрически:


Решение . .
Пример 5. Найти угловой коэффициент k касательной к циклоиде в точке M 0 , соответствующей значению параметра .
Решение. Из уравнений циклоиды: y" t = asint, x" t = a(1 – cost), поэтому

Угловой коэффициент касательной в точке M 0 равен значению при t 0 = π/4:

ДИФФЕРЕНЦИАЛ ФУНКЦИИ

Пусть функция в точке x 0 имеет производную. По определению:
поэтому по свойствам предела (разд. 1.8) , где a – бесконечно малая при Δx → 0 . Отсюда

Δy = f "(x0)Δx + α×Δx. (2.7)

При Δx → 0 второе слагаемое в равенстве (2.7) является бесконечно малой высшего порядка, по сравнению с , поэтому Δy и f " (x 0)×Δx – эквивалентные, бесконечно малые (при f "(x 0) ≠ 0).

Таким образом, приращение функции Δy состоит из двух слагаемых, из которых первое f "(x 0)×Δx является главной частью приращения Δy, линейной относительно Δx (при f "(x 0)≠ 0).

Дифференциалом функции f(x) в точке x 0 называется главная часть приращения функции и обозначается: dy или df (x 0) . Следовательно,

df (x0) =f "(x0)×Δx. (2.8)

Пример 1. Найти дифференциал функции dy и приращение функции Δy для функции y = x 2 при:
1) произвольных x и Δx ; 2) x 0 = 20, Δx = 0,1.

Решение

1) Δy = (x + Δx) 2 – x 2 = x 2 + 2xΔx + (Δx) 2 – x 2 = 2xΔx + (Δx) 2 , dy = 2xΔx.

2) Если x 0 = 20, Δx = 0,1, то Δy = 40×0,1 + (0,1) 2 = 4,01; dy = 40×0,1= 4.

Запишем равенство (2.7) в виде:

Δy = dy + a×Δx. (2.9)

Приращение Δy отличается от дифференциала dy на бесконечно малую высшего порядка, по сравнению с Δx, поэтому в приближенных вычислениях пользуются приближенным равенством Δy ≈ dy, если Δx достаточно мало.

Учитывая, что Δy = f(x 0 + Δx) – f(x 0), получаем приближенную формулу:

f(x 0 + Δx) ≈ f(x 0) + dy. (2.10)

Пример 2 . Вычислить приближенно .

Решение. Рассмотрим:

Используя формулу (2.10), получим:

Значит, ≈ 2,025.

Рассмотрим геометрический смысл дифференциала df(x 0) (рис. 2.6).

Проведем к графику функции y = f(x) касательную в точке M 0 (x0, f(x 0)), пусть φ – угол между касательной KM0 и осью Ox, тогда f"(x 0) = tgφ. Из ΔM0NP:
PN = tgφ×Δx = f "(x 0)×Δx = df(x 0). Но PN является приращением ординаты касательной при изменении x от x 0 до x 0 + Δx.

Следовательно, дифференциал функции f(x) в точке x 0 равен приращению ординаты касательной.

Найдем дифференциал функции
y = x. Так как (x)" = 1, то dx = 1×Δx = Δx. Будем считать, что дифференциал независимой переменной x равен ее приращению, т.е. dx = Δx.

Если x – произвольное число, то из равенства (2.8) получаем df(x) = f "(x)dx, откуда .
Таким образом, производная для функции y = f(x) равна отношению ее дифференциала к дифференциалу аргумента.

Рассмотрим свойства дифференциала функции.

Если u(x), v(x) – дифференцируемые функции, то справедливы следующие формулы:

Для доказательства этих формул используются формулы производных для суммы, произведения и частного функции. Докажем, например, формулу (2.12):

d(u×v) = (u×v)"Δx = (u×v" + u"×v)Δx = u×v"Δx + u"Δx×v = u×dv + v×du.

Рассмотрим дифференциал сложной функции: y = f(x), x = φ(t), т.е. y = f(φ(t)).

Тогда dy = y" t dt, но y" t = y" x ×x" t , поэтому dy =y" x x" t dt. Учитывая,

что x" t = dx, получаем dy = y" x dx =f "(x)dx.

Таким образом, дифференциал сложной функции y = f(x), где x =φ(t), имеет вид dy = f "(x)dx, такой же, как в том случае, когда x является независимой переменной. Это свойство называется инвариантностью формы дифференциал а.