Задана система N линейных алгебраических уравнений (СЛАУ) с неизвестными, коэффициентами при которых являются элементы матрицы , а свободными членами — числа

Первый индекс возле коэффициентов указывает в каком уравнении находится коэффициент, а второй — при котором из неизвестным он находится.

Если определитель матрицы не равен нулю

то система линейных алгебраических уравнений имеет единственное решение.

Решением системы линейных алгебраических уравнений называется такая упорядоченная совокупность чисел , которая при превращает каждое из уравнений системы в правильную равенство.

Если правые части всех уравнений системы равны нулю, то систему уравнений называют однородной. В случае, когда некоторые из них отличны от нуля – неоднородной

Если система линейных алгебраических уравнений имеет хоть одно решение, то она называется совместной, в противном случае — несовместимой.

Если решение системы единственное, то система линейных уравнений называется определенной. В случае, когда решение совместной системы не единственный, систему уравнений называют неопределенной.

Две системы линейных уравнений называются эквивалентными (или равносильными), если все решения одной системы является решениями второй, и наоборот. Эквивалентны (или равносильны) системы получаем с помощью эквивалентных преобразований.

Эквивалентные преобразования СЛАУ

1) перестановка местами уравнений;

2) умножение (или деление) уравнений на отличное от нуля число;

3) добавление к некоторого уравнения другого уравнения, умноженного на произвольное, отличное от нуля число.

Решение СЛАУ можно найти разными способами.

МЕТОД КРАМЕРА

ТЕОРЕМА КРАМЕРА. Если определитель системы линейных алгебраических уравнений с неизвестными отличен от нуля то эта система имеет единственное решение, которое находится по формулам Крамера:

— определители, образованные с заменой -го столбца, столбцом из свободных членов.

Если , а хотя бы один из отличен от нуля, то СЛАУ решений не имеет. Если же , то СЛАУ имеет множество решений. Рассмотрим примеры с применением метода Крамера.

—————————————————————

Дана система трех линейных уравнений с тремя неизвестными. Решить систему методом Крамера

Найдем определитель матрицы коэффициентов при неизвестных

Так как , то заданная система уравнений совместная и имеет единственное решение. Вычислим определители:

По формулам Крамера находим неизвестные

Итак единственное решение системы.

Дана система четырех линейных алгебраических уравнений. Решить систему методом Крамера.

Найдем определитель матрицы коэффициентов при неизвестных. Для этого разложим его по первой строке.

Найдем составляющие определителя:

Подставим найденные значения в определитель

Детерминант , следовательно система уравнений совместная и имеет единственное решение. Вычислим определители по формулам Крамера:

Разложим каждый из определителей по столбцу в котором есть больше нулей.

По формулам Крамера находим

Решение системы

Данный пример можно решить математическим калькулятором YukhymCALC . Фрагмент программы и результаты вычислений наведены ниже.


——————————

МЕТОД К Р А М Е Р А

|1,1,1,1|

D=|5,-3,2,-8|

|3,5,1,4|

|4,2,3,1|

D=1*(-3*1*1+2*4*2+(-8)*5*3-((-8)*1*2+2*5*1+(-3)*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))+1*(5*5*1+(-3)*4*4+(-8)*3*2-((-8)*5*4+(-3)*3*1+5*4*2))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(-3+16-120+16-10+36)-1*(5+32-72+32-6-60)+1*(25-48-48+160+9-40)-1*(75-12+12-40+27-10)=1*(-65)-1*(-69)+1*58-1*52=-65+69+58-52=10

|0,1,1,1|

Dx1=|1,-3,2,-8|

|0,5,1,4|

|3,2,3,1|

Dx1=-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(1*5*1+(-3)*4*3+(-8)*0*2-((-8)*5*3+(-3)*0*1+1*4*2))-1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))= -1*(1+24+0+24+0-12)+1*(5-36+0+120+0-8)-1*(15-9+0-30+0-2)= -1*(37)+1*81-1*(-26)=-37+81+26=70

|1,0,1,1|

Dx2=|5,1,2,-8|

|3,0,1,4|

|4,3,3,1|

Dx2=1*(1*1*1+2*4*3+(-8)*0*3-((-8)*1*3+2*0*1+1*4*3))+1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*1*1+2*4*4+(-8)*3*3-((-8)*1*4+2*3*1+5*4*3))= 1*(1+24+0+24+0-12)+1*(0+16-72+0-3-60)-1*(0+4+18+0-9-15)= 1*37+1*(-119)-1*(-2)=37-119+2=-80

