Неорганическая химия - раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических веществ (класса соединений, в которые входит углерод, за исключением нескольких простейших соединений, обычно относящихся к неорганическим). Различие между органическими и неорганическими соединениями, содержащими углерод, являются по некоторым представлениям произвольными.Неорганическая химия изучает химические элементы и образуемые ими простые и сложные вещества (кроме органических соединений). Обеспечивает создание материалов новейшей техники. Число известных на 2013 г. неорганических веществ приближается к 400 тысячам.

Теоретическим фундаментом неорганической химии является периодический закон и основанная на нём периодическая система Д. И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и научном обосновании способов создания новых материалов с нужными для современной техники свойствами.

В России исследованиями в области неорганической химии занимаются Институт неорганической химии им. А. В. Николаева СО РАН (ИНХ СО РАН, Новосибирск), Институт общей и неорганической химии им. Н. С. Курнакова (ИОНХ РАН, Москва), Институт физико-химических проблем керамических материалов (ИФХПКМ, Москва), Научно-технический центр «Сверхтвердые материалы» (НТЦ СМ, Троицк) и ряд других учреждений. Результаты исследований публикуются в журналах («Журнал неорганической химии» и др.).

История определения

Исторически название неорганическая химия происходит от представления о части химии, которая занимается исследованием элементов, соединений, а также реакций веществ, которые не образованы живыми существами. Однако со времен синтеза мочевины из неорганического соединения цианата аммония (NH 4 OCN), который совершил в 1828 году выдающийся немецкий химик Фридрих Вёлер, стираются границы между веществами неживой и живой природы. Так, живые существа производят много неорганических веществ. С другой стороны, почти все органические соединения можно синтезировать в лаборатории. Однако деление на различные области химии является актуальным и необходимым, как и раньше, поскольку механизмы реакций, структура веществ в неорганической и органической химии различаются. Это позволяет проще систематизировать методы и способы исследования в каждой из отраслей.

Оксиды

Оксид (окисел, окись) - бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF 2 .

Оксиды - весьма распространённый тип соединений, содержащихся в земной коре и во Вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей.

Оксидами называется класс минералов, представляющих собой соединения металла с кислородом.

Соединения, которые содержат атомы кислорода, соединённые между собой, называются пероксидами (перекисями; содержат цепочку −O−O−), супероксидами (содержат группу О−2) и озонидами (содержат группу О−3). Они не относятся к категории оксидов.

Классификация

В зависимости от химических свойств различают:

Солеобразующие оксиды:

основные оксиды (например, оксид натрия Na 2 O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I-II;

кислотные оксиды (например, оксид серы(VI) SO 3 , оксид азота(IV) NO 2): оксиды металлов со степенью окисления V-VII и оксиды неметаллов;

амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al 2 О 3): оксиды металлов со степенью окисления III-IV и исключения (ZnO, BeO, SnO, PbO);

Несолеобразующие оксиды: оксид углерода(II) СО, оксид азота(I) N 2 O, оксид азота(II) NO.

Номенклатура

В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже, например: Na 2 O - оксид натрия, Al 2 O 3 - оксид алюминия. Если элемент имеет переменную степень окисления, то в названии оксида указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела). Например, Cu 2 О - оксид меди(I), CuO - оксид меди(II), FeO - оксид железа(II), Fe 2 О 3 - оксид железа(III), Cl 2 O 7 - оксид хлора(VII).

Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом или моноокисью, если два - диоксидом или двуокисью, если три - то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО 2 , триоксид серы SO 3 .

Также распространены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO 3 и т. д.

В начале XIX века и ранее тугоплавкие, практически не растворимые в воде оксиды химики называли «землями».

Оксиды с низшими степенями окисления (субоксиды) иногда по старой русской номенклатуре называют закись (англ. аналог - protoxide) и недокись (например, оксид углерода(II), CO - закись углерода; диоксид триуглерода, C 3 O 2 - недокись углерода; оксид азота(I), N 2 O - закись азота; оксид меди(I), Cu 2 O - закись меди). Высшие степени окисления (оксид железа(III), Fe2O3) называют в соответствии с этой номенклатурой окись, а сложные оксиды - закись-окись (Fe 3 O 4 = FeO·Fe 2 O 3 - закись-окись железа, оксид урана(VI)-диурана(V), U 3 O 8 - закись-окись урана). Эта номенклатура, однако, не отличается последовательностью, поэтому такие названия следует рассматривать скорее как традиционные.

Химические свойства

Основные оксиды

1. Основный оксид + cильная кислота → соль + вода

2. Сильноосновный оксид + вода → щелочь

3. Сильноосновный оксид + кислотный оксид → соль

4. Основный оксид + водород → металл + вода

Примечание: металл менее активный, чем алюминий.

Кислотные оксиды

1. Кислотный оксид + вода → кислота

Некоторые оксиды, например SiO 2 , с водой не вступают в реакцию, поэтому их кислоты получают косвенным путём.

