Из предыдущих параграфов нам известно, что все вещества состоят из частиц (атомов, молекул). Эти частицы непрерывно хаотически движутся. При нагревании вещества движение его частиц становится более быстрым. При этом увеличиваются расстояния между частицами, что приводит к увеличению размеров тела.

Изменение размеров тела при его нагревании называется тепловым расширением .

Тепловое расширение твердых тел легко подтвердить опытом. Стальной шарик (рис. 87, а, б, в), свободно проходящий через кольцо, после нагревания на спиртовке расширяется и застревает в кольце. После охлаждения шарик вновь свободно проходит через кольцо. Из опыта следует, что размеры твердого тела при нагревании увеличиваются, а при охлаждении - уменьшаются.

Рис. 87

Тепловое расширение различных твердых тел неодинаково .

При тепловом расширении твердых тел появляются огромные силы, которые могут разрушать мосты, изгибать железнодорожные рельсы, разрывать провода. Чтобы этого не случилось, при конструировании того или иного сооружения учитывается фактор теплового расширения. Провода линий электропередачи провисают (рис. 88), чтобы зимой, сокращаясь, они не разорвались.

Рис. 88

Рис. 89

Рельсы на стыках имеют зазор (рис. 89). Несущие детали мостов ставят на катки, способные передвигаться при изменениях длины моста зимой и летом (рис. 90).

Рис. 90

А расширяются ли при нагревании жидкости? Тепловое расширение жидкостей тоже можно подтвердить на опыте. В одинаковые колбы нальем: в одну - воду, а в другую - такой же объем спирта. Колбы закроем пробками с трубками. Начальные уровни воды и спирта в трубках отметим резиновыми кольцами (рис. 91, а). Поставим колбы в емкость с горячей водой. Уровень воды в трубках станет выше (рис. 91, б). Вода и спирт при нагревании расширяются. Но уровень в трубке колбы со спиртом выше. Значит, спирт расширяется больше. Следовательно, тепловое расширение разных жидкостей , как и твердых веществ, неодинаково .

Рис. 91

А испытывают ли тепловое расширение газы? Ответим на вопpoс с помощью опыта. Закроем колбу с воздухом пробкой с изогнутой трубкой. В трубке (рис. 92, а) находится капля жидкости. Достаточно приблизить руки к колбе, как капля начинает перемещаться вправо (рис. 92, б). Это подтверждает тепловое расширение воздуха при его даже незначительном нагревании. Причем, что очень важно, все газы, в отличие от твердых веществ и жидкостей, при нагревании расширяются одинаково .

Рис. 92

Подумайте и ответьте 1. Что называют тепловым расширением тел? 2. Приведите примеры теплового расширения (сжатия) твердых тел, жидкостей, газов. 3. Чем отличается тепловое расширение газов от теплового расширения твердых тел и жидкостей?

Сделайте дома сами

Используя пластиковую бутылку и тонкую трубку для сока, проведите дома опыт по тепловому расширению воздуха и воды. Результаты опыта опишите в тетради.

Интересно знать!

Нельзя после горячего чая сразу пить холодную воду. Резкое изменение температуры часто приводит к порче зубов. Это объясняется тем, что основное вещество зуба - дентин - и покрывающая зуб эмаль при одном и том же изменении температуры расширяются неодинаково.

    Дифференциальное расширение имеет большое прикладное значение. Иногда очень трудно открыть метал-лические завинчивающиеся крышки на стеклянных или пластмассовых бутыл-ках. Если верхнюю часть бутылки подержать под струей горячей воды, то металл расширится больше, чем стекло или пластмасса, и крышка легко откроется.

    Стеклянная пробка, плотно вошедшая в горлышко стеклянной бутылки, также может быть вынута, если горлышко подержать под струей горячей воды. Хотя коэффициент расширения горлышка такой же, как и у пробки, но стекло очень , и горлышко расширится до того, как пробка станет горячей, и пробку можно легко вынуть.