|1,1,0,1|

Dx3=|5,-3,1,-8|

|3,5,0,4|

|4,2,3,1|

Dx3=1*(-3*0*1+1*4*2+(-8)*5*3-((-8)*0*2+1*5*1+(-3)*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))-1*(5*0*1+1*4*4+(-8)*3*3-((-8)*0*4+1*3*1+5*4*3))= 1*(0+8-120+0-5+36)-1*(0+16-72+0-3-60)-1*(75+0+6-20+27+0)= 1*(-81)-1*(-119)-1*88=-81+119-88=-50

|1,1,1,0|

Dx4=|5,-3,2,1|

|3,5,1,0|

|4,2,3,3|

Dx4=1*(-3*1*3+2*0*2+1*5*3-(1*1*2+2*5*3+(-3)*0*3))-1*(5*1*3+2*0*4+1*3*3-(1*1*4+2*3*3+5*0*3))+1*(5*5*3+(-3)*0*4+1*3*2-(1*5*4+(-3)*3*3+5*0*2))= 1*(-9+0+15-2-30+0)-1*(15+0+9-4-18+0)+1*(75+0+6-20+27+0)= 1*(-26)-1*(2)+1*88=-26-2+88=60

x1=Dx1/D=70,0000/10,0000=7,0000

x2=Dx2/D=-80,0000/10,0000=-8,0000

x3=Dx3/D=-50,0000/10,0000=-5,0000

x4=Dx4/D=60,0000/10,0000=6,0000

Посмотреть материалы:

{jcomments on}

В общем случае правило вычисления определителей-го порядка является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения элементов главной диагонали отнять произведение элементов побочной диагонали:

Пример

Задание. Вычислить определитель второго порядка

Решение.

Ответ.

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

Пример

Задание. Вычислить определитель методом треугольников.

Решение.

Ответ.

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»:

Пример

Задание. Вычислить определитель с помощью правила Саррюса.

Решение.

Ответ.

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения.

Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Пример

Задание. Разложив по первой строке, вычислить определитель

Решение.

Ответ.

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Пример

Задание. Вычислить определитель

Решение. Выполним следующие преобразования над строками определителя: из второй строки отнимем четыре первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель, равный данному.

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Ответ.

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Пример

Задание. Вычислить определитель , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним элементарные преобразования над строками определителя, сделав как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих, от второй — пять третьих и от четвертой — три третьих строки, получаем:

Полученный определитель разложим по элементам первого столбца:

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули, например, в первом столбце.

Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

Ответ.

Замечание

Последний и предпоследний определители можно было бы и не вычислять, а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его значение, согласно свойствам определителя, равно произведению элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю.

4.Свойства определителей. Определитель произведения матриц.

Все преобразования будет выполнять проще, если элемент будет равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя, приведет к тому, что он сменит знак на противоположный:

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если диагональный элемент будет равен , то вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на противоположный знак определителя):

Ответ.

Теорема Лапласа

Пример

Задание. Используя теорему Лапласа, вычислить определитель

Решение. Выберем в данном определителе пятого порядка две строки — вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

Ответ.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 31 Случай, когда главный определитель системы уравнений равен нулю, а хотя бы один из вспомогательных определителей отличен от нуля

Теорема. Если главный определитель системы уравнений

(1)

равен нулю, а хотя бы один из вспомогательных определителей отличен от нуля, то система несовместна.

Формально, доказательство этой теоремы нетрудно получить методом от противного. Предположим, что система уравнений (1) имеет решение (x 0 , y 0). Тогда как показано в предыдущем параграфе,

Δ x 0 = Δ x , Δ y 0 = Δ y (2)

Но по условию Δ = 0, а хотя бы один из определителей Δ x и Δ y отличен от нуля. Таким образом, равенства (2) одновременно выполняться не могут. Теорема доказана.

Однако представляется интересным более детально выяснить, почему система уравнений (1) в рассматриваемом случае несовместна.

означает, что коэффициенты при неизвестных в системе уравнений (1) пропорциональны. Пусть, например,

a 1 = ka 2 , b 1 = kb 2 .

означает, что коэффициенты при у и свободные члены уравнений системы (1) не пропорциональны. Поскольку b 1 = kb 2 , то c 1 =/= kc 2 .

Следовательно, система уравнений (1) может быть записана в следующем виде:

В этой системе коэффициенты при неизвестных соответственно пропорциональны, но коэффициенты при у (или при х ) и свободные члены не пропорциональны. Такая система, конечно, несовместна. Действительно, если бы она имела решение (x 0 , y 0), то выполнялись бы числовые равенства

k (a 2 x 0 + b 2 y 0) = c 1

a 2 x 0 + b 2 y 0 = c 2 .

Но одно из этих равенств противоречит другому: ведь c 1 =/= kc 2 .

Мы рассмотрели лишь случай, когда Δ x =/= 0. Аналогично может быть рассмотрен случай, когда Δ y =/= 0."

