1. удвоение ДНК

2. синтез рРНК

3. синтез крахмала из глюкозы

4. синтез белка в рибосомах

3. Генотип – это

1. набор генов в половых хромосомах

2. совокупность генов в одной хромосоме

3. совокупность генов в диплоидном наборе хромосом

4. набор генов в Х- хромосоме

4. У человека за гемофилию отвечает рецессивный аллель, сцепленный с полом. При браке женщины – носительницы аллеля гемофилии и здорового мужчины

1. вероятность рождения больных гемофилией мальчиков и девочек – 50%

2. 50% мальчиков будут больны, а все девочки – носительницы

3. 50% мальчиков будут больны, а 50% девочек – носительницы

4. 50% девочек будут больны, а все мальчики – носители

5. Наследование, сцепленное с полом – это наследование признаков, которые всегда

1. проявляются только у особей мужского пола

2. проявляются только у половозрелых организмов

3. определяются генами, находящимися в половых хромосомах

4. являются вторичными половыми признакам

У человека

1. 23 группы сцепления

2. 46 групп сцепления

3. одна группа сцепления

4. 92 группы сцепления

Носителями гена дальтонизма, у которых болезнь не проявляется, могут быть

1. только женщины

2. только мужчины

3. и женщины, и мужчины

4. только женщины с набором половых хромосом ХО

У зародыша человека

1. закладываются хорда, брюшная нервная цепочка и жаберные дуги

2. закладываются хорда, жаберные дуги и хвост

3. закладываются хорда и брюшная нервная цепочка

4. закладывается брюшная нервная цепочка и хвост

У плода человека кислород поступает в кровь через

1. жаберные щели

4. пуповинный канатик

Близнецовый метод исследования проводится путем

1. скрещивания

2. исследования родословной

3. наблюдений за объектами исследования

4. искусственного мутагенеза

8) Основы иммунологии

1. Антитела – это

1. клетки-фагоциты

2. молекулы белков

3. лимфоциты

4. клетки микроорганизмов, заражающих человека

При риске заражения столбняком (например, при загрязнении ран почвой) человеку вводят противостолбнячную сыворотку. Она содержит

1. белки-антитела

2. ослабленных бактерий-возбудителей столбняка

3. антибиотики

4. антигены бактерий столбняка

Материнское молоко обеспечивает иммунитет ребенка благодаря

1. макроэлементам

2. молочнокислым бактериям

3. микроэлементам

4. антителам

В лимфатические капилляры поступает

1. лимфа из лимфатических протоков

2. кровь из артерий



3. кровь из вен

4. межклеточная жидкость из тканей

Клетки-фагоциты присутствуют у человека

1. в большинстве тканей и органов тела

2. только в лимфатических сосудах и узлах

3. только в кровеносных сосудах

4. только в кровеносной и лимфатической системе

6. При каком их перечисленных процессов в организме человека синтезируется АТФ?

1. расщепление белков на аминокислоты

2. расщепление гликогена до глюкозы

3. расщепление жиров на глицерин и жирные кислоты

4. бескислородное окисление глюкозы (гликолиз)

7. По своей физиологической роли большинство витаминов – это

1. ферменты

2. активаторы (кофакторы) ферментов

3. важный источник энергии для организма

4. гормоны

Нарушение сумеречного зрения и сухость роговицы глаз может быть признаком недостатка витамина

Третичная структура РНК

Вторичная структура РНК

Молекула рибонуклеиновой кислоты построена из одной полинуклеотидной цепи. Отдельные участки цепи РНК образуют спирализованные петли - "шпильки", за счёт водородных связей между комплементарными азотистыми основаниями A-U и G-C. Участки цепи РНК в таких спиральных структурах антипараллельны, но не всегда полностью комплементарны, в них встречаются неспаренные нуклеотидные остатки или даже одноцепочечные петли, не вписьюающиеся в двойную спираль. Наличие спирализованных участков характерно для всех типов РНК.

Одноцепочечные РНК характеризуются компактной и упорядоченной третичной структурой, возникающей путём взаимодействия спирализованных элементов вторичной структуры. Так, возможно образование дополнительных водородных связей между нуклеотидными остатками, достаточно удалёнными друг от друга, или связей между ОН-группами остатков рибо-зы и основаниями. Третичная структура РНК стабилизирована ионами двухвалентных металлов, например ионами Mg 2+ , связывающимися не только с фосфатными группами, но и с основаниями.

При реакциях матричного синтеза образуются полимеры, строение которых полностью определяется строением матрицы. В основе реакций матричного синтеза лежит комплементарное взаимодействие между нуклеотидами.

Репликация (редупликация, удвоение ДНК)

Матрица – материнская цепочка ДНК
Продукт – новосинтезированная цепочка дочерней ДНК
Комплементарность между нуклеотидами материнской и дочерней цепочек ДНК

Двойная спираль ДНК раскручивается на две одинарных, затем фермент ДНК-полимераза достраивает каждую одинарную цепочку до двойной по принципу комплементарности.

