Приложение 1
МЕХАНИЗМЫ РЕАКЦИЙ В ОРГАНИЧЕСКОЙ ХИМИИ
Н.В.Свириденкова, НИТУ «МИСиС», Москва
ЗАЧЕМ ИЗУЧАТЬ МЕХАНИЗМЫ ХИМИЧЕСКИХ РЕАКЦИЙ?
Что такое механизм химической реакции? Для ответа на этот вопрос рассмотрим уравнение реакции сжигания бутена:

C 4 H 8 + 6O 2 = 4CO 2 + 4H 2 O.

Если бы реакция в действительности протекала так, как это описано в уравнении, то одна молекула бутена должна была бы столкнуться одновременно сразу с шестью молекулами кислорода. Однако вряд ли это происходит: известно, что одновременное столкновение более чем трех частиц практически невероятно. Напрашивается вывод о том, что данная реакция, как и абсолютное большинство химических реакций, протекает в несколько последовательных стадий. Уравнение реакции показывает лишь исходные вещества и конечный результат всех превращений, и никак не объясняет, как образуются продукты из исходных веществ. Для того чтобы узнать, как именно протекает реакция, какие стадии она включает, какие промежуточные продукты образуются, необходимо рассмотреть механизм реакции.

Итак, механизм реакции – это детальное описание хода реакции по стадиям, которое показывает, в каком порядке и как разрываются химические связи в реагирующих молекулах и образуются новые связи и молекулы.

Рассмотрение механизма дает возможность объяснить, почему некоторые реакции сопровождаются образованием нескольких продуктов, а в других реакциях образуется только одно вещество. Знание механизма позволяет химикам предсказывать продукты химических реакций до того, как их провели на практике. Наконец, зная механизм реакции, можно управлять ходом реакции: создавать условия для увеличения ее скорости и повышения выхода нужного продукта.
ОСНОВНЫЕ ПОНЯТИЯ: ЭЛЕКТРОФИЛ, НУКЛЕОФИЛ, КАРБОКАТИОН
В органической химии реагенты традиционно делят на три типа: нуклеофильные , электрофильные и радикальные . С радикалами вы уже встречались ранее при изучении реакций галогенирования алканов. Рассмотрим более подробно другие типы реагентов.

Нуклеофильные реагенты или просто нуклеофилы (в переводе с греческого «любители ядер») – это частицы, обладающие избытком электронной плотности, чаще всего отрицательно заряженные или имеющие неподеленную электронную пару. Нуклеофилы атакуют молекулы с низкой электронной плотностью или положительно заряженные реагенты. Примерами нуклеофилов являются ионы ОН - , Br - , молекулы NH 3 .

Электрофильные реагенты или электрофилы (в переводе с греческого «любители электронов») – это частицы с недостатком электронной плотности. Часто электрофилы несут положительный заряд. Электрофилы атакуют молекулы с высокой электронной плотностью или отрицательно заряженные реагенты. Примеры электрофилов – Н + , NО 2 + .

В качестве электрофила может выступать также несущий частичный положительный заряд атом полярной молекулы. Примером может служить атом водорода в молекуле HBr, на котором возникает частичный положительный заряд из-за смещения общей электронной пары связи к атому брома, имеющему большее значение электроотрицательности H δ + → Br δ - .

Реакции, протекающие по ионному механизму, часто сопровождаются образованием карбокатионов. Карбокатионом называют заряженную частицу, имеющую свободную р -орбиталь на атоме углерода. Один из атомов углерода в карбокатионе несет на себе положительный заряд. Примерами карбокатионов могут служить частицы СН 3 -СН 2 + , CH 3 -CH + -CH 3 . Карбокатионы образуются на одной из стадий в реакциях присоединения к алкенам галогенов и галогеноводородов к алкенам, а также в реакциях замещения с участием ароматических углеводородов.
МЕХАНИЗМ ПРИСОЕДИНЕНИЯ К НЕПРЕДЕЛЬНЫМ УГЛЕВОДОРОДАМ

Присоединение галогенов, галогеноводородов, воды к непредельным углеводородам (алкенам, алкинам, диеновым углеводородам) протекает по ионному механизму , называемому электрофильным присоединением.

Рассмотрим этот механизм на примере реакции присоединения бромоводорода к молекуле этилена.

Несмотря на то, что реакция гидробромирования описывается очень простым равнением, ее механизм включает несколько стадий.