Доказанную теорему можно сформулировать и таким образом.

Если коэффициенты при неизвестных х и у в системе уравнений (1) пропорциональны, а коэффициенты при какой-нибудь из этих неизвестных и свободные члены не пропорциональны, то эта система уравнений несовместна.

Легко, например, убедиться в том, что каждая из данных систем будет несовместной:

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных.

Метод Крамера. Применение для систем линейных уравнений

Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

**
,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 4. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 7. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Нет времени вникать в решение? Можно заказать работу!

К началу страницы

Пройти тест по теме Системы линейных уравнений

Другое по теме «Системы уравнений и неравенств»

Калькулятор — решение систем уравнений онлайн

Программная реализация метода Крамера на C++

Решение систем линейных уравнений методом подстановки и методом сложения

Решение систем линейных уравнений методом Гаусса

Условие совместности системы линейных уравнений.

Теорема Кронекера-Капелли

Решение систем линейных уравнений матричным методом (обратной матрицы)

Системы линейных неравенств и выпуклые множества точек

Начало темы «Линейная алгебра»

Определители

В этой статье мы познакомимся с очень важным понятием из раздела линейной алгебры, которое называется определитель.

Сразу хотелось бы отметить важный момент: понятие определитель действительно только для квадратных матриц (число строк = числу столбцов), у других матриц его нет.

Определитель квадратной матрицы (детерминант) — численная характеристика матрицы.

Обозначение определителей: |A|, det A, A.

Определителем «n» порядка называют алгебраическую сумму всех возможных произведений его элементов, удовлетворяющих следующим требованиям:

1) Каждое такое произведение содержит ровно «n» элементов (т.е. определитель 2 порядка — 2 элемента).

2) В каждом произведении присутствует в качестве сомножителя представитель каждой строки и каждого столбца.

3) Любые два сомножителя в каждом произведении не могут принадлежать одной строке или столбцу.

Знак произведения определяется порядком чередования номеров столбцов, если в произведении элементы расставлены в порядке возрастания номеров строк.

Рассмотрим несколько примеров нахождения детерминанта матрицы:

У матрицы первого порядка (т.е.

Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.

имеется всего 1 элемент), детерминант равен этому элементу:

2. Рассмотрим квадратную матрицу второго порядка:

3. Рассмотрим квадратную матрицу третьего порядка (3×3):

4. А теперь рассмотрим примеры с действительными числами:

Правило треугольника.

Правило треугольника — это способ вычисления определителя матрицы, который предполагает его нахождение по следующей схеме:

Как вы уже поняли, метод был назван правилом треугольника в следствии того, что перемножаемые элементы матрицы образуют своеобразные треугольники.

Для того, чтобы понять это лучше, разберём такой пример:

А теперь рассмотрим вычисление определителя матрицы с действительными числами правилом треугольника:

Для закрепления пройденного материала, решим ещё один практический пример:

Свойства определителей:

1. Если элементы строки или столбца равны нулю, то и определитель равен нулю.

2. Определитель изменит знак, если поменять местами какие-либо 2 строки или столбца. Рассмотрим это на небольшом примере:

3. Определитель транспонированной матрицы равен определителю исходной матрицы.

4. Определитель равен нулю, если элементы одной строки равны соответствующим элементам другой строки (для столбцов также). Самый простой пример этого свойства определителей:

5. Определитель равен нулю, если его 2 строки пропорциональны (также и для столбцов). Пример (1 и 2 строка пропорциональны):

6. Общий сомножитель строки (столбца) может быть вынесен за знак определителя.

7) Определитель не изменится, если к элементам какой-либо строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одну и ту же величину. Рассмотрим это на примере:

  • Минор и алгебраическое дополнение
  • Сложение и вычитание матриц на примерах
  • Действия с матрицами
  • Понятие «матрицы»
  • Просмотры: 57258

    Определитель(он же determinant(детерминант)) находится только у квадратных матриц. Определитель есть ничто иное, как значение сочетающее в себе все элементы матрицы, сохранающееся при транспонировании строк или столбцов. Обозначаться он может как det(A), |А|, Δ(A), Δ, где А может быть как матрицей, так и буквой обозначающей ее. Найти его можно разными методами:

    Все выше предложенные методы будут разобраны на матрицах размера от трех и выше. Определитель двумерной матрицы находится с помощью трех элементарных математических операций, поэтому ни в один из методов нахождение определителя двумерной матрицы не попадет. Ну кроме как дополнение, но об этом потом.