    Расширение стекла часто становится предметом неприятностей дома. При наполнении стеклянной посуды горячей жидкостью она часто лопается. Причина состоит в том, что часть стекла, соприкасающаяся с горячей жидкостью, очень быстро приобретает температуру жидкости и расширяется, в то время как остальная часть остается холодной, поскольку стекло плохой проводник.

    В результате внутри стекла устанавливается напряжение, и посуда лопается. При приготовлении джема предусмотрительный повар подогревает сосуд в духовке, прежде чем наполнить его джемом. Этим достигается то, что и стекло, и джем нагреваются до примерно одинаковой температуры. Ценная посуда из граненого стекла будет сохранена, если вы подумаете, стоит ли ее опускать в горячую воду.

    Различное тепловое расширение в быту

    Период маятника зависит от длины самого маятника. Когда температура повышается, длина маятника увеличивается и увеличивается период его колебаний. Маятник колеблется более медленно. На рисунке показаны два вида компенсированного маятника. На рисунке 1, а стержень сделан из инвара, а тело маятника-чечевица — из стали.

    Расширение инвара по направлению вниз компенсируется расширением чечевицы вверх. При этом положение центра тяжести, а следовательно, и остаются неизменными. Для установки нужного периода колебаний маятника положение чечевицы регулируется винтом. Будучи однажды установленным в нужном положении, такой маятник самокомпенсируется.

    На рисунке 1, б показан более сложный маятник. Незаштрихованные стержни имеют больший и расширяются достаточно, чтобы компенсировать расширение более длинных заштрихованных стержней. В наше время, когда большинство зданий снабжено центральным отоплением, в них поддерживается более или менее постоянная температура, но по-прежнему важно компенсировать тепловые эффекты.

    В термостате газовой духовки (рис. 2) используется различное тепловое расширение металлов. Газ подается по вводной трубе и проходит через отверстия D, Е и F к горелкам. Цилиндр В сделан из латуни, а стержень А — из инвара. Когда температура духовки поднимается, латунь расширяется гораздо сильнее инвара, заставляя клапан С сдвинуться влево и закрыть отверстия Е и F.

    Таким образом подача газа в духовку сокращается, и газ горит слабо. Отверстие D необходимо для приема газа, чтобы не дать погаснуть горелкам, когда клапан закрыт. По мере охлаждения цилиндр В сжимается, и клапан С сдвигается вправо, допуская большее количество газа к горелкам. Внешний регулятор G позволяет закручивать или отпускать клапан С, таким образом уменьшая или увеличивая струю газа и сокращая или повышая температуру в духовке.


Хотя линейные размеры и объемы тел при изменении температуры меняются мало, тем не менее это изменение нередко приходится учитывать в практике; в то же время это явление широко используется в быту и технике.
Учет теплового расширения тел
Изменение размеров твердых тел вследствие теплового расширения приводит к появлению огромных сил упругости, если другие тела препятствуют этому изменению размеров. Например, стальная мостовая балка сечением 100 см2 при нагревании от -40 °С зимой до +40 °С летом, если опоры препятствуют ее удлинению, создает давление на опоры (напряжение) до 1,6 108 Па, т. е. действует на опоры с силой 1,6 106Н.
Приведенные значения могут быть получены из закона Гука и формулы (9.2.1) для теплового расширения тел.
F
Согласно закону Гука механическое напряжение а = ^ = Ее,
где? = у- - относительное удлинение, a Е - модуль Юнга, "о
Согласно (9.2.1) у1 = е = Подставляя это значение отно- "о
сительного удлинения в формулу закона Гука, получим
У стали модуль Юнга Е = 2,1 1011 Па, температурный коэффициент линейного расширения а1 = 9 10-6К-1. Подставив эти данные в выражение (9.4.1), получим, что при At = 80 °С механическое напряжение а = 1,6 108 Па.
Так как S = 10~2 м2, то сила F = aS = 1,6 106 Н.
Для демонстрации сил, появляющихся при охлаждении металлического стержня, можно проделать следующий опыт. Нагреем железный стержень с отверстием на конце, в которое вставлен чугунный стерженек (рис. 9.5). Затем вставим этот стержень в массивную металлическую подставку с пазами. При охлаждении стержень сокращается, и в нем возникают столь большие силы упругости, что чугунный стерженек ло-мается.