Транскрипция (синтез РНК)

Матрица – кодирующая цепочка ДНК
Продукт – РНК
Комплементарность между нуклеотидами кДНК и РНК

В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

Трансляция (синтез белка)

Матрица – иРНК
Продукт – белок
Комплементарность между нуклеотидами кодонов иРНК и нуклеотидами антикодонов тРНК, приносящих аминокислоты

Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

7. Образование полипептидной цепи из последовательно доставляемых к мРНК тРНК с соответствующими аминокислотами происходит на рибосомах (рис. 3.9).

Рибосомы представляют собой нуклеопротеидные структуры, в которые входят три вида рРНК и более 50 специфических рибосомных белков. Рибосомы состоят из малой и большой субъединиц. Инициация синтеза полипептидной цепи начинается с присоединения малой субъединицы рибосомы к центру связывания на мРНК и всегда происходит при участии метиониновой тРНК особого типа, которая связывается с метиониновым кодоном АУГ и прикрепляется к так называемому Р-участку большой субъединицы рибосомы .



Рис. 3.9. Синтез полипептиднои цепи на рибосоме Показаны также транскрипция мРНК и ее перенос через ядерную мембрану в цитоплазму клетки.

Следующий кодон мРНК , расположенный вслед за АУГ-инициирующим кодоном, попадает в А-участок большой субъединицы рибосомы , где он «подставляется» для взаимодействия с амино-ацил-тРНК, имеющей соответствующий антикодон. После того как подходящая тРНК связалась с кодоном мРНК, находящимся в А-участке, происходит образование пептидной связи с помощью пептидилтрансферазы, входящей в состав большой субъединицы рибосомы, и аминоацил-тРНК превращается в пептидил-тРНК. Это заставляет рибосому продвинуться на один кодон, переместить образованную пептидил-тРНК в Р-участок и освободить А-участок, который занимает следующий по порядку кодон мРНК, готовый к соединению с аминоацил-тРНК, имеющей подходящий антикодон (рис. 3.10).

Происходит рост полипептидной цепи за счет многократного повторения описанного процесса. Рибосома движется вдоль мРНК , высвобождая ее инициирующий участок. На инициирующем участке происходит сборка следующего активного рибосомного комплекса и начинается синтез новой полипептидной цепи. Таким образом к одной молекуле мРНК может присоединиться несколько активных рибосом с образованием полисомы. Синтез полипептида продолжается до тех пор, пока в А-участке не окажется один из трех стоп-кодонов. Стоп-кодон распознается специализированным белком терминации, который прекращает синтез и способствует отделению полипептидной цепи от рибосомы и от мРНК .

Рис. 3.10. Синтез полипептидной цепи на рибосоме . Детализованная схема присоединения к растущей полипептидной цепи новой аминокислоты и участие в этом процессе участков А и Р большой субъединицы рибосомы.

Рибосома и мРНК также разъединяются и готовы начать новый синтез полипептидной цепи (см. рис. 3.9). Остается только напомнить, что белки - это основные молекулы, обеспечивающие жизнедеятельность клетки и организма. Они и ферменты, обеспечивающие весь сложнейший обмен веществ, и структурные белки, составляющие скелет клетки и образующие межклеточное вещество, и белки-транспортеры многих веществ в организме, как, например, гемоглобин, транспортирующий кислород и белки-каналы, обеспечивающие проникновение в клетку и удаление из нее разнообразных соединений.

а) На рибосомах гранулярной ЭПС синтезируются такие белки, которые затем

Либо выводятся из клетки (экспортные белки),
либо входят в состав определённых мембранных структур (собственно мембран, лизосом и т.д.).

б) При этом синтезируемая на рибосоме пептидная цепь проникает своим лидерным концом через мембрану в полость ЭПС, где затем оказывается весь белок и формируется его третичная структура.

2. Здесь же (в просвете цистерн ЭПС) начинается модификация белков - связывание их с углеводами или иными компонентами.

8. Механизмы клеточного деления.

Олимпиада по биологии. Школьный этап. 2016-2017 учебный год.

10-11 класс

1. Неправильным соотнесением клетки и ткани является

А) корневой волосок – покровная ткань

Б) клетка полисадной паренхимы – основная ткань

В) замыкающая клетка – покровная ткань

Г) клетка-спутница – выделительная ткань

2. Для мероприятия, которое состоится через три дня необходимы спелые груши. Однако те груши, что были куплены для этой цели, еще не созрели. Процесс созревания можно ускорить, положив их