    Найдем определитель матрицы размером 2х2:

    Для того, чтобы найти определитель нашей матрицы, требуется вычесть произведение чисел одной диагонали из другой, а именно , то есть

    Примеры нахождения определителя матриц второго порядка

    Разложение по строке/столбцу

    Выбирается любая строка или столбец в матрице. Каждое число в выбранной линии умножается на (-1) i+j где(i,j — номер строки,столбца того числа) и перемножается с определителем второго порядка, составленного из оставшихся элементов после вычеркивания i — строки и j — столбца. Разберем на матрице

      1. Выберем строку/столбец

    Например возьмем вторую строку.

    Примечание: Если явно не указано, с помощью какой линии найти определитель, выбирайте ту линию у которой есть ноль. Меньше будет вычислений.

      1. Составим выражение

    Не трудно определить, что знак у числа меняется через раз. Поэтому вместо единиц можно руководствоваться такой таблицей:

      1. Поменяем знак у наших чисел
      1. Найдем определители у наших матриц
      1. Считаем все это

    Решение можно написать так:

    Примеры нахождения определителя разложением по строке/столбцу:

    Метод приведения к треугольному виду(с помощью элементарных преобразований)

    Определитель находится с помощью приведения матрицы к треугольному(ступенчатому) виду и перемножению элементов на главной диагонали

    Треугольной матрицей называется матрица, элементы которой по одну сторону диагонали равны нулю.

    При построении матрицы следует помнить три простых правила:

    1. Каждый раз при перестановке строк между собой определитель меняет знак на противоположный.
    2. При умножении/делении одной строки на не нулевое число, её следует разделить(если умножали)/умножить(если разделяли) на него же или же произвести это действие с полученным определителем.
    3. При прибавлении одной строки умноженной на число к другой строке, определитель не изменяется(умножаемая строка принимает своё исходное значение).

    Попытаемся получить нули в первом столбце, потом во втором.

    Взглянем на нашу матрицу:

    Та-а-ак. Чтобы вычисления были поприятнее, хотелось бы иметь самое близкое число сверху. Можно и оставить, но не надо. Окей, у нас во второй строке двойка, а на первой четыре.

    Поменяем же эти две строки местами.

    Поменяли строки местами, теперь мы должны либо поменять у одной строки знак, либо в конце поменять знак у определителя.

    Определители. Вычисление определителей (стр. 2)

    Сделаем это потом.

    Теперь, чтобы получить ноль в первой строке — умножим первую строку на 2.

    Отнимем 1-ю строку из второй.

    Согласно нашему 3-му правилу возващаем исходную строку в начальное положение.

    Теперь сделаем ноль в 3-ей строке. Можем домножить 1-ую строку на 1.5 и отнять от третьей, но работа с дробями приносит мало удовольствия. Поэтому найдем число, к которому можно привести обе строки — это 6.

    Умножим 3-ю строку на 2.

    Теперь умножим 1-ю строку на 3 и отнимем из 3-ей.

    Возвратим нашу 1-ю строку.

    Не забываем, что умножали 3-ю строку на 2, так что потом разделим определитель на 2.

    Один столбец есть. Теперь для того чтобы получить нули во втором — забудем про 1-ю строку — работаем со 2-й строкой. Домножим вторую строку на -3и прибавим к третьей.

    Не забываем вернуть вторую строку.

    Вот мы и построили треугольнаую матрицу. Что нам осталось? А осталось перемножить числа на главной диагонали, чем и займемся.

    Ну и осталось вспомнить, что мы должны разделить наш определитель на 2 и поменять знак.

    Правило Саррюса(Правило треугольников)

    Правило Саррюса применимо только к квадратным матрицам третьего порядка.

    Определитель вычисляется путем добавления первых двух столбцов справа от матрицы, перемножением элементов диагоналей матрицы и их сложением, и вычитанием суммы противоположных диагоналей. Из оранжевых диагоналей вычитаем фиолетовые.

    У правила треугольников то же, только картинка другая.

    Теорема Лапласа см. Разложение по строке/столбцу

    Cтраница 1


    Главный определитель составляется так, чтобы в первом столбце находились коэффициенты при том параметре, который откладывается по горизонтальной оси. В данном случае принято, что klK откладывается по вертикальной оси, a & 2it - по горизонтальной.  

    Главный определитель равен нулю, а хотя бы один вспомогательный определитель не равен нулю.  

    Главный определитель - Гурвица составляется следующим образом.  

    Граф / С4 - х и его остовы.  

    Главный определитель матрицы Р (или Q) имеет порядок т, а выражение соответствующие главные определители означает, что столбцы матрицы Р, входящие в рассматриваемый определитель, имеют такие же номера и такой же порядок, как строки матрицы Q, входящие в другой определитель.  

    Главный определитель D (p), называемый характеристическим, не зависит ни от искомой переменной, ни от места приложения возмущающей силы.  

    Составляем главный определитель А.  