Рис. 9.5
Тепловое расширение тел нужно учитывать при конструировании многих сооружений. Необходимо принимать меры для того, чтобы тела могли свободно расширяться или сжи-маться при изменении температуры.
Нельзя, например, туго натягивать телеграфные провода, а также провода линий электропередачи (ЛЭП) между опорами. Летом провисание проводов заметно больше, чем зимой.
Металлические паропроводы, а также трубы водяного отопления приходится снабжать изгибами (компенсаторами) в виде петель (рис. 9.6).
Внутренние напряжения могут воз- ^^
никать при неравномерном нагревании яГ Л
однородного тела. Например, стеклян- Я Я
ная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. В первую очередь проис- Рис. 9.6 1. ходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давле-ние на внешние холодные части. Поэтому может произойти разрушение сосуда. Тонкий же стакан не лопается при нали-вании в него горячей воды, так как его внутренняя и внешняя части одинаково быстро прогреваются.
Очень малый температурный коэффициент линейного расширения имеет кварцевое стекло. Такое стекло выдерживает, не трескаясь, неравномерное нагревание или охлаждение. Например, в раскаленную докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается.
Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково. Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон - затвердевший бетонный раствор, залитый в стальную решетку - арматуру (рис. 9.7). Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.
Еще несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава (железа и никеля), имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковый коэффициент линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.
Значительные силы могут развиваться и жидкостью, если нагревать ее в замкнутом сосуде, не позволяющем жидкости

расширяться. Эти силы могут привести к разрушению сосу-дов, в которых содержится жидкость. Поэтому с этим свойством жидкости тоже приходится считаться. Например, системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой. При нагревании воды в системе труб небольшая часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб. По этой же причине в силовом трансформаторе с масляным ох-лаждением наверху имеется расширительный бак для масла. При повышении температуры уровень масла в баке повышает-ся, при охлаждении масла - понижается.
Использование теплового расширения в технике

Рис. 9.8
Терморегулятор
На рисунке 9.10 схематически изображено устройство одного из типов регуляторов температуры. Биметаллическая дуга 1 при изменении температуры изменяет свою кривизну. К ее свободному концу прикреплена металлическая пластинка 2, которая при раскручивании дуги прикасается к контакту 3, а при закручивании отходит от него. Если, например, контакт 3 и пластинка 2 присоединены к концам 4, 5 электрической цепи, содержащей нагревательный прибор, то при соприкос-
Тепловое расширение тел находит широкое применение в технике. Приведем лишь несколько примеров. Две разнород-ные пластинки (например, железная и медная), сваренные вместе, образуют так называемую биметаллическую пластинку (рис. 9.8). При нагревании такие пластинки изгибаются вследствие того, что одна расширяется сильнее другой. Та из полосок (медная), которая расширяется больше, оказывается всегда с выпуклой стороны (рис. 9.9). Это свойство биметалли-ческих пластинок широко используется для измерения темпе-ратуры и ее регулирования.

новении контакта и пластинки электрическая цепь замкнется: прибор начнет нагревать помещение. Биметаллическая дуга 1 при нагревании начнет закручиваться и при определенной температуре отсоединит пластинку 2 от контакта 3: цепь разорвется, нагревание прекратится. При охлаждении дуга 1, раскручиваясь, снова заставит включиться нагревательный прибор. Таким образом, температура помещения будет поддерживаться на данном уровне. Подобный терморегулятор устанавливают в инкубаторах, где требуется поддерживать температуру постоянной. В быту терморегуляторы установлены в холодильниках, электроутюгах и т. д. Обод (бандаж) колеса железнодорожного вагона изготавливают из стали, остальную часть колеса делают из более дешевого металла - чугуна. Бандажи на колеса надевают в нагретом состоянии. После охлаждения они сжимаются и поэтому держатся прочно.
Также в нагретом состоянии надевают шкивы, подшипники на валы, железные обручи на деревянные бочки и т. д. Свойст-во жидкостей расширяться при нагревании и сжиматься при охлаждении используется в приборах, служащих для измере-ния температуры - термометрах. В качестве жидкостей для изготовления термометров применяют ртуть, спирт и др.
При расширении или сжатии тел возникают огромные механические напряжения, если другие тела препятствуют изменению размеров. В технике используются биметаллические пластинки, изменяющие свою форму при нагревании.