А) в тёмное место

Б) в холодильник

В) на подоконник

Г) в пакет из плотной бумаги вместе со спелыми яблоками

3. Мохообразным удалось выжить на суше, так как

А) они были первыми растениями, у которых развились устьица

Б) им не требуется влажная среда для репродуктивного цикла

В) они растут, невысоко поднимаясь над почвой, в относительно влажных регионах

Г) спорофит стал независимым от гаметофита

4. Щеки млекопитающих образовались как

А) приспособление для собирания большого количества пищи

Б) результат особенностей строения черепа, и в частности, челюстей

В) приспособление для сосания

Г) приспособление для дыхания

5. Сердце крокодила по своему строению

А) трехкамерное с неполной перегородкой в желудочке

Б) трехкамерное

В) четырехкамерное

Г) четырехкамерное с отверстием в перегородке между желудочками

6. В свертывании крови участвует фибриноген, являющийся белком

А) плазмы крови

Б) цитоплазмы лейкоцитов

В) входящим в состав тромбоцитов

Г) образующимся при разрушении эритроцитов

7. Абиотические факторы включает в себя такая экологическая единица как

А) биоценоз

Б) экосистема

В) популяция

8. Редукционное деление (мейоз) происходит при образовании

А) споры бактерий

Б) зооспоры улотрикса

В) споры маршанции

Г) зооспоры фитофторы

9. Из перечисленных биополимеров разветвленную структуру имеют

Г) полисахариды

10. Фенилкетонурия является генетическим заболеванием, вызванным рецессивной мутацией. Вероятность рождения больного ребенка, если оба родителя гетерозиготные по этому признаку, составляет

11. Сходство в строении органов зрения у головоногих моллюсков и позвоночных животных объясняется

А) конвергенцией

Б) параллелизмом

В) адаптацией

Г) случайным совпадением

12. Свободноплавающая личинка асцидии имеет хорду и нервную трубку. У взрослой асцидии, ведущей сидячий образ жизни, они исчезают. Это является примером

А) адаптации

Б) дегенерации

В) ценогенеза

13. Водопроводящими элементами сосны являются

А) кольчатые и спиралевидные сосуды

Б) только кольчатые сосуды

В) трахеиды

Г) спиралевидные и пористые сосуды

14. Соплодие характерно для

Б) ананаса

В) банана

15. В хлоропластах растительных клеток светособирающие комплексы расположены

А) на наружной мембране

Б) на внутренней мембране

В) на мембране тилакоидов

Г) в строме

Часть 2.

Установите соответствие (6 баллов).

2.1. Установите соответствие между признаком серой крысы и критерием вида, для которого он характерен.

2.2. Установите соответствие между характеристикой регуляции функций и её способом.

Установите правильную последовательность (6 баллов).

2.3. Установите правильную последовательность этапов географического видообразования.

1) возникновение территориальной изоляции между популяциями одного вида

2) расширение или расчленение ареала вида

3) появление мутаций в изолированных популяциях

4) сохранение естественным отбором особей с признаками, полезными в конкретных условиях среды

5) утрата особями разных популяций способности скрещиваться

2.4. Установите, в какой последовательности при митотическом делении клетки происходят указанные процессы.

1) хромосомы располагаются по экватору клетки

2) хроматиды расходятся к полюсам клетки

3) образуются две дочерние клетки

4) хромосомы спирализуются, каждая состоит из двух хроматид

5) хромосомы деспирализуются

2.5. Вам предлагаются тестовые задания в виде суждений, с каждым из которых следует или согласиться или отклонить. В матрице ответов укажите вариант ответа «да» или «нет»: (10 баллов).

1. Цветки паслёновых собраны в соцветие зонтик.

2. У ресничных червей нет анального отверстия.

3. Пероксисома – обязательный органоид эукариотической клетки.

4. Пептидная связь не является макроэргической.

5. В клетках печени добавление глюкагона вызывает распад гликогена.

6. Абиотические факторы не оказывают влияния на конкурентные отношения двух родственных видов.

7. Функции газообмена у листа возможны благодаря чечевичкам и гидатодам.

8. Отделом желудка жвачных, соответствующим однокамерному желудку млекопитающих, является рубец.

9. Длину пищевых цепей ограничивает потеря энергии.

10. Чем меньше диаметр кровеносных сосудов в организме, тем больше в них линейная скорость кровотока.

Часть 3.

3.1. Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, исправьте их (6 баллов).

1. К реакциям матричного синтеза относят образование крахмала, синтез иРНК, сборку белков в рибосомах. 2. Матричный синтез напоминает отливку монет на матрице: новые молекулы синтезируются в точном соответствии с «планом», заложенном в структуре уже существующих молекул. 3. Роль матрицы в клетке играют молекулы хлорофилла, нуклеиновых кислот (ДНК и РНК). 4. На матрицах фиксируются мономеры, затем они соединяются в полимерные цепи. 5. Готовые полимеры сходят с матриц. 6. Старые матрицы сразу же разрушаются, после чего образуются новые.

У человека имеется четыре фенотипа по группам крови: I(0), II(А), III(В), IV(АВ). Ген, определяющий группу крови, имеет три аллеля: IА, IВ, i0 ; причем аллель i0 является рецессивной по отношению к аллелям IА и IВ. Родители имеют II (гетерозигота) и III (гомозигота) группы крови. Определите генотипы групп крови родителей. Укажите возможные генотипы и фенотипы (номер) группы крови детей. Составьте схему решения задачи. Определите вероятность наследования у детей II группы крови.