    Составляем главный определитель системы и приравниваем его нулю. Об устойчивости судим по характеру корней. Степень характеристического уравнения определяется числом энергоемких элементов, независимо накапливающих энергию, с учетом полюсов у каждого из имеющихся в схеме частотно-зависимых управляемых источников. В некоторых случаях необходимо при исследовании устойчивости учитывать не только первый доминантный полюс ОУ или транзистора, но и остальные полюса.  

    Поскольку главный определитель системы (3.50) равен нулю, собственные векторы определяются не однозначно, а с точностью до постоянного множителя.  

    Выразим главный определитель D [ ф-ла (8.35) ] через параметры схемы.  

    Если главный определитель системы п линейных уравнений с п неизвестными не равен нулю, то система имеет единственное решение, если же этот определитель равен нулю, то система является либо неопределенной, либо несовместной.  

    Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система в соответствии с теоремой 2 может быть или несовместной, или неопределенной. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.  

    Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.  

    Если главный определитель однородной системы (9) не равен нулю, то согласно предыдущей теореме система имеет единственное решение. Это решение является тривиальным. Если же главный определитель равен нулю, то система, в соответствии с теоремой 2 может быть или несовместной, или неопределенной. Однако система уравнений (9) несовместной быть не может, так как существует тривиальное решение.  

    Матрица - прямоугольная таблица, составленная из чисел.

    Пусть дана квадратная матрица 2 порядка:

    Определителем (или детерминантом) 2 порядка, соответствующим данной матрице, называется число

    Определитель (или детерминант) 3 порядка, соответствующим матрице называется число

    Пример1: Найти определители матриц и

    Система линейных алгебраических уравнений

    Пусть дана система 3х линейных уравнений с 3мя неизвестными

    Систему (1) можно записать в матрично-векторной форме

    где А - матрица коэффициентов

    В - расширенная матрица

    Х - искомый компонентный вектор;

    Решение систем уравнений методом Крамера

    Пусть дана система линейных уравнений с двумя неизвестными:

    Рассмотрим решение систем линейных уравнений с двумя и тремя неизвестными по формулам Крамера. Теорема 1. Если главный определитель системы отличен от нуля, то система имеет решение, притом единственное. Решение системы определяется формулами:

    где x1, x2 - корни системы уравнений,

    Главный определитель системы, x1, х2 - вспомогательные определители.

    Вспомогательные определители:

    Решение систем линейных уравнений с тремя неизвестными по методу Крамера.

    Пусть дана система линейных уравнений с тремя неизвестными:

    Теорема 2. Если главный определитель системы отличен от нуля, то система имеет решение, притом единственное. Решение системы определяется формулами:

    где x1, x2, x3 - корни системы уравнений,

    Главный определитель системы,

    x1, x2, x3 - вспомогательные определители.

    Главный определитель системы определяется:

    Вспомогательные определители:


    • 1. Составить табличку (матрицу) коэффициентов при неизвестных и вычислить основной определитель.
    • 2. Найти - дополнительный определитель x, получаемый из заменой первого столбца на столбец свободных членов.
    • 3. Найти - дополнительный определитель y, получаемый из заменой второго столбца на столбец свободных членов.
    • 4. Найти - дополнительный определитель z, получаемый из заменой третьего столбца на столбец свободных членов. Если основной определитель системы не равен нулю, то выполняют пункт 5.
    • 5. Найти значение переменной x по формуле x / .
    • 6. Найти значение переменной у по формуле y / .
    • 7. Найти значение переменной z по формуле z / .
    • 8. Записать ответ: х=…; у=…, z=… .
    Главная > Документ

    МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

    ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ Матрицей размером m ×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

    Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В общем виде матрицу размером m ×n записывают так

    .

    Числа, составляющие матрицу, называются элементами матрицы . Элементы матрицы удобно снабжать двумя индексами a ij : первый указывает номер строки, а второй – номер столбца. Например, a 23 – элемент стоит во 2-ой строке, 3-м столбце.Если в матрице число строк равно числу столбцов, то матрица называется квадратной , причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.Матрица, в которой число строк не равно числу столбцов, называется прямоугольной . В примерах это первая матрица и третья.Различаются также матрицы, имеющие только одну строку или один столбец.Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом .Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

    .

    Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

    Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

    .

    Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .ДЕЙСТВИЯ НАД МАТРИЦАМИ Равенство матриц . Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны a ij = b ij . Так если и , то A=B , если a 11 = b 11 , a 12 = b 12 , a 21 = b 21 и a 22 = b 22 .Транспонирование . Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .Эту матрицу B называют транспонированной матрицей A , а переход от A к B транспонированием .Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A , обычно обозначают A T .Связь между матрицей A и её транспонированной можно записать в виде .Например. Найти матрицу транспонированную данной. Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры . Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B , стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C , которая определяется по правилу, например,

    Примеры. Найти сумму матриц: Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B )+C =A +(B+C ).Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .Для любых чисел a и b и матриц A и B выполняются равенства: Примеры. . Матрицу C найти нельзя, т.к. матрицы A и B имеют разные размеры.Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй). Произведением матрицы A не матрицу B называется новая матрица C=AB , элементы которой составляются следующим образом:

    Таким образом, например, чтобы получить у произведения (т.е. в матрице C ) элемент, стоящий в 1-ой строке и 3-м столбце c 13 , нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.В общем случае, если мы умножаем матрицу A = (a ij ) размера m ×n на матрицу B = (b ij ) размера n ×p , то получим матрицу C размера m ×p , элементы которой вычисляются следующим образом: элемент c ij получается в результате произведения элементов i -ой строки матрицы A на соответствующие элементы j -го столбца матрицы B и их сложения.Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

    .

    Примеры. Найти элементы c 12 , c 23 и c 21 матрицы C .
      Найти произведение матриц.
    .
    Найти АВ и ВА . Найти АВ и ВА . , B·A – не имеет смысла.Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙B B∙A . Поэтому при умножении матриц нужно тщательно следить за порядком множителей.Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC .Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A , причём AE=EA=A .Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.Например , если , то

    .

    ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .Определителем второго порядка , соответствующим данной матрице, называется число, получаемое следующим образом: a 11 a 22 – a 12 a 21 .Определитель обозначается символом .Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.Примеры. Вычислить определители второго порядка.

    Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.Определителем третьего порядка , соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

    .

    Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a 11 , a 12 , a 13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.Примеры. Вычислить определитель третьего порядка.
    . (x +3)(4x -4-3x )+4(3x -4x +4)=0. (x +3)(x -4)+4(-x +4)=0. (x -4)(x -1)=0. x 1 = 4, x 2 = 1.Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки "+" и "–" у слагаемых чередуются.Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

    СВОЙСТВА ОПРЕДЕЛИТЕЛЕЙ

    Доказательство проводится проверкой, т.е. сравнением обеих частей записанного равенства. Вычислим определители, стоящие слева и справа:

      При перестановке 2-х строк или столбцов определитель изменит знак на противоположный, сохраняя абсолютную величину, т.е., например,
    Доказательство проводится аналогично доказательству свойства 1 сравнением обеих частей. Проведём его для определителя второго порядка.

    Для определителя третьего порядка проверьте самостоятельно. Действительно, если переставить здесь 2-ю и 3-ю строки, то по свойству 2 этот определитель должен изменить знак, но сам определитель в данном случае не меняется, т.е. получаем |A | = –|A | или |A | = 0. Доказательство проводится проверкой, как и свойство 1. (Самостоятельно)

      Если все элементы какой–либо строки или столбца определителя равны нулю, то сам определитель равен нулю. (Доказательство – проверкой). Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель можно представить в виде суммы 2-х определителей по формуле, например,

    .

    Доказательство - проверкой, аналогично свойству 1.
      Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины. Например,
    . Докажем это равенство, используя предыдущие свойства определителя.
    Эти свойства определителей довольно часто используются при вычислении определителей и в различных задачах.АЛГЕБРАИЧЕСКИЕ ДОПОЛНЕНИЯ И МИНОРЫ Пусть имеем определитель третьего порядка: .Минором , соответствующим данному элементу a ij определителя третьего порядка, называется определитель второго порядка, полученный из данного вычёркиванием строки и столбца, на пересечении которых стоит данный элемент, т.е. i -ой строки и j -го столбца. Миноры соответствующие данному элементу a ij будем обозначать M ij .Например , минором M 12 , соответствующим элементу a 12 , будет определитель , который получается вычёркиванием из данного определителя 1-ой строки и 2-го столбца.Таким образом, формула, определяющая определитель третьего порядка, показывает, что этот определитель равен сумме произведений элементов 1-ой строки на соответствующие им миноры; при этом минор, соответствующий элементу a 12 , берётся со знаком “–”, т.е. можно записать, что
    Аналогично можно ввести определения миноров для определителей второго порядка и высших порядков.Введём ещё одно понятие.Алгебраическим дополнением элемента a ij определителя называется его минор M ij , умноженный на (–1) i+j .Алгебраическое дополнение элемента a ij обозначается A ij .Из определения получаем, что связь между алгебраическим дополнением элемента и его минором выражается равенством A ij = (–1) i+j M ij . Например, Пример. Дан определитель . Найти A 13 , A 21 , A 32 .

    Легко видеть, что используя алгебраические дополнения элементов, формулу (1) можно записать в виде:.Аналогично этой формуле можно получить разложение определителя по элементам любой строки или столбца.Например, разложение определителя по элементам 2-ой строки можно получить следующим образом. Согласно свойству 2 определителя имеем:Разложим полученный определитель по элементам 1-ой строки.