2. Кислотный оксид + основный оксид → соль

3. Кислотный оксид + основание → соль + вода

Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

4. Нелетучий оксид + соль1 → соль2 + летучий оксид

5. Ангидрид кислоты 1 + безводная кислородосодержащая кислота 2 → Ангидрид кислоты 2 + безводная кислородосодержащая кислота 1

Амфотерные оксиды

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

(в водном растворе)

(при сплавлении)

Получение

1. Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:

При горении в кислороде щелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:

2. Обжиг или горение бинарных соединений в кислороде:

3. Термическое разложение солей:

4. Термическое разложение оснований или кислот:

5. Окисление низших оксидов в высшие и восстановление высших в низшие:

6. Взаимодействие некоторых металлов с водой при высокой температуре:

7. Взаимодействие солей с кислотными оксидами при сжигании кокса с выделением летучего оксида:

8. Взаимодействие металлов с кислотами-оксилителями:

9. При действии водоотнимающих веществ на кислоты и соли:

10. Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:

Соли

Соли - класс химических соединений, состоящих из катионов и анионов.


В роли катионов в солях могут выступать катион металлов, ониевые катионы


(катионов аммония, фосфония, гидроксония и их органические производные),


комплексные катионы и т.д., в качестве анионов - анионы кислотного остатка различных кислот Бренстеда - как неорганических, так и органических, включая карбанионы, комплексные анионы и т.п.

Типы солей

Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей. Некоторые из них можно отнести к особенному классу органических солей, так называемых ионных жидкостей или по-другому «жидких солей», органических солей с температурой плавления ниже 100 °C.

Названия солей

Названия солей образуются из двух слов: название аниона в именительном падеже и название катиона в родительном падеже: - сульфат натрия. Для металлов с переменной степенью окисления её указывают в скобках и без пробела: - сульфат железа(II), - сульфат железа(III).

Названия кислых солей начинаются с приставки «гидро-» (если в соли присутствует один атом водорода) или «дигидро-» (если их два). Например, - гидрокарбонат натрия, - дигидрофосфат натрия.

Названия основных солей содержат приставку «гидроксо-» или «дигидроксо-». Например, - хлорид гидроксомагния, - хлорид дигидроксоалюминия.

В гидратных солях на наличие кристаллической воды указывает приставка «гидрат-». Степень гидратации отражают численной приставкой. Например, - дигидрат хлорида кальция.

На низшую степень окисления кислотообразующего элемента (если степеней окисления больше двух) указывает приставка «гипо-». Приставка «пер-» указывает на высшую степень окисления (для солей кислот с окончаниями «-овая», «-евая», «-ная»). Например: - гипохлорит натрия, - хлорит натрия, - хлорат натрия, - перхлорат натрия.

Методы получения

Существуют различные методы получения солей:

1)Взаимодействие кислот с металлами, основными и амфотерными оксидами / гидроксидами:

2)Взаимодействие кислотных оксидов c щелочами, основными и амфотерными оксидами / гидроксидами:

3)Взаимодействие солей c кислотами, другими солями (если образуется выходящий из сферы реакции продукт):

Взаимодействие простых веществ:

Взаимодействие оснований с неметаллами, например, с галогенами:

Химические свойства

Химические свойства определяются свойствами катионов и анионов, входящих в их состав.

Соли взаимодействуют с кислотами и основаниями, если в результате реакции получается продукт, который выходит из сферы реакции (осадок, газ, мало диссоциирующие вещества, например, вода или другие оксиды):

Соли взаимодействуют с металлами, если свободный металл находится левее металла в составе соли в электрохимическом ряде активности металлов:

Соли взаимодействуют между собой, если продукт реакции выходит из сферы реакции (образуется газ, осадок или вода); в том числе эти реакции могут проходить с изменением степеней окисления атомов реагентов:

Некоторые соли разлагаются при нагревании:

Основание

Основания - класс химических соединений.

Основания (осно́вные гидрокси́ды) - сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (-OH). В водном растворе диссоциируют с образованием катионов и анионов ОН−.

Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

Согласно протонной теории кислот и оснований, основания - один из основных классов химических соединений, вещества, молекулы которых являются

акцепторами протонов.

В органической химии по традиции основаниями называют также вещества, способные давать аддукты («соли») с сильными кислотами, например, многие алкалоиды описывают как в форме «алкалоид-основание», так и в виде «солей алкалоидов».

Понятие основания в химию было впервые введено французским химиком Гийомом Франсуа Руэлем в 1754 году. Он отметил, что кислоты, известные в те времена как летучие жидкости (например, уксусная или соляная кислоты), превращаются в кристаллические соли только в сочетании с конкретными веществами. Руэль предположил, что такие вещества служат «основаниями» для образования солей в твёрдой форме.

Получение

Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь.

Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.

Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.

Также основание можно получить при взаимодействии щелочного или щелочноземельного металла с водой.

Курс неорганической химии содержит множество специальных терминов, необходимых для проведения количественных вычислений. Рассмотрим подробно некоторые из ее основных разделов.