Стадия 1. На первой стадии молекула галогеноводорода образует с π -электронным облаком двойной связи неустойчивую систему – «π -комплекс» за счет частичной передачи π -электронной плотности на атом водорода, несущий частичный положительный заряд.


Стадия 2. Связь водород-галоген разрывается с образованием электрофильной частицы Н + , и нуклеофильной частицы Br - . Освободившийся электрофил Н + присоединяется к алкену за счет электронной пары двойной связи, образуя σ -комплекс – карбокатион.

Стадия 3. На этой стадии к положительно заряженному карбокатиону присоединяется отрицательно заряженный нуклеофил с образованием конечного продукта реакции.


ПОЧЕМУ ВЫПОЛНЯЕТСЯ ПРАВИЛО МАРКОВНИКОВА?
Предложенный механизм хорошо объясняет образование преимущественно одного из продуктов в случае присоединения галогеноводородов к несимметричным алкенам. Напомним, что присоединение галогеноводородов подчиняется правилу Марковникова, согласно которому водород присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода (т.е. связанному с наибольшим числом атомов водорода), а галоген к наименее гидрогенизированному. Например, при присоединении бромоводорода к пропену преимущественно образуется 2-бромпропан:

В реакциях электрофильного присоединения к несимметричным алкенам на второй стадии реакции может образоваться два карбокатиона. Далее реагировать с нуклеофилом, а значит, и определять продукт реакции будет более устойчивый из них.

Рассмотрим, какие карбокатионы образуются в случае пропена, и сравним их устойчивость. Присоединение протона Н + по месту двойной связи может приводить к образованию двух карбокатионов вторичного и первичного:

Образующиеся частицы очень нестабильны, поскольку положительно заряженный атом углерода в составе карбокатиона имеет неустойчивую электронную конфигурацию. Такие частицы стабилизируются при распределении (делокализации) заряда по возможно большему числу атомов. Электронодонорные алкильные группы, подающие электронную плотность на электронодефицитный атом углерода, способствуют и стабилизируют карбокатионы. Рассмотрим, как это происходит.

Из-за различия электроотрицательностей атомов углерода и водорода на атоме углерода группы -СН 3 появляется некоторый избыток электронной плотности, а на атоме водорода – некоторый ее дефицит С δ- Н 3 δ+ . Наличие такой группы рядом с атомом углерода, несущим положительный заряд, неизбежно вызывает смещение электронной плотности в сторону положительного заряда. Таким образом, метильная группа выступает как донор, отдавая часть своей электронной плотности. Про такую группу говорят, что она обладает положительным индуктивным эффектом (+ I -эффектом) . Чем большим количеством таких электронодонорных (+ I ) - заместителей окружен углерод, несущий положительный заряд, тем более устойчив соответствующий карбокатион. Таким образом, стабильность карбокатионов возрастает в ряду:

В случае пропена наиболее устойчивым является вторичный карбокатион, так как в нем положительно заряженный атом углерода карбокатиона стабилизирован двумя + I - эффектами соседних метильных групп. Преимущественно образуется и реагирует дальше именно он. Неустойчивый первичный карбокатион, по-видимому, существует очень короткое время, так что за время своей «жизни» не успевает присоединить нуклеофил и образовать продукт реакции.



При присоединении на последней стадии бромид-иона к вторичному карбокатиону и образуется 2-бромпропан:

ВСЕГДА ЛИ ВЫПОЛНЯЕТСЯ ПРАВИЛО МАРКОВНИКОВА?

Рассмотрение механизма реакции гидробромирования пропилена позволяет сформулировать общее правило электрофильного присоединения: «при взаимодействии несимметричных алкенов с электрофильными реагентами реакция протекает через образование наиболее стабильного карбокатиона». Это же правило позволяет объяснить образование в некоторых случаях продуктов присоединения вопреки правилу Марковникова. Так, присоединение галогеноводородов к трифторпропилену формально протекает против правила Марковникова:

Как может получиться такой продукт, ведь он образовался в результате присоединения Br - к первичному, а не ко вторичному карбокатиону? Противоречие легко устраняется при рассмотрении механизма реакции и сравнении стабильности промежуточно образующихся частиц:

Группа -СF 3 содержит три электроноакцепторных атома фтора, стягивающих электронную плотность от атома углерода. Поэтому на атоме углерода появляется существенный недостаток электронной плотности. Для компенсации возникающего частичного положительного заряда атом углерода стягивает на себя электронную плотность соседних углеродных атомов. Таким образом, группа -СF 3 является электроноакцепторной и проявляет отрицательный индуктивный эффект (- I ) . Более устойчивым в этом случае оказывается первичный карбокатион, так как дестабилизирующее влияние группы -CF 3 через две σ-связи ослабевает. А вторичный карбокатион, дестабилизированный соседней электроноакцепторной группой CF 3 , практически не образуется.