    .

    Отсюда т.к. определители второго порядка в формуле (2) есть миноры элементов a 21 , a 22 , a 23 . Таким образом, , т.е. мы получили разложение определителя по элементам 2-ой строки.Аналогично можно получить разложение определителя по элементам третьей строки. Используя свойство 1 определителей (о транспонировании), можно показать, что аналогичные разложения справедливы и при разложении по элементам столбцов.Таким образом, справедлива следующая теорема.Теорема (о разложении определителя по заданной строке или столбцу). Определитель равен сумме произведений элементов какой–либо его строки (или столбца) на их алгебраические дополнения.Всё вышесказанное справедливо и для определителей любого более высокого порядка.Примеры.

      Вычислить определитель, используя его свойства. Прежде чем раскладывать определитель по элементам какой–либо строки, сводя к определителям третьего порядка, преобразуем его, используя свойство 7, сделав в какой–либо строке или столбце все элементы, кроме одного, равными нулю. В данном случае удобно рассмотреть 4-й столбец или 4-ю строку:

    ОБРАТНАЯ МАТРИЦА

    Понятие обратной матрицы вводится только для квадратных матриц .Если A – квадратная матрица, то обратной для неё матрицей называется матрица, обозначаемая A -1 и удовлетворяющая условию . (Это определение вводится по аналогии с умножением чисел)Справедлива следующая теорема:Теорема. Для того чтобы квадратная матрица A имела обратную, необходимо и достаточно, чтобы её определитель был отличен от нуля.Доказательство :
      Необходимость . Пусть для матрицы A существует обратная матрица A -1 . Покажем, что |A | ≠ 0.
    Прежде всего заметим, что можно доказать следующее свойство определителей . Предположим, что |A | = 0. Тогда . Но с другой стороны . Полученное противоречие и доказывает, что |A | ≠ 0. Покажем, что в этом случае обратной матрицей будет матрица , где A ij алгебраическое дополнение элемента a ij . Найдём AB=C . Заметим, что все диагональные элементы матрицы C будут равны 1. Действительно, например,

    Аналогично по теореме о разложении определителя по элементам строки можно доказать, что c 22 = c 33 = 1. Кроме того, все недиагональные элементы матрицы C равны нулю. Например,
    Следовательно, AB=E . Аналогично можно показать, что BA=E . Поэтому B = A -1 .Таким образом, теорема содержит способ нахождения обратной матрицы.Если условия теоремы выполнены, то матрица обратная к матрице находится следующим образом

    ,

    где A ij - алгебраические дополнения элементов a ij данной матрицы A .Итак, чтобы найти обратную матрицу нужно: Аналогично для матриц второго порядка, обратной будет следующая матрица .Примеры. |A | = 2. Найдем алгебраические дополнения элементов матрицы A . Проверка: . Аналогично A∙A -1 = E . . Вычислим |A | = 4. Тогда . .

    СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

    Системой m линейных уравнений с n неизвестными называется система вида

    где a ij и b i (i =1,…,m ; b =1,…,n ) – некоторые известные числа, а x 1 ,…,x n – неизвестные. В обозначении коэффициентов a ij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы .Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами. Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации: Система линейных уравнений, имеющая хотя бы одно решение, называется совместной . В противном случае, т.е. если система не имеет решений, то она называется несовместной .Рассмотрим способы нахождения решений системы.МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

    Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов Найдем произведение

    т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в видеили короче A X=B .Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .Примеры. Решить системы уравнений. Найдем матрицу обратную матрице A . , Таким образом, x = 3, y = – 1.
    Итак, х 1 =4,х 2 =3,х 3 =5. Выразим искомую матрицу X из заданного уравнения. Найдем матрицу А -1 . Проверка: Из уравнения получаем . Следовательно,ПРАВИЛО КРАМЕРА Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

    Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

    называется определителем системы .Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

    Тогда можно доказать следующий результат.Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

    Доказательство . Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A 11 элемента a 11 , 2-ое уравнение – на A 21 и 3-е – на A 31 :

    Сложим эти уравнения:

    Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

    Аналогично можно показать, что и .Наконец несложно заметить, что Таким образом, получаем равенство: .Следовательно, .Аналогично выводятся равенства и , откуда и следует утверждение теоремы.Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.Примеры. Решить систему уравнений
    Итак, х =1, у =2, z =3. Система имеет единственное решение, если Δ ≠ 0. . Поэтому . МЕТОД ГАУССА Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

    .