Особенности

Неорганическая химия была создана с целью определения характеристики веществ, имеющих минеральное происхождение.

Среди основных разделов данной науки выделяют:

  • анализ строения, физических и химических свойств;
  • взаимосвязь между строением и реакционной способностью;
  • создание новых методов синтеза веществ;
  • разработку технологий очистки смесей;
  • методы изготовления материалов неорганического вида.

Классификация

Неорганическая химия подразделяется на несколько разделов, занимающихся изучением определенных фрагментов:

  • химических элементов;
  • классов неорганических веществ;
  • полупроводниковых веществ;
  • определенных (переходных) соединений.

Взаимосвязь

Неорганическая химия взаимосвязана с физической и аналитической химией, которые обладают мощным набором инструментов, позволяющих проводить математические вычисления. Теоретический материал, рассматриваемый в данном разделе, применяют в радиохимии, геохимии, агрохимии, а также в ядерной химии.

Неорганическая химия в прикладном варианте связана с металлургией, химической технологией, электроникой, добычей и переработкой полезных ископаемых, конструкционных и строительных материалов, очисткой промышленных стоков.

История развития

Общая и неорганическая химия развивалась вместе с человеческой цивилизацией, потому включает в себя несколько самостоятельных разделов. В начале девятнадцатого века Берцелиусом была опубликована таблица атомных масс. Именно этот период стал началом развития данной науки.

В качестве основы неорганической химии выступили исследования Авогадро и Гей-Люссака, касающиеся характеристик газов и жидкостей. Гессу удалось вывести математическую связь между количеством теплоты и агрегатным состоянием вещества, что существенно расширило горизонты неорганической химии. Например, появилась атомно-молекулярная теория, которая ответила на множество вопросов.

В начале девятнадцатого века Дэви сумел разложить электрохимическим способом гидроксиды натрия и калия, открыв новые возможности для получения простых веществ путем электролиза. Фарадей, основываясь на работе Дэви, вывел законы электрохимии.

Со второй половины девятнадцатого века курс неорганической химии существенно расширился. Открытия Вант-Гоффа, Аррениуса, Освальда внесли новые веяния в теорию растворов. Именно в этот временной период был сформулирован закон действующих масс, позволивший проводить различные качественные и количественные вычисления.

Учение о валентности, созданное Вюрцом и Кекуле, позволило найти ответы на многие вопросы неорганической химии, связанные с существованием разных форм оксидов, гидроксидов. В конце девятнадцатого века были открыты новые химические элементы: рутений, алюминий, литий: ванадий, торий, лантан, и др. Это стало возможным после введения в практику методики спектрального анализа. Инновации, появившиеся в тот период в науке, не только объяснили химические реакции в неорганической химии, но и позволили предсказывать свойства получаемых продуктов, области их применения.

К концу девятнадцатого века было известно о существовании 63 различных элементов, а также появились сведения о разнообразных химических веществах. Но из-за отсутствия их полной научной классификации, можно было решать далеко не все задачи по неорганической химии.

Закон Менделеева

Периодический закон, созданный Дмитрием Ивановичем, стал базой для систематизации всех элементов. Благодаря открытию Менделеева, химикам удалось скорректировать представления об атомных массах элементов, предсказать свойства тех веществ, которые еще не были открыты. Теория Мозли, Резерфорда, Бора, придала физическое обоснование периодическому закону Менделеева.

Неорганическая и теоретическая химия

Для того чтобы понять, что изучает химия, нужно рассмотреть основные понятия, включенные в этот курс.

Основным теоретическим вопросом, изучаемым в данном разделе, является периодический закон Менделеева. Неорганическая химия в таблицах, представленная в школьном курсе, знакомит юных исследователей с основными классами неорганических веществ, их взаимосвязью. Теория химической связи рассматривает природу связи, ее длину, энергию, полярность. Метод молекулярных орбиталей, валентных связей, теория кристаллического поля - основные вопросы, позволяющие объяснять особенности строения и свойств неорганических веществ.

Химическая термодинамика и кинетика, отвечающие на вопросы, касающиеся изменения энергии системы, описание электронных конфигураций ионов и атомов, их превращение в сложные вещества, базирующиеся на теории сверхпроводимости, дали начало новому разделу - химии полупроводниковых материалов.

Прикладной характер

Неорганическая химия для чайников предполагает использование теоретических вопросов в промышленности. Именно этот раздел химии стал основой для разнообразных производств, связанных с производством аммиака, серной кислоты, углекислого газа, минеральных удобрений, металлов и сплавов. С помощью химических методов в машиностроении получают сплавы с заданными свойствами и характеристиками.

Предмет и задачи

Что изучает химия? Это наука о веществах, их превращениях, а также областях применения. На данный временной промежуток есть достоверные сведения о существовании порядка ста тысяч разнообразных неорганических соединений. При химических превращениях происходит изменение состава молекул, образуются вещества с новыми свойствами.