Аналогичное влияние на присоединение оказывает присутствие при двойной связи электроноакцепторных групп –NO 2 , -COOH, -COH и т.д. В этом случае также образуется продукт присоединения формально против правила Марковникова. Например, при присоединении хлороводорода к пропеновой (акриловой) кислоте образуется преимущественно 3-хлорпропановая кислота:

Таким образом, направление присоединения к непредельным углеводородам легко установить, анализируя строение углеводорода. Кратко это можно отразить следующей схемой:


Следует отметить, что правило Марковникова выполняется только в том случае, если реакция идет по ионному механизму. При проведении радикальных реакций правило Марковникова не выполняется. Так, присоединение бромоводорода HBr в присутствии пероксидов (H 2 O 2 или органических пероксидов) протекает против правила Марковникова:


Добавление пероксидов меняют механизм реакции, он становится радикальным. На этом примере видно, как важно знать механизм реакции и условия, в которых он реализуется. Тогда, выбрав соответствующие условия проведения реакции, можно направить ее по нужному в данном конкретном случае механизму, и получить именно те продукты, которые нужны.
МЕХАНИЗМ ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В АРОМАТИЧЕСКИХ УГЛЕВОДОРОДАХ
Наличие в молекуле бензола устойчивой сопряженной π -электронной системы делает реакции присоединения практически невозможными. Для бензола и его производных наиболее характерны реакции замещения атомов водорода, протекающие с сохранением ароматичности. При этом бензольное ядро, содержащее π- электроны, взаимодействует с электрофильными частицами. Такие реакции называют реакциями электрофильного замещения в ароматическом ряду . К ним относятся, например, галогенирование, нитрование и алкилирование бензола и его производных.

Все реакции электрофильного замещения в ароматических углеводородах протекают по одному и тому же ионному механизму независимо от характера реагента. Механизм реакций замещения включает несколько стадий: образование электрофильного агента Е + , образование π -комплекса, затем σ- комплекса и, наконец, распад σ- комплекса с образованием продукта замещения.

Электрофильная частица Е + образуется при взаимодействии реагента с катализатором, например, при действии на молекулу галогена хлоридом алюминия. Образующаяся частица Е + взаимодействует с ароматическим ядром, образуя сначала π -, а затем σ- комплекс:

При образовании σ- комплекса электрофильная частица Е + присоединяется к одному из атомов углерода бензольного кольца посредством σ- связи. В образовавшемся карбокатионе положительный заряд равномерно распределен (делокализован) между оставшимися пятью атомами углерода.

Реакция заканчивается отщеплением протона от σ- комплекса. При этом два электрона σ -связи С-Н возвращаются в цикл, и устойчивая шестиэлектронная ароматическая π -система регенирируется.

В молекуле бензола все шесть атомов углерода равноценны. Замещение атома водорода может происходить с равной вероятностью при любом из них. А как будет происходить замещение в случае гомологов бензола? Рассмотрим в качестве примера метилбензол (толуол).

Из экспериментальных данных известно, что электрофильное замещение в случае толуола всегда протекает с образованием двух продуктов. Так, нитрование толуола протекает с образованием п -нитротолуола и о -нитротолуола:

Аналогично протекают и другие реакции электрофильного замещения (бромирование, алкилирование). Также было установлено, что в случае толуола реакции замещения протекают быстрее и в более мягких условиях, чем в случае бензола.

Объяснить эти факты очень просто. Метильная группа является электронодонорной и вследствие этого дополнительно увеличивает электронную плотность бензольного кольца. Особенно сильное увеличение электронной плотности происходит в о- и п- положениях по отношению к группе -СН 3 , что облегчает присоединение именно в эти места положительно заряженной электрофильной частицы. Поэтому скорость реакции замещения в целом увеличивается, а заместитель направляется преимущественно в орто - и пара -положения.