Ответы 10-11 класс

Часть 1. Выберите один верный ответ. (15 баллов)

2.2. максимально – 3 б, одна ошибка – 2 б, две ошибки – 1б, три и более ошибки – 0 баллов

2.4. максимально – 3 б, одна ошибка – 2 б, две ошибки – 1б, три и более ошибки – 0 баллов

Часть 3.

3.1. Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, исправьте их (3б за правильное обнаружение предложений с ошибками и 3 б за исправление ошибок).

1. - к реакциям матричного синтеза НЕ относят образование крахмала, матрица для него не нужна;

3. - молекулы хлорофилла не способны к выполнению роли матрицы, они не обладают свойством комплиментарности;

6. – матрицы используются многократно.

3.2. Решите задачу (3 балла).

Схема решения задачи включает:

1) родители имеют группы крови: II группа – IАi0 (гаметы IА, i0), III группа - IВ IВ (гаметы IВ);

2) возможные фенотипы и генотипы групп крови детей: IV группа (IАIВ) и III группа (IВi0);

3) вероятность наследования II группы крови – 0%.

Бланк ответа

Школьный этап Всероссийской олимпиады по биологии

Код участника_____________

Часть 1. Выберите один верный ответ. (15 баллов)

Часть 2.

Часть 3.

3.1._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3.2. Решение задачи

Матричный синтез представляет собой образование биополимера, последовательность звеньев в котором определяется первичной структурой другой молекулы. Последняя как бы выполняет роль матрицы, "диктующей" нужный порядок сборки цепи. В живых клетках известны три биосинтетических процесса, основанных на этом механизме.

Какие молекулы синтезируются на основе матрицы

К реакциям матричного синтеза относят:

  • репликацию - удвоение генетического материала;
  • транскрипцию - синтез рибонуклеиновых кислот;
  • трансляцию - производство белковых молекул.

Репликация представляет собой превращение одной молекулы ДНК в две идентичные друг другу, что имеет огромное значение для жизненного цикла клеток (митоз, мейоз, удвоение плазмид, деление бактериальных клеток и т. д.). Очень многие процессы основаны на "размножении" генетического материала, а матричный синтез позволяет воссоздать точную копию любой молекулы ДНК.

Транскрипция и трансляция представляют собой две стадии реализации генома. При этом наследственная информация, записанная в ДНК, преобразуется в определенный белковый набор, от которого зависит фенотип организма. Данный механизм именуется путем "ДНК-РНК-белок" и составляет одну из центральных догм молекулярной биологии.

Реализация этого принципа достигается при помощи матричного синтеза, который сопрягает процесс образования новой молекулы с "исходным образцом". Основой такого сопряжения является фундаментальный принцип комплементарности.

Основные аспекты синтеза молекул на основе матрицы

Информация о структуре синтезируемой молекулы содержится в последовательности звеньев самой матрицы, к каждому из которых подбирается соответствующий элемент "дочерней" цепи. Если химическая природа синтезируемой и матричной молекул совпадают (ДНК-ДНК или ДНК-РНК), то сопряжение происходит напрямую, так как каждый нуклеотид имеет пару, с которой может связаться.

Для синтеза белка требуется посредник, одна часть которого взаимодействует с матрицей по механизму нуклеотидного соответствия, а другая присоединяет белковые звенья. Таким образом, принцип комплементарности нуклеотидов работает и в этом случае, хоть и не связывает напрямую звенья матричной и синтезируемой цепей.

Этапы синтеза

Все процессы матричного синтеза поделены на три этапа:

  • инициация (начало);
  • элонгация;
  • терминация (окончание).

Инициация представляет собой подготовку к синтезу, характер которой зависит от вида процесса. Главной целью этой стадии является приведение системы фермент-субстрат в рабочее состояние.

Во время элонгации непосредственно осуществляется наращивание синтезируемой цепи, при котором между подобранными согласно матричной последовательности звеньями замыкается ковалентная связь (пептидная или фосфодиэфирная). Терминация приводит к остановке синтеза и освобождению продукта.

Роль комплементарности в механизме матричного синтеза

Принцип комплементарности основан на выборочном соответствии азотистых оснований нуклеотидов друг другу. Так, аденину в качестве пары подойдут только тимин или урацил (двойная связь), а гуанину - цитозин (3 тройная связь).

В процессе синтеза нуклеиновых кислот со звеньями одноцепочечной матрицы связываются комплементарные нуклеотиды, выстраиваясь в определенную последовательность. Таким образом, на основании участка ДНК ААЦГТТ при репликации может получиться только ТТГЦАА, а при транскрипции - УУГЦАА.

Как уже было отмечено выше, белковый синтез происходит с участием посредника. Эту роль выполняет транспортная РНК, которая имеет участок для присоединения аминокислоты и нуклеотидный триплет (антикодон), предназначенный для связывания с матричной РНК.