Если изучается неорганическая химия с нуля, необходимо сначала познакомиться с ее теоретическими разделами, и только после этого можно приступать к практическому использованию полученных знаний. Среди многочисленных вопросов, рассматриваемых в этом разделе химической науки, необходимо упомянуть атомно-молекулярное учение.

Молекула в нем рассматривается в качестве наименьшей частицы вещества, обладающей его химическими свойствами. Она делимы до атомов, являющихся самыми небольшими частицами вещества. Молекулы и атомы находятся в постоянном движении, для них характерны электростатические силы отталкивания и притяжения.

Неорганическая химия с нуля должна базироваться на определении химического элемента. Под ним принято подразумевать вид атомов, имеющих определенный ядерный заряд, строение электронных оболочек. В зависимости от строения, они способны вступать в разнообразные взаимодействия, образуя вещества. Любя молекула является электрически нейтральной системой, то есть, в полной мере подчиняется всем законам, существующим в микросистемах.

Для каждого элемента, существующего в природе, можно определить количество протонов, электронов, нейтронов. В качестве примера приведем натрий. Число протонов в его ядре соответствует порядковому номеру, то есть, 11, и равно числу электронов. Для вычисления числа нейтронов, необходимо вычесть из относительной атомной массы натрия (23) его порядковый номер, получим 12. Для некоторых элементов были выявлены изотопы, отличающиеся по количеству нейтронов в атомном ядре.

Составление формул по валентности

Чем еще характеризуется неорганическая химия? Темы, рассматриваемые в этом разделе, предполагают составление формул веществ, проведение количественных вычислений.

Для начала проанализируем особенности составления формул по валентности. В зависимости от того, какие элементы будут включены в состав вещества, существуют определенные правила определения валентности. Начнем с составления бинарных соединений. Данный вопрос рассматривается в школьном курсе неорганической химии.

У металлов, располагающихся в главных подгруппах таблицы Менделеева, показатель валентности соответствует номеру группы, является постоянной величиной. Металлы, находящиеся в побочных подгруппах, могут проявлять различные валентности.

Есть некоторые особенности в определении валентности у неметаллов. Если в соединении он располагается в конце формулы, то проявляет низшую валентность. При ее вычислении, из восьми вычитают номер группы, в которой располагается этот элемент. Например, в оксидах, кислорода проявляет валентность два.

Если же неметалл располагается в начале формулы, он демонстрирует максимальную валентность, равную номеру его группы.

Как составить формулу вещества? Есть определенный алгоритм, которым владеют даже школьники. Сначала необходимо записать знаки элементов, упоминаемых в названии соединения. Тот элемент, который в наименовании указывается последним, в формуле располагают на первом месте. Далее над каждым из них ставят, пользуясь правилами, показатель валентности. Между значениями определяют наименьшее общее кратное. При его делении на валентности, получают индексы, располагаемые под знаками элементов.

Приведем в качестве примера вариант составления формулы оксида углерода (4). Сначала располагаем рядом знаки углерода и кислорода, входящие в состав данного неорганического соединения, получаем СО. Поскольку первый элемент имеет переменную валентность, она указана в скобках, у кислорода ее считают, вычитая из восьми шесть (номер группы), получают два. Конечная формула предложенного оксида будет иметь вид СО 2 .

Среди многочисленных научных терминов, используемых в неорганической химии, особый интерес представляет аллотропия. Она поясняет существование нескольких простых веществ, имеющих в основе один химический элемент, отличающийся между собой по свойствам и строению.

Классы неорганических веществ

Существует четыре основных класса неорганических веществ, заслуживающих детального рассмотрения. Начнем с краткой характеристики оксидов. Данный класс предполагает бинарные соединения, в которых обязательно присутствует кислород. В зависимости от того, какой элемент начинает формулу, существует их подразделение на три группы: основные, кислотные, амфотерные.

Металлы, имеющие валентность больше четырех, а также все неметаллы, образуют с кислородом кислотные оксиды. Среди их основных химических свойств, отметим способность взаимодействовать с водой (исключением является оксид кремния), реакции с основными оксидами, щелочами.

Металлы, валентность которых не превышает двух, образуют основные оксиды. Среди основных химических свойств данного подвида, выделим образование щелочей с водой, солей с кислотными оксидами и кислотами.

Для переходных металлов (цинка, бериллия, алюминия) характерно образование амфотерных соединений. Их основным отличием является двойственность свойств: реакции со щелочами и кислотами.

Основаниями называют масштабный класс неорганических соединений, имеющих схожее строение и свойства. В молекулах таких соединений содержится одна либо несколько гидроксильных групп. Сам термин был применен к тем веществам, которые в результате взаимодействия образуют соли. Щелочами называют основания, имеющие щелочную среду. К ним относят гидроксиды первой и второй групп главных подгрупп таблицы Менделеева.