Тепловое расширение

Тепловое расширение - изменение линейных размеров и формы тела при изменении его температуры . Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Раздел физики изучающий данное свойство называется дилатометрией .

Тепловое расширение тел учитывается при конструировании всех установок, приборов и машин, работающих в переменных температурных условиях.

Основной закон теплового расширения гласит, что тело с линейным размером в соответствующем измерении при увеличении его температуры на расширяется на величину , равную:

,

где - так называемый коэффициент линейного теплового расширения . Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Тепловое расширение" в других словарях:

    Изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении р характеризуется изобарным коэфф. расширения (коэфф. объёмного Т. p.) a=1/VX(dV/dT)p, где V объём тела (твёрдого, жидкого или газообразного), Т его… … Физическая энциклопедия

    ТЕПЛОВОЕ РАСШИРЕНИЕ, изменение размеров и формы тела при изменении его температуры. Характеризуется коэффициентами объемного (для твердых тел и линейного) теплового расширения, т.е. изменением объема (линейных размеров) тела при изменении его… … Современная энциклопедия

    Изменение размеров тела при его нагревании; характеризуется коэффициентом объемного расширения, а для твердых тел и коэффициентом линейного расширения, где l изменение линейного размера, ?V объема тела, ?T температуры, индекс указывает на… … Большой Энциклопедический словарь

    тепловое расширение - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN heat expansionthermal expansion … Справочник технического переводчика

    ТЕПЛОВОЕ РАСШИРЕНИЕ - изменение размеров и формы тел при их нагревании. Различие в силах сцепления между молекулами тела в различных его агрегатных (см.) сказывается на величине Т. р. Твёрдые тела, молекулы которых сильно взаимодействуют, расширяются мало, жидкости… … Большая политехническая энциклопедия

    Изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом Т. р.) Т2 > T1, V исходный объём тела (разность температур T2 T1… … Большая советская энциклопедия

    тепловое расширение - šiluminis plėtimasis statusas T sritis Standartizacija ir metrologija apibrėžtis Kaitinamo kūno matmenų padidėjimas. atitikmenys: angl. heat expansion; thermal expansion vok. thermische Ausdehnung, f; Wärmeausdehnung, f rus. тепловое расширение,… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    тепловое расширение - šiluminis plėtimasis statusas T sritis chemija apibrėžtis Kaitinamo kūno matmenų padidėjimas. atitikmenys: angl. heat expansion; thermal expansion rus. тепловое расширение; термическое расширение … Chemijos terminų aiškinamasis žodynas

    тепловое расширение - šiluminis plėtimasis statusas T sritis fizika atitikmenys: angl. heat expansion; thermal expansion vok. thermische Ausdehnung, f; Wärmeausdehnung, f rus. тепловое расширение, n; термическое расширение, n pranc. dilatation thermique, f; expansion… … Fizikos terminų žodynas

    Изменение размеров тела при его нагревании; характеризуется коэффициентом объёмного расширения αυ = 1/V (ΔV/VT)Ξ, а для твёрдых тел и коэффициентом линейного расширения αл = 1/l(Δl/ΔТ)Ξ, где Δl изменение линейного размера, ΔV объёма тела, ΔТ … … Энциклопедический словарь

Книги

  • Тепловое расширение твердых тел , С. И. Новикова , В монографии подробно рассмотрены различные аспекты существующих теорий теплового расширения твердых тел: вопросы взаимосвязи теплового расширения с другими свойствами твердых тел, влияние… Категория: Физика твердого тела. Кристаллография Издатель: Наука ,
  • Физика. Тепловые явления. Тепловое расширение твердых и жидких тел. Газы. 9-11 классы. Задачи для подготовки к олимпиадам ,