В этом случае комплементарный подбор происходит не по одному, а по три нуклеотида. Так как каждая аминокислота специфична только к одному виду тРНК, а антикодон соответствует конкретному триплету в РНК, синтезируется белок с определенной последовательностью звеньев, которая заложена в геноме.

Как происходит репликация

Матричный синтез ДНК происходит с участием множества ферментов и вспомогательных белков. Ключевыми компонентами являются:

  • ДНК-хеликаза - расплетает двойную спираль, разрушает связи между цепями молекулы;
  • ДНК-лигаза - "зашивает" разрывы между фрагментами Оказаки;
  • праймаза - синтезирует затравку, необходимую для работы ДНК-синтезирующего фрагмента;
  • SSB-белки - стабилизируют одноцепочечные фрагменты расплетенной ДНК;
  • ДНК-полимеразы - синтезируют дочернюю матричную цепь.

Хеликаза, праймаза и SSB-белки подготавливают почву для синтеза. В результате каждая из цепей исходной молекулы становится матрицей. Синтез осуществляется с огромной скоростью (от 50 нуклеотидов в секунду).

Работа ДНК-полимеразы происходит в направлении от 5`к 3`- концу. Из-за этого на одной из цепей (лидирующей) синтез происходит по ходу расплетания и непрерывно, а на другой (отстающей) - в обратном направлении и отдельными фрагментами, названными "Оказаки".

Y-образная структура, образованная в месте расплетания ДНК, называется репликационной вилкой.

Механизм транскрипции

Ключевым ферментом транскрипции является РНК-полимераза. Последняя бывает нескольких видов и отличается по строению у прокариот и эукариот. Однако механизм ее действия везде одинаков и заключается в наращивании цепи комплементарно подбираемых рибонуклеотидов с замыканием фосфодиэфирной связи между ними.

Матричной молекулой для этого процесса служит ДНК. На ее основе могут создаваться разные типы РНК, а не только информационные, которые используются в белковом синтезе.

Участок матрицы, с которого "списывается" последовательность РНК, называется транскриптоном. В его составе имеется промотор (место для присоединения РНК-полимеразы) и терминатор, на котором синтез останавливается.

Трансляция

Матричный синтез белка и у прокариот, и у эукариот осуществляется в специализированных органоидах - рибосомах. Последние состоят из двух субъединиц, одна из которых (малая) служит для связывания тРНК и матричной РНК, а другая (большая) принимает участие в образовании пептидных связей.

Началу трансляции предшествует активация аминокислот, т. е. присоединение их к соответствующим транспортным РНК с образованием макроэргической связи, за счет энергии которых впоследствии осуществляются реакции транспептидирования (присоединения к цепи очередного звена).

В процессе синтеза также принимают участие белковые факторы и ГТФ. Энергия последнего необходима для продвижения рибосомы по матричной цепи РНК.

В 1869 г. швейцарский биохимик Иоганн Фридрих Мишер впервые обнаружил, выделил из ядер клеток и описал ДНК. Но только в 1944 г. О. Эйвери, С. Маклеодом и М. Макарти была доказана генетическая роль ДНК, т. е. было достоверно установлено, что передача наследственной информации связана с дезоксирибонуклеиновой кислотой. Это открытие явилось мощным фактором, стимулирующим изучение наследственности на молекулярном уровне. С тех пор началось бурное развитие молекулярной биологии и генетики.

Нуклеиновые кислоты (от лат. nucleus - ядро) - это природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах. В их состав входят: углерод (С), водород (Н), кислород (О), фосфор (Р). Нуклеиновые кислоты представляют собой нерегулярные биополимеры, состоящие из мономеров - нуклеотидов. В состав каждого нуклеотида входят:

· азотистое основание,

· простой углерод - 5-углеродный сахар пентоза (рибоза или дезоксирибоза),

· остаток фосфорной кислоты.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота - ДНК, содержащая дезоксирибозу, и рибонуклеиновая кислота - РНК, содержащая рибозу.

Рассмотрим каждый тип нуклеиновых кислот.

ДНК содержится почти исключительно в ядре клетки, иногда в органоидах: митохондриях, пластидах. ДНК - это полимерное соединение с постоянным (стабильным) содержанием в клетке.

Строение ДНК. По своей структуре молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали (рис. 1).

Создана модель структуры ДНК в 1953 г. Д. Уотсоном и Ф. Криком, за что оба были удостоены Нобелевской премии. Ширина двойной спирали всего около 0,002 мкм (20 ангстрем), зато длина ее исключительно велика - до нескольких десятков и даже сотен микрометров (для сравнения: дли­на самой крупной белковой молекулы в развернутом виде не превышает 0,1 мкм).

Нуклеотиды расположены друг от друга на расстоянии - 0,34 нм, а на один виток спирали приходится 10 нуклеотидов. Молекулярная масса ДНК велика: она составляет десятки, и даже сотни миллионов. Например, молекулярная масса r ) самой крупной хромосомы дрозофилы равна 7,9 10 10 .