В кислых солях, помимо металла и остатка от кислоты, есть катионы водорода. Например, гидрокарбонат натрия (пищевая сода) является востребованным соединением в кондитерской промышленности. В основных солях вместо катионов водорода находятся гидроксид-ионы. Двойные соли это составная часть многих природных минералов. Так, хлорид натрия, калия (сильвинит) находится в земной коре. Именно это соединение в промышленности используют для выделения щелочных металлов.

В неорганической химии существует специальный раздел, занимающийся изучением комплексных солей. Эти соединения активно участвуют в обменных процессах, происходящих в живых организмах.

Термохимия

Данный раздел предполагает рассмотрение всех химических превращений с точки зрения потери либо приобретения энергии. Гессу удалось установить зависимость между энтальпией, энтропией, и вывести закон, объясняющий изменение температуры для любой реакции. Тепловой эффект, характеризующий количество выделяемой либо поглощаемой энергии в данной реакции, определяется как разность суммы энтальпий продуктов реакций и исходных веществ, взятых с учетом стереохимических коэффициентов. Закон Гесса является основным в термохимии, позволяет проводить количественные расчеты для каждого химического превращения.

Коллоидная химия

Только в двадцатом веке данный раздел химии стал отдельной наукой, занимающейся рассмотрением разнообразных жидких, твердых, газообразных систем. Суспензии, взвеси, эмульсии, отличающиеся по размерам частиц, химических параметрам, подробно изучаются в коллоидной химии. Результаты многочисленных исследований активно внедряются в фармацевтической, медицинской, химической промышленности, дают возможность ученым и инженерам синтезировать вещества с заданными химическими и физическими характеристиками.

Заключение

Неорганическая химия в настоящее время является одним из самых больших разделов химии, содержит огромное количество теоретических и практических вопросов, позволяющих получать представления о составе веществ, их физических свойствах, химических превращениях, основных отраслях применения. При владении основными терминами, законами, можно составлять уравнения химических реакций, осуществлять по ним разнообразные математические вычисления. Все разделы неорганической химии, связанные с составлением формул, записью уравнений реакций, решением задач на растворы предлагаются ребятам на выпускном экзамене.

Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении.

В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединений.

Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется.

Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, излучение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

Атомно - молекулярное учение.

1. Все вещества состоят из молекул.

Молекула - наименьшая частица вещества, обладающая его химическими свойствами.

2. Молекулы состоят из атомов.

Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства. Различным элементам соответствуют различные атомы.

3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания.

Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 118 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.

Атомное ядро - центральная часть атома, состоящая из Zпротонов и Nнейтронов, в которой сосредоточена основная масса атомов.

Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе.

Сумма протонов и нейтронов атомного ядра называется массовым числом A= Z+ N .

Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

Массовое
число ®
Заряд ®
ядра

A
Z

63
29

Cu и

65
29

35
17

Cl и

37
17

Химическая формула - это условная запись состава вещества с помощью химических знаков (предложены в 1814 г. Й. Берцелиусом) и индексов (индекс - цифра, стоящая справа внизу от символа. Обозначает число атомов в молекуле). Химическая формула показывает, атомы каких элементов и в каком отношении соединены между собой в молекуле.

Аллотропия - явление образования химическим элементом нескольких простых веществ, различающихся по строению и свойствам. Простые вещества - молекулы, состоят из атомов одного и того же элемента.

C ложные вещества - молекулы, состоят из атомов различных химических элементов.

Постоянная атомной массы равна 1 / 12 массы изотопа 12 C - основного изотопа природного углерода.

m u = 1 / 12 m (12 C ) =1 а.е.м = 1,66057 10 -24 г

Относительная атомная масса (A r ) - безразмерная величина, равная отношению средней массы атома элемента (с учетом процентного содержания изотопов в природе) к 1 / 12 массы атома 12 C .

Средняя абсолютная масса атома (m ) равна относительной атомной массе, умноженной на а.е.м.

A r (Mg ) = 24,312

m (Mg ) = 24,312 1,66057 10 -24 = 4,037 10 -23 г

Относительная молекулярная масса (M r ) - безразмерная величина, показывающая, во сколько раз масса молекулы данного вещества больше 1 / 12 массы атома углерода 12 C .

M г = m г / (1 / 12 m а (12 C ))

m r - масса молекулы данного вещества;

m а (12 C ) - масса атома углерода 12 C .

M г = S A г (э). Относительная молекулярная масса вещества равна сумме относительных атомных масс всех элементов с учетом индексов.

Примеры.

M г (B 2 O 3 ) = 2 A r (B ) + 3 A r (O ) = 2 11 + 3 16 = 70

M г (KAl(SO 4) 2) = 1 A r (K) + 1 A r (Al) + 1 2 A r (S) + 2 4 A r (O) =
= 1 39 + 1 27 + 1 2 32 + 2 4 16 = 258

Абсолютная масса молекулы равна относительной молекулярной массе, умноженной на а.е.м. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют специальную единицу измерения - моль.