Классификация реакций По числу исходных и конечных веществ: 1. Присоединение 2. Отщепление (элиминирование) 3. Замещение

Классификация реакций По механизму разрыва связей: 1. Гомолитические (радикальные) радикалы 2. Гетеролитические (ионные) ионы

Механизм реакции Механизм – детальное описание химической реакции по стадиям с указанием промежуточных продуктов и частиц. Схема реакции: Механизм реакции:

Классификация реакций по типу реагентов 1. Радикальные Радикал –химически активная частица с неспаренным электроном. 2. Электрофильные Электрофил – электронодефицитная частица или молекула с электронодефицитным атомом. 3. Нуклеофильные Нуклеофил – анион или нейтральная молекула, имеющая атом с неподеленной электронной парой.

Виды химических связей в органических веществах Основной тип связи – ковалентная (реже встречается ионная) Сигма-связь (σ-): Пи-связь (-)

АЛКАНЫ- алифатические (жирные) углеводороды «Алифатос» -масло, жир (греч). Cn. H 2 n+2 Предельные, насыщенные углеводороды

Гомологический ряд: CH 4 - метан C 2 H 6 - этан C 3 H 8 - пропан C 4 H 10 - бутан C 5 H 12 - пентан т. д. С 6 Н 14 - гексан С 7 Н 16 - гептан С 8 Н 18 - октан С 9 Н 20 - нонан С 10 Н 22 – декан и С 390 Н 782 –ноноконтатриктан (1985 г)

Атомно-орбитальная модель молекулы метана В молекуле метана у атома углерода уже нет S- и Р-орбиталей! Его 4 гибридные, равноценные по энергии и по форме SP 3 -орбитали, образуют 4 -связи с Sорбиталями атома водорода. Н Н 4 -связи

Реакция нитрования Коновалов Дмитрий Петрович (1856 -1928) 1880 год. Первая удачная попытка оживить «химических мертвецов» , которыми считались алканы. Нашел условия нитрования алканов. Рис. Источник: http: //images. yandex. ru.

Химические свойства I. Реакции с разрывом С-Н-связей (реакции замещения): 1. галогенирование 2. нитрование 3. сульфохлорирование II. Реакции с разрывом С-С-связей: 1. горение 2. крекинг 3. изомеризация

Как найти химика? Если хочешь найти химика, спроси, что такое моль и неионизованный. И если тот начнет говорить о пушных зверях и организации труда, спокойно уходи. Писатель-фантаст, популяризатор науки Айзек Азимов (1920– 1992) Рис. Источник: http: //images. yandex. ru.

1. Реакция галогенирования Хлорирование: RH + Cl 2 hv RCl + HCl Бромирование: RH + Br 2 hv RBr + HBr Например, хлорирование метана: CH 4 + Cl 2 CH 3 Cl + HCl

Стадии свободно-радикального механизма Схема реакции: CH 4 + Cl 2 CH 3 Cl + HCl Механизм реакции: I. Инициирование цепи – стадия зарождения свободных радикалов. Cl Cl 2 Cl Радикал - активная частица, инициатор реакции. – – Стадия требует энергии в виде нагревания или освещения. Последующие стадии могут протекать в темноте, без нагревания.

Стадии свободно-радикального механизма II. Рост цепи – основная стадия. CH 4 + Cl HCl + CH 3 + Cl 2 CH 3 Cl + Cl Стадия может включать несколько подстадий, на каждой из которых образуется новый радикал, но не Н !!! На II, основной стадии, обязательно образуется основной продукт!

Стадии свободно-радикального механизма III. Обрыв цепи – рекомбинация радикалов. Cl + Cl Cl 2 Cl + CH 3 CH 3 Cl CH 3 + CH 3 CH 3 -CH 3 Два любых радикала соединяются.

Селективность замещения Селективность – избирательность. Региоселективность – избирательность в определенной области реакций. Например, селективность галогенирования: 45% 3% Вывод? 55% 97%

Селективность галогенирования зависит от следующих факторов: Условия реакции. При низких температурах идет более селективно. Природа галогена. Чем активнее галоген, тем менее избирательна реакция. F 2 реагирует очень энергично, с разрушением С-С-связей. I 2 не реагирует с алканами в указанных условиях. Строение алкана.

Влияние строения алкана на селективность замещения. Если атомы углерода в алкане неравноценны, то замещение при каждом из них идет с разной скоростью. Относительн. скорость реакции замещения Первич. атом Н Вторич. атом Н Трет. атом Н хлорирование 1 3, 9 5, 1 бромирование 1 82 1600 Вывод?