Основной структурной единицей одной цепи является нуклеотид, состоящий из азотистого основания, дезоксирибозы и фосфатной группы. ДНК содержит 4 вида азотистых оснований:

· пуриновые - аденин (А) и гуанин (Г),

· пиримидиновые - цитозин (Ц) и тимин (Т).

Суммарное количество пуриновых оснований равно сумме пиримидиновых.

Нуклеотиды ДНК тоже будут 4 видов соответственно: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т), Все нуклеотиды ДНК соединены в полинуклеотидную цепь за счет остатков фосфорных кислот, расположенных между дезоксирибозами. В полинуклеотидной цепи может быть до 300 000 и более нуклеотидов.

Таким образом, каждая цепь ДНК представляет полинуклеотид, в котором в строго определенном порядке расположены нуклеотиды. Азотистые основания подходят друг к другу настолько близко, что между ними возникают водородные связи. Четко проявляется в их расположении важная закономерность: аденин (А) одной цепи связан с тимином (Т) другой цепи двумя водородными связями, а гуанин (Г) одной цепи связан тремя водородными связями с цитозином (Ц) другой цепи, в результате чего формируются пары А-Т и Г-Ц. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, т. е. пространственное и химическое соответствие между парами нуклеотидов (см. рис. 2).

Последовательность соединения нуклеотидов одной цепи противоположна (комплементарна) таковой в другой, т. е. цепи, составляющие одну молекулу ДНК, разнонаправлены, или антипараллельны. Цепи закручиваются вокруг друг друга и образуют двойную спираль. Большое число водородных связей обеспечивает прочное соединение нитей ДНК и придает молекуле устойчивость, сохраняя в то же время ее подвижность - под влиянием ферментов она легко раскручивается (деспирализуется).

Репликация ДНК (редупликация ДНК) - процесс самовоспроизведения (самоудвоения) макромолекул нуклеиновых кислот, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению.

Репликация ДНК происходит в период интерфазы перед клеточным делением. Материнская молекула ДНК (количество цепей ДНК в клетке равно 2n ) под действием ферментов раскручивается с одного конца, а затем из свободных нуклеотидов по принципу комплементарности на обеих цепях достраиваются дочерние полинуклеотидные цепи. В результате матричных реакций возникают две одинаковые по нуклеотидному составу дочерние молекулы ДНК, в которых одна из цепей старая материнская, а другая - новая, вновь синтезированная (количество ДНК в клетке становится равным 4n = 2 X 2n ).

Функции ДНК.

1. Хранение наследственной информации о структуре белков или отдельных ее органоидов. Наименьшей единицей генетической информации после нуклеотида являются три последовательно расположенных нуклеотида - триплет. Последовательность триплетов в полинуклеотидной цепи определяет последовательность расположения аминокислот одной белковой молекулы (первичную структуру белка) и представляет собой ген. Вместе с белками ДНК входят в состав хроматина, вещества, из которого состоят хромосомы ядра клетки.

2. Передача наследственной информации в результате репликаций при клеточном делении от материнской клетки - дочерним.

3. Реализация наследственной информации (хранящейся в виде генов) в результате матричных реакций биосинтеза через выработку специфических для клетки и организма белков. При этом на одной из ее цепей по принципу комплементарности из нуклеотидов окружающей молекулу среды синтезируются молекулы информационной РНК.

РНК - соединение с колеблющимся (лабильным) содержанием в клетке.

Строение РНК. По своей структуре молекулы РНК менее крупные, чем молекулы ДНК с молекулярной массой от 20-30 тыс. (тРНК) до 1 млн (рРНК), РНК - одноцепочечная молекула, построенная так же, как и одна из цепей ДНК. Мономеры РНК - нуклеотиды состоят из азотистого основания, рибозы (пентозы) и фосфатной группы. РНК содержит 4 азотистых основания:

· пуриновые - аденин (А);

· пиримидиновые - гуанин (Г), цитозин (Ц), урацил (У).

В РНК тимин заменен на близкий к нему по строению урацил (нуклеотид - уридиловый. Нуклеотиды соединены в полинуклеотидную цепь так же, как и в ДНК, за счет остатков фосфорных кислот, расположенных между рибозами.

По месту нахождения в клетке среди РНК выделяют: ядерные, цитоплазматические, митохондриальные, пластидные.

По выполняемым функциям среди РНК выделяют: транспортные, информационные и рибосомные.


Транспортные РНК (тРНК)
- одноцепочечные, но имеющие трехмерную структуру «клеверный лист», созданную внутримолекулярными водородными связями (рис. 3). Молекулы тРНК - самые короткие. Состоят из 80-100 нуклеотидов. На их долю приходится около 10% от общего содержания РНК в клетке. Они переносят активированные аминокислоты (каждая тРНК свою аминокислоту, всего известно 61 тРНК) к рибосомам при биосинтезе белка в клетке».