Количество вещества, моль . Означает определенное число структурных элементов (молекул, атомов, ионов). Обозначается n , измеряется в моль. Моль - количество вещества, содержащее столько же частиц, сколько содержится атомов в 12 г углерода.

Число Авогадро (N A ). Количество частиц в 1 моль любого вещества одно и то же и равно 6,02 10 23 . (Постоянная Авогадро имеет размерность - моль -1).

Пример.

Сколько молекул содержится в 6,4 г серы?

Молекулярная масса серы равна 32 г /моль. Определяем количество г/моль вещества в 6,4 г серы:

n (s ) = m (s ) / M (s ) = 6,4г / 32 г/моль = 0,2 моль

Определим число структурных единиц (молекул), используя постоянную Авогадро N A

N(s) = n (s) N A = 0,2 6,02 10 23 = 1,2 10 23

Молярная масса показывает массу 1 моля вещества (обозначается M ).

M = m / n

Молярная масса вещества равна отношению массы вещества к соответствующему количеству вещества.

Молярная масса вещества численно равна его относительной молекулярной массе, однако первая величина имеет размерность г/моль, а вторая - безразмерная.

M = N A m (1 молекула) = N A M г 1 а.е.м. = (N A 1 а.е.м.) M г = M г

Это означает, что если масса некоторой молекулы равна, например, 80 а.е.м. (SO 3 ), то масса одного моля молекул равна 80 г. Постоянная Авогадро является коэффициентом пропорциональности, обеспечивающим переход от молекулярных соотношений к молярным. Все утверждения относительно молекул остаются справедливыми для молей (при замене, в случае необходимости, а.е.м. на г) Например, уравнение реакции: 2 Na + Cl 2 2 NaCl , означает, что два атома натрия реагируют с одной молекулой хлора или, что одно и то же, два моль натрия реагируют с одним молем хлора.

Курс химии в школах начинается в 8-м классе с изучения общих основ науки: описываются возможные виды связи между атомами, типы кристаллических решеток и наиболее распространенные механизмы реакций. Это становится фундаментом для изучения важного, но более специфического раздела - неорганики.

Что это такое

Это наука, которая рассматривает принципы строения, основные свойства и реакционную способность всех элементов таблицы Менделеева. Важную роль в неорганике играет Периодический закон, который упорядочивает систематическую классификацию веществ по изменению их массы, номера и типа.

Курс охватывает и соединения, образуемые при взаимодействии элементов таблицы (исключение составляет только область углеводородов, рассматриваемая в главах органики). Задачи по неорганической химии позволяют отработать полученные теоретические знания на практике.

Наука в историческом аспекте

Название "неорганика" появилось в соответствии с представлением, что она охватывает часть химического знания, которая не связана с деятельностью биологических организмов.

Со временем было доказано, что большая часть органического мира может производить и «неживые» соединения, а углеводороды любого типа синтезируются в условиях лаборатории. Так, из аммония цианата, являющегося солью в химии элементов, немецкий ученый Велер смог синтезировать мочевину.

Во избежание путаницы с номенклатурой и классификацией типов исследований обеих наук программа школьного и университетского курсов следом за общей химией предполагает изучение неорганики в качестве фундаментальной дисциплины. В научном мире сохраняется аналогичная последовательность.

Классы неорганических веществ

Химия предусматривает такую подачу материала, при которой вводные главы неорганики рассматривают Периодический закон элементов. особого типа, которая основана на предположении, что атомные заряды ядер оказывают влияние на свойства веществ, причем данные параметры изменяются циклически. Изначально таблица строилась как отражение увеличения атомных масс элементов, но вскоре данная последовательность была отвергнута ввиду ее несостоятельности в том аспекте, в котором требуют рассмотрения данного вопроса неорганические вещества.

Химия, помимо таблицы Менделеева, предполагает наличие около сотни фигур, кластеров и диаграмм, отражающих периодичность свойств.

В настоящее время популярен сводный вариант рассмотрения такого понятия, как классы неорганической химии. В столбцах таблицы указываются элементы в зависимости от физико-химических свойств, в строках - аналогичные друг другу периоды.

Простые вещества в неорганике

Знак в таблице Менделеева и простое вещество в свободном состоянии - чаще всего разные вещи. В первом случае отражается только конкретный вид атомов, во втором - тип соединения частиц и их взаимовлияние в стабильных формах.

Химическая связь в простых веществах обуславливает их деление на семейства. Так, можно выделить две обширные разновидности групп атомов - металлы и неметаллы. Первое семейство насчитывает 96 элементов из 118 изученных.

Металлы

Металлический тип предполагает наличие одноименной связи между частицами. Взаимодействие основано на обобществлении электронов решетки, которая характеризуется ненаправленностью и ненасыщаемостью. Именно поэтому металлы хорошо проводят тепло, заряды, обладают металлическим блеском, ковкостью и пластичностью.

Условно металлы находятся слева в таблице Менделеева при проведении прямой линии от бора к астату. Элементы, близкие по расположению к этой черте, чаще всего носят пограничный характер и проявляют двойственность свойств (например, германий).