Для отрыва третичного атома водорода требуется меньше энергии, чем для отрыва вторичного и первичного! Формула алкана Результат гомолиза ЕД, к. Дж/моль СН 4 СН 3 + Н 435 СН 3 - СН 3 С 2 Н 5 + Н 410 СН 3 СН 2 СН 3 (СН 3)2 СН + Н 395 (СН 3)3 СН (СН 3)3 С + Н 377

Направление протекания реакций Любая реакция протекает преимущественно в направлении образования более устойчивой промежуточной частицы!

Промежуточная частица в радикальных реакциях - свободный радикал. Наиболее легко образуется наиболее устойчивый радикал! Ряд устойчивости радикалов: R 3 C > R 2 CH > RCH 2 > CH 3 Алкильные группы проявляют электронодонорный эффект, за счет чего стабилизируют радикал

Реакция сульфохлорирования Схема реакции: RH + Cl 2 + SO 2 RSO 2 Cl + HCl Механизм реакции: 1. Cl Cl 2 Cl 2. RH + Cl R + HCl R + SO 2 RSO 2 + Cl 2 RSO 2 Cl + Cl и т. д. 3. 2 Cl Cl 2 и т. д.

Реакция Коновалова Д. П. Нитрование по Коновалову проводят действием разбавленной азотной кислоты при температуре 140 о. С. Схема реакции: RH + HNO 3 RNO 2 + H 2 O

Механизм реакции Коновалова HNO 3 N 2 O 4 1. N 2 O 4 2 NO 2 2. RH + NO 2 R + HNO 2 R + HNO 3 RNO 2 + OH RH + OH R + H 2 O и т. д. 3. Обрыв цепи.

Алкены – ненасыщенные углеводороды с одной С=С связью Cn. H 2 n С=С – функциональная группа алкенов

Химические свойства алкенов Общая характеристика Алкены – реакционноспособный класс соединений. Они вступают в многочисленные реакции, большинство из которых идут за счет разрыва менее прочной пи-связи. Е С-С (σ-) ~ 350 Кдж/моль Е С=С (-) ~ 260 Кдж/моль

Характерные реакции Присоединение – наиболее характерный тип реакций. Двойная связь – донор электронов, поэтому она склонна присоединять: Е – электрофилы, катионы или радикалы

Примеры реакций электрофильного присоединения 1. Присоединение галогенов – Присоединяются не все галогены, а только хлор и бром! – Поляризация нейтральной молекулы галогена может происходить под действием полярного растворителя или под действием двойной связи алкена. Красно-коричневый раствор брома становится бесцветным

Электрофильное присоединение Реакции протекают при комнатной температуре, не требуют освещения. Механизм ионный. Схема реакции: XY = Cl 2, Br 2, HCl, HBr, HI, H 2 O

Сигма – комплекс является карбокатионом – частицей с положительным зарядом на атоме углерода. Если в реакционной среде присутствуют другие анионы, то они тоже могут присоединяться к карбокатиону.

Например, присоединение брома, растворенного в воде. Эта качественная реакция на двойную С=С-связь протекает с обесцвечиванием раствора брома и образованием двух продуктов:

Присоединение к несимметричным алкенам Региоселективность присоединения! Правило Марковникова (1869): кислоты и вода присоединяются к несимметричным алкенам таким образом, что водород присоединяется к более гидрированному атому углерода.

Марковников Владимир Васильевич (1837 - 1904) Выпускник Казанского университета. С 1869 года – профессор кафедры химии. Основатель научной школы. Рис. Источник: http: //images. yandex. ru.

Объяснение правила Марковникова Реакция протекает через образование наиболее устойчивой промежуточной частицы – карбокатиона. первичный вторичный, более устойчивый

Ряд устойчивости карбокатионов: третичный вторичный первичный метильный Правило Марковникова в современной формулировке: присоединение протона к алкену происходит с образованием более стабильного карбокатиона.

Антимарковниковское присоединение CF 3 -CH=CH 2 + HBr CF 3 -CH 2 Br Формально реакция идет против правила Марковникова. CF 3 – электроноакцепторный заместитель Другие электроноакцепторы: NO 2, SO 3 H, COOH, галогены и т. п.

Антимарковниковское присоединение более устойчивый неустойчивый CF 3 – электроноакцептор, дестабилизирует карбокатион Реакция только формально идет против правила Марковникова. Фактически ему подчиняется, так как идет через более устойчивый карбокатион.