Информационная (матричная) РНК (иРНК, мРНК) - одноцепочечная молекула, которая образуется в результате транскрипции на молекуле ДНК (копирует гены) в ядре и несет информацию о первичной структуре одной белковой молекулы к месту синтеза белка в рибосомах. Молекула иРНК может состоять из 300-3000 нуклеотидов. На долю иРНК приходится 0,5-1% от общего содержания РНК в клетке.

Рибосомные РНК (рРНК) - самые крупные одноцепочечные молекулы, образующие вместе с белками сложные комплексы, поддерживающие структуру рибосом, на которых идет синтез белка.

На долю рРНК приходится около 90% от общего содержания РНК в клетке.

Вся генетическая информация организма (структура его белков), заключена в его ДНК, состоящей из нуклеотидов, объединенных в гены. Напомним, что ген - единица наследственной информации (участок молекулы ДНК), содержащая информацию о структуре одного белка - фермента. Гены, обусловливающие свойства организмов, называют структурными. А гены, которые регулируют проявление структурных генов, называют регуляторными. Проявление (экспрессия) гена (реализация наследственной информации) происходит следующим образом:


Для осуществления экспрессии гена существует генетический код - строго упорядоченная зависимость между основаниями нуклеотидов и аминокислотами (табл. 12).

Таблица 12 Генетический код

Основные свойства генетического кода.

Триплетность - кодирование аминокислот осуществляется тройками (триплетами) оснований нуклеотидов. Количество кодирующих триплетов равно 64 (4 вида нуклеотидов: А, Т, Ц, Г, 4 3 = 64).

Однозначность - каждый триплет кодирует только одну аминокислоту.

Вырожденность - число кодирующих триплетов превышает число аминокислот (64 > 20). Существуют аминокислоты, кодируемые более чем одним триплетом (в составе белков такие аминокислоты встречаются чаще). Есть три триплета, не кодирующие ни одну аминокислоту (УАА, УАГ, УГА). Они называются «нонсенс-кодонами» и играют роль «стоп-сигналов», означающих конец записи гена (общее количество кодирующих кодонов - 61).

Неперекрываемость (непрерывность) - считывание триплетов с ДНК при синтезе иРНК идет строго по трем последовательным нуклеотидам, без перекрывания соседних кодонов. Внутри гена нет «знаков препинания».

Универсальность - одни и те же триплеты кодируют одни и те же аминокислоты у всех организмов, живущих на Земле.

Общепринятые сокращения названий аминокислот:

ФЕН - фенилаланин; ГИС - гистидин;

ЛЕЙ - лейцин; ГЛН - глутамин;

ИЛЕ - изолейцин; ГЛУ - глутаминовая кислота;

МЕТ - метионин; ЛИЗ - лизин;

ВАЛ - валин; АСН - аспарагин;

СЕР - серии; АСП - аспарагиновая кислота;

ПРО - пролин; ЦИС - цистеин;

ТРЕ - треонин; ТРИ - триптофан;

АЛА - аланин; АРГ - аргинин;

ТИР - тирозин; ГЛИ - глицин.

Таким образом, ДНК-носитель всей генетической информации в клетке - непосредственного участия в син­тезе белка (т. е. реализации этой наследственной информации) не принимают. В клетках животных и растений Молекулы ДНК отделены ядерной мембраной от цито плазмы, где происходит синтез белков. К рибосомам - местам сборки белков - высылается из ядра посредник, который несет скопированную информацию и способен пройти через поры ядерной мембраны. Таким посредником является информационная РНК, которая участвует в матричных реакциях.

Матричные реакции - это реакции синтеза новых соединений на основе «старых» макромолекул, выполняющих роль матрицы, т. е. формы, образца для копирования новых молекул. Матричными реакциями реализации наследственной информации, в которых принимают участие ДНК и РНК являются:

1. Репликация ДНК - удвоение молекул ДНК, благодаря которым передача генетической информации осуществляется от поколения к поколению. Матрицей является материнская ДНК, а новыми, образованными по этой матрице - дочерние, вновь синтезированные 2 молекулы ДНК (рис. 4).

2. Транскрипция (лат. transcription - переписывание) - это синтез молекул РНК по принципу комплементарности на матрице одной из цепей ДНК. Происходит в ядре под действием фермента ДНК-зависимой - РНК-полимеразы. Информационная РНК - это од нонитевая молекула, и кодирование гена идет с одной нити двунитевой молекулы ДНК. Если в транскрибируемой нити ДНК стоит нуклеотид Г, то ДНК-полимераза включает Ц в состав иРНК, если стоит Т, то включает А в состав иРНК, если стоит Т, включает У (в состав РНК не входит тимин Т; рис. 5). Язык триплетов ДНК переводится на язык кодонов иРНК (триплеты в иРНК называются кодонами).

В результате транскрипции разных генов синтезируются все виды РНК. Затем иРНК, тРНК, рPHK через поры в ядерной оболочке выходят в цитоплазму клетки для выполнения своих функций.