Металлы в большинстве образуют основные соединения. Степени окисления таких веществ обычно не превышают двух. В группе металличность повышается, а в периоде уменьшается. Например, радиоактивный франций проявляет более основные свойства, чем натрий, а в семействе галогенов у йода даже появляется металлический блеск.

Иначе дело обстоит в периоде - завершают подуровни перед которыми находятся вещества с противоположными свойствами. В горизонтальном пространстве таблицы Менделеева проявляемая реакционная способность элементов меняется от основной через амфотерную к кислотной. Металлы - хорошие восстановители (принимают электроны при образовании связей).

Неметаллы

Данный вид атомов включают в основные классы неорганической химии. Неметаллы занимают правую часть таблицы Менделеева, проявляя типично кислотные свойства. Наиболее часто данные элементы встречаются в виде соединений друг с другом (например, бораты, сульфаты, вода). В свободном молекулярном состоянии известно существование серы, кислорода и азота. Существует также несколько двухатомных газов-неметаллов - помимо двух вышеупомянутых, к ним можно отнести водород, фтор, бром, хлор и йод.

Являются наиболее распространенными веществами на земле - особенно часто встречаются кремний, водород кислород и углерод. Иод, селен и мышьяк распространены очень мало (сюда же можно отнести радиоактивные и неустойчивые конфигурации, которые расположены в последних периодах таблицы).

В соединениях неметаллы ведут себя преимущественно как кислоты. Являются мощными окислителями за счет возможности присоединения дополнительного числа электронов для завершения уровня.

в неорганике

Помимо веществ, которые представлены одной группой атомов, различают соединения, включающие несколько различных конфигураций. Такие вещества могут быть бинарными (состоящими из двух разных частиц), трех-, четырехэлементными и так далее.

Двухэлементные вещества

Особенное значение бинарности связи в молекулах придает химия. Классы неорганических соединений также рассматриваются с точки зрения образованной между атомами связи. Она может быть ионной, металлической, ковалентной (полярной или неполярной) или смешанной. Обычно такие вещества четко проявляют основные (при наличии металла), амфортерные (двойственные - особенно характерно для алюминия) или кислотные (если есть элемент со степенью окисления от +4 и выше) качества.

Трехэлементные ассоциаты

Темы неорганической химии предусматривают рассмотрение и данного вида объединения атомов. Соединения, состоящие из более чем двух групп атомов (чаще всего неорганики имеют дело с трехэлементными видами), обычно образуются при участии компонентов, значительно отличающихся друг от друга по физико-химическим параметрам.

Возможные виды связи - ковалентный, ионный и смешанный. Обычно трехэлементные вещества по поведению похожи на бинарные за счет того, что одна из сил межатомного взаимодействия значительно прочнее другой: слабая формируется во вторую очередь и имеет возможность диссоциировать в растворе быстрее.

Классы неорганической химии

Подавляющее большинство изучаемых в курсе неорганики веществ можно рассмотреть по простой классификации в зависимости от их состава и свойств. Так, различают оксиды и соли. Рассмотрение их взаимосвязи лучше начать со знакомства с понятием окисленных форм, в которых могут оказаться почти любые неорганические вещества. Химия таких ассоциатов рассматривается в главах об оксидах.

Оксиды

Окись представляет собой соединение любого химического элемента с кислородом в степени окисленности, равной -2 (в пероксидах -1 соответственно). Образование связи происходит за счет отдачи и присоединения электронов с восстановлением О 2 (когда наиболее электроотрицательным элементом является кислород).

Могут проявлять и кислотные, и амфотерные, и основные свойства в зависимости от второй группы атомов. Если в оксиде он не превышает степени окисления +2, если неметалл - от +4 и выше. В образцах с двойственной природой параметров достигается значение +3.

Кислоты в неорганике

Кислотные соединения имеют реакцию среды меньше 7 за счет содержания катионов водорода, которые могут перейти в раствор и впоследствии замениться ионом металла. По классификации являются сложными веществами. Большинство кислот можно получить путем разбавления соответствующих оксидов водой, например, при образовании серной кислоты после гидратации SO 3 .

Основная неорганическая химия

Свойства данного вида соединений обусловлены наличием гидроксильного радикала ОН, который дает реакцию среды выше 7. Растворимые основания называются щелочами, они являются наиболее сильными в этом классе веществ за счет полной диссоциации (распада на ионы в жидкости). Группа ОН при образовании солей может заменяться кислотными остатками.

Неорганическая химия - это двойственная наука, которая может описать вещества с разных точек зрения. В протолитической теории основания рассматриваются в качестве акцепторов катиона водорода. Такой подход расширяет понятие об этом классе веществ, называя щелочью любое вещество, способное принять протон.

Соли

Данный вид соединений находится межу основаниями и кислотами, так как является продуктом их взаимодействия. Так, в качестве катиона выступает обычно ион металла (иногда аммония, фосфония или гидроксония), а в качестве анионного вещества - кислотный остаток. При образовании соли водород замещается другим веществом.