    • Системы m линейных уравнений с n неизвестными.
      Решение системы линейных уравнений — это такое множество чисел {x 1 , x 2 , …, x n }, при подстановке которых в каждое из уравнений системы получается верное равенство.
      где a ij , i = 1, …, m; j = 1, …, n — коэффициенты системы;
      b i , i = 1, …, m — свободные члены;
      x j , j = 1, …, n — неизвестные.
      Вышеприведенная система может быть записана в матричном виде: A · X = B ,




      где (A |B ) — основная матрица системы;
      A — расширенная матрица системы;
      X — столбец неизвестных;
      B — столбец свободных членов.
      Если матрица B не является нуль-матрицей ∅, то данная система линейных уравнений называется неоднородной.
      Если матрица B = ∅, то данная система линейных уравнений называется однородной. Однородная система всегда имеет нулевое (тривиальное) решение: x 1 = x 2 = …, x n = 0 .
      Совместная система линейных уравнений — это имеющая решение система линейных уравнений.
      Несовместная система линейных уравнений — это не имеющая решение система линейных уравнений.
      Определённая система линейных уравнений — это имеющая единственное решение система линейных уравнений.
      Неопределённая система линейных уравнений — это имеющая бесконечное множество решений система линейных уравнений.
    • Системы n линейных уравнений с n неизвестными
      Если число неизвестных равно числу уравнений, то матрица – квадратная. Определитель матрицы называется главным определителем системы линейных уравнений и обозначается символом Δ.
      Метод Крамера для решения систем n линейных уравнений с n неизвестными.
      Правило Крамера.
      Если главный определитель системы линейных уравнений не равен нулю, то система совместна и определена, причем единственное решение вычисляется по формулам Крамера:
      где Δ i — определители, получаемые из главного определителя системы Δ заменой i -го столбца на столбец свободных членов. .
    • Системы m линейных уравнений с n неизвестными
      Теорема Кронекера−Капелли .


      Для того чтобы данная система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы системы, rang(Α) = rang(Α|B) .
      Если rang(Α) ≠ rang(Α|B) , то система заведомо не имеет решений.
      Eсли rang(Α) = rang(Α|B) , то возможны два случая:
      1) rang(Α) = n (числу неизвестных) − решение единственно и может быть получено по формулам Крамера;
      2) rang(Α) < n − решений бесконечно много.
    • Метод Гаусса для решения систем линейных уравнений


      Составим расширенную матрицу (A |B ) данной системы из коэффициентов при неизвестных и правых частей.
      Метод Гаусса или метод исключения неизвестных состоит в приведении расширенной матрицы (A |B ) с помощью элементарных преобразований над ее строками к диагональному виду (к верхнему треугольному виду). Возвращаясь к системе уравнений, определяют все неизвестные.
      К элементарным преобразованиям над строками относятся следующие:
      1) перемена местами двух строк;
      2) умножение строки на число, отличное от 0;
      3) прибавление к строке другой строки, умноженной на произвольное число;
      4) выбрасывание нулевой строки.
      Расширенной матрице, приведенной к диагональному виду, соответствует линейная система, эквивалентная данной, решение которой не вызывает затруднений. .
    • Система однородных линейных уравнений.
      Однородная система имеет вид:

      ей соответствует матричное уравнение A · X = 0 .
      1) Однородная система всегда совместна, так как r(A) = r(A|B) , всегда существует нулевое решение (0, 0, …, 0).
      2) Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r = r(A) < n , что равносильно Δ = 0.
      3) Если r < n , то заведомо Δ = 0, тогда возникают свободные неизвестные c 1 , c 2 , …, c n-r , система имеет нетривиальные решения, причем их бесконечно много.
      4) Общее решение X при r < n может быть записано в матричном виде следующим образом:
      X = c 1 · X 1 + c 2 · X 2 + … + c n-r · X n-r ,
      где решения X 1 , X 2 , …, X n-r образуют фундаментальную систему решений.
      5) Фундаментальная система решений может быть получена из общего решения однородной системы:

      ,
      если последовательно полагать значения параметров равными (1, 0, …, 0), (0, 1, …, 0), …, (0, 0, …,1).
      Разложение общего решения по фундаментальной системе решений — это запись общего решения в виде линейной комбинации решений, принадлежащих к фундаментальной системе.
      Теорема . Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.
      Итак, если определитель Δ ≠ 0, то система имеет единственное решение.
      Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.
      Теорема . Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r(A) < n .
      Доказательство :
      1) r не может быть больше n (ранг матрицы не превышает числа столбцов или строк);
      2) r < n , т.к. если r = n , то главный определитель системы Δ ≠ 0, и, по формулам Крамера, существует единственное тривиальное решение x 1 = x 2 = … = x n = 0 , что противоречит условию. Значит, r(A) < n .
      Следствие . Для того чтобы однородная система n линейных уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы Δ = 0.