3. Трансляция (лат. translatio - передача, перевод) - это синтез полипептидных цепей белков на матрице зрелой иРНК, осуществляемый рибосомами. В этом процессе выделяют несколько этапов:

Этап первый - инициация (начало синтеза - цепи). В цитоплазме на один из концов иРНК (именно на тот, с которого начинался синтез молекулы в ядре) вступает рибосома и начинает синтез полипептида. Молекула тРНК, транспортирующая аминокислоту метионин (тРНК мет), соединяется с рибосомой и прикрепляется к началу цепи иРНК (всегда кодом АУГ). Рядом с первой тРНК (не имеющей никакого отношения к синтезирующему белку) присоединяется вторая тРНК с аминокислотой. Если антикодон тРНК, то между аминокислотами возникает пептидная связь, которую образует определенный фермент. После этого тРНК покидает рибосому (уходит в цитоплазму за новой аминокислотой), а иРНК перемещается на один кодон.

Второй этап - элонгация (удлинения цепи). Рибосома перемещается по молекуле иРНК не плавно, а прерывисто, триплет за триплетом. Третья тРНК с аминокислотой связывается своим антикодоном с кодоном иРНК. При установлении комплементарности связи рибосома делает еще шаг на один «кодон», а специфический фермент «сшивает» пептидной связью вторую и третью аминокислоту - образуется пептидная цепь. Аминокислоты в растущей полипептидной цепи соединяются в той последовательности, в которой расположены шифрующие их кодоны иРНК (рис. 6).

Третий этап - терминация (окончание синтеза) цепи. Происходит при трансляции рибосомой одного из трех «нонсенс-кодонов» (УАА, УАГ, УГА). Рибосомы соскакивают с иРНК, синтез белка завершен.

Таким образом, зная порядок расположения аминокислот в молекуле белка, можно определить порядок нуклеотидов (триплетов) в цепи иРНК, а по ней - порядок пар нуклеотидов в участке ДНК и наоборот, учитывая принцип комплементарности нуклеотидов.

Естественно, что в процессе матричных реакций вследствие каких-либо причин (естественных или искусственных) могут происходить изменения - мутации. Это генные мутации на молекулярном уровне - результат различных повреждений в молекулах ДНК. Генные мутации, происходящие на молекулярном уровне, затрагивают, как правило, один или несколько нуклеотидов. Все формы генных мутаций можно разделить на две большие группы.

Первая группа - сдвиг рамки считывания - представляет собой вставки или выпадения одной или нескольких пар нуклеотидов. В зависимости от места нарушения изменяется то или иное количество кодонов. Это наиболее тяжелые повреждения генов, так как в белок будут включены совершенно другие аминокислоты.

На такие делеции и вставки приходится 80% всех спонтанных генных мутаций.

Наиболее повреждающим действием обладают так называемые нонсенс-мутации, которые связаны с появлением кодонов-терминаторов, вызывающих останов ку синтеза белка. Это может привести к преждевременному окончанию синтеза белка, который быстро деградирует. Результат - гибель клетки или изменение характера индивидуального развития.

Мутации, связанные с заменой, выпадением или вставкой в кодирующей части гена фенотипически проявляются в виде замены аминокислот в белке. В зависимости от природы аминокислот и функциональной значимости нарушенного участка, наблюдается полная или частичная потеря функциональной активности белка. Как правило, это выражается в снижении жизнеспособности, изменении признаков организмов и т. д.

Вторая группа - это генные мутации с заменой пар оснований нуклеотидов. Существуют два типа замены оснований:

1. Транзиция - замена одного пуринового на пуриновое основание (А на Г или Г на А) или одного пиримидинового на пиримидиновое (Ц на Т или Т на, Ц).

2. Трансверсия - замена одного пуринового основания на пиримидиновое или наоборот (А на Ц, или Г на Т, или А на У).

Ярким примером трансверсии является серповидно-клеточная анемия, возникающая из-за наследственного нарушения структуры гемоглобина. У мутантного гена, кодирующего одну из цепей гемоглобина, нарушен всего один нуклеотид, и в иРНК происходит замена аденина на урацил (ГАА на ГУА).

В результате происходит изменение биохимического фенотипа, в цепи гемоглобина глутаминовая кислота заменена на валин. Эта замена изменяет поверхность гемоглобиновой молекулы: вместо двояковогнутого диска клетки эритроцитов становятся похожи на серпы и либо закупоривают мелкие сосуды, либо быстро удаляются из кровообращения, что быстро приводит к анемии.

Таким образом, значимость генных мутаций для жизнедеятельности организма неодинакова:

· некоторые «молчащие мутации» не оказывают влияния на структуру и функцию белка (например, замена нуклеотида, не приводящая к замене аминокислот);

· некоторые мутации ведут к полной потере функции белка и гибели клеток (например, нонсенс-мутации);

· другие мутации - при качественном изменении иРНК и аминокислот ведут к изменению признаков организма;

· и, наконец, некоторые мутации, изменяющие свойства белковых молекул, оказывают повреждающее действие на жизнедеятельность клеток - такие мутаций обусловливают тяжелое течение болезней (например, трансверсии).