В зависимости от соотношения количества реагентов и их силы по отношению друг к другу рационально рассматривать несколько видов продуктов взаимодействия:

  • основные соли получаются, если гидроксильные группы замещены не полностью (такие вещества имеют щелочную реакцию среды);
  • кислые соли образуются в противоположном случае - при недостатке реагирующего основания водород частично остается в соединении;
  • самыми известными и простыми для понимания являются средние (или нормальные) образцы - они являются продуктом полной нейтрализации реагентов с образованием воды и вещества только с катионом металла или его аналогом и кислотным остатком.

Неорганическая химия - это наука, предполагающая деление каждого из классов на фрагменты, которые рассматриваются в разное время: одни - раньше, другие - позже. При более углубленном изучении различают еще 4 вида солей:

  • Двойные содержат единственный анион при наличии двух катионов. Обычно такие вещества получаются в результате сливания двух солей с одинаковым кислотным остатком, но разными металлами.
  • Смешанный тип противоположен предыдущему: его основой является один катион с двумя разными анионами.
  • Кристаллогидраты - соли, в формуле которых есть вода в кристаллизованном состоянии.
  • Комплексы - вещества, в которых катион, анион или оба из них представлены в виде кластеров с образующим элементом. Такие соли можно получить преимущественно у элементов подгруппы В.

В качестве других веществ, включенных в практикум по неорганической химии, которые можно классифицировать как соли или как отдельные главы знания, можно назвать гидриды, нитриды, карбиды и интерметаллиды (соединения нескольких металлов, сплавом не являющиеся).

Итоги

Неорганическая химия - это наука, которая представляет интерес для каждого специалиста данной сферы вне зависимости от его интересов. Она включает в себя первые главы, изучаемые в школе по данному предмету. Курс неорганической химии предусматривает систематизацию больших объемов информации в соответствии с понятной и простой классификацией.

Фундаментальные труды, связанные с изучением строения, свойств и способности реагировать химические элементы и их соединения, были объединены в раздел неорганической химии. Сегодня общее число известных неорганических веществ равно 400 тысячам.

Виды химических соединений

Ионы и нейтральные молекулы, образующиеся в процессе присоединения к комплексообразующим частицам нейтральных лигандов, которыми именуются другие ионы или молекулы, называются комплексные соединения. Они могут иметь внешнюю сферу, диссоциирующую на катион комплексного малодиссоциирующего типа, или же нерастворимые водой соединения без внешней сферы. Также стоит отметить , к которым относится большая часть соединений, исключающих наличие углерода.

Диссоциация подразумевает под собой распад химических соединений на отдельные самостоятельные элементы. Так, к примеру, гидроксид аммония и щелочные металлы, именуемые еще как щелочи, относят к себе легкорастворимые основания в воде.

Следующий класс химических соединений металлов и некоторых неметаллов представляют собой сульфиды.

Химические элементы 17-й группы, имею хорошую реакцию со всеми веществами простого типа, за исключением немногих неметаллов. Они являются энергичными окислителями, это служит причиной, почему данные химические элементы встречаются в природе только в виде соединений.

Важнейший биогенный элемент с электронной структурой, обеспечивающей мгновенное разрушение и образование связей химического вида с биологической молекулой, образует соединения фосфора. Если они имеют степень окисления 5+, значит, соединение преобразуется как фосфорная кислота.

Грауберова или горькая соль, колчедан и цинковая обманка — важнейшие соединения серы, которые в природе могут встречаться как в чистом виде, так и входить в состав нефти, живых организмов как аминокислоты. Серу из горных пород добывают с помощью водяного пара, еще доступно ее получение в лабораторных условиях путем окислительно-восстановительной реакции.

Свойства химических реакций и процессов

Простое вещество, которое состоит из атомов единственного элемента, может образовывать некоторое число химических связей с частицами остальных элементов. Данный процесс называется , он может менять молекулярное строение вещества, с которым тесно связана такая электроизоляционная черта, как проводимость материала. Наиболее известным методом нахождения коэффициента в уравнениях реакций окислительно-восстановительного типа выступаетэлектронный баланс.Геометрический образ, который вводится для анализа кристаллов, имеющих сходство с канвой, называется кристаллическая решетка.

Изменения количества и качества реагирующего вещества за определенный промежуток времени понимается какскорость химической реакции,чья величина всегда положительная. Химический процесс, способствующий выделению через электроды частей растворных веществ, является конечным результатом электродной вторичной реакции, которая возникает во время прохождения электричества, образуя расплавов. Вещество, проводящее электричество в результате ионной диссоциации или передвижении частиц по кристаллической решетке, служит примером раствора электролитов.

Рассматривая химические свойства оксидов,стоит указать, что они могут взаимодействовать с водой, с дальнейшим образованием щелочи или основания, с кислотами, образовывая воду или солевой раствор, а также с кислотными оксидами.