Перекисный эффект Хараша X CH 3 -CH=CH 2 + HBr CH 3 -CH 2 Br X = O 2, H 2 O 2, ROOR Механизм свободнорадикальный: 1. H 2 O 2 2 OH + HBr H 2 O + Br 2. CH 3 -CH=CH 2 + Br CH 3 -CH -CH 2 Br более устойчивый радикал CH 3 -CH -CH 2 Br + HBr CH 3 -CH 2 Br + Br и т. д. 3. Два любых радикала соединяются между собой.

Электрофильное присоединение 3. Гидратация – присоединение воды – Реакция протекает в присутствии кислотных катализаторов, чаще всего это – серная кислота. – Реакция подчиняется правилу Марковникова. Дешевый способ получения спиртов

На экзамене академик Иван Алексеевич Каблуков просит студента рассказать, как в лаборатории получают водород. «Из ртути» , - отвечает тот. «Как это "из ртути"? ! Обычно говорят "из цинка", а вот из ртути - это что-то оригинальное. Напишите-ка реакцию» . Студент пишет: Hg = Н + g И говорит: «Ртуть нагревают; она разлагается на Н и g. Н - водород, он легкий и поэтому улетает, а g - ускорение силы тяжести, тяжелое, остается» . «За такой ответ надо ставить "пятерку", - говорит Каблуков. - Давайте зачетку. Только "пятерку" я сначала тоже подогрею. "Три" улетает, а "два" остается» .

Двое химиков в лаборатории: - Вась, опусти руку в этот стакан. - Опустил. - Что-нибудь чувствуешь? - Нет. - Значит серная кислота в другом стакане.

Ароматические углеводороды Ароматический – душистый? ? Ароматические соединения – это бензол и вещества, напоминающие его по химическому поведению!

Реакции органических веществ можно формально разделить на четыре основных типа: замещения, присоединения, отщепления (элиминирования) и перегруппировки (изомеризации) . Очевидно, что все многообразие реакций органических соединений невозможно свести к предложенной классификации (например, реакции горения). Однако такая классификация поможет установить аналогии с уже знакомыми вам реакциями, протекающими между неорганическими веществами.

Как правило, основное органическое соединение, участвующее в реакции, называют субстратом , а другой компонент реакции условно рассматривают как реагент .

Реакции замещения

Реакции замещения - это реакции, в результате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстрате) на другие атомы или группы атомов.

В реакции замещения вступают предельные и ароматические соединения, такие как алканы, циклоалканы или арены. Приведем примеры таких реакций.

Под действием света атомы водорода в молекуле метана способны замещаться на атомы галогена, например, на атомы хлора:

Другим примером замещения водорода на галоген является превращение бензола в бромбензол:

Уравнение этой реакции может быть записано иначе:

При этой форме записи реагенты, катализатор, условия проведения реакции записывают над стрелкой, а неорганические продукты реакции - под ней.

В результате реакций замещения у органических веществ образуются не простое и сложное вещества, как в неорганической химии, а два сложных вещества.

Реакции присоединения

Реакции присоединения - это реакции, в результате которых две или более молекул реагирующих веществ соединяются в одну.

В реакции присоединения вступают ненасыщенные соединения, такие как алкены или алкины. В зависимости от того, какая молекула выступает в качестве реагента, различают гидрирование (или восстановление), галогенирование, гидрогалогенирование, гидратацию и другие реакции присоединения. Каждая из них требует определенных условий.

1.Гидрирование - реакция присоединения молекулы водорода по кратной связи:

2. Гидрогалогенирование - реакция присоединения галогенводорода (гидрохлорирование):

3. Галогенирование - реакция присоединения галогена:

4.Полимеризация - особый тип реакций присоединения, в ходе которых молекулы вещества с небольшой молекулярной массой соединяются друг с другом с образованием молекул вещества с очень высокой молекулярной массой - макромолекул.

Реакции полимеризации - это процессы соединения множества молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера.

Примером реакции полимеризации может служить получение полиэтилена из этилена (этена) под действием ультрафиолетового излучения и радикального инициатора полимеразации R.

Наиболее характерная для органических соединений ковалентная связь образуется при перекрывании атомных орбиталей и образовании общих электронных пар. В результате этого образуется общая для двух атомов орбиталь, на которой находится общая электронная пара. При разрыве связи судьба этих общих электронов может быть разной.

Типы реакционноспособных частиц

Орбиталь с неспаренным электроном, принадлежащая одному атому, может перекрываться с орбиталью другого атома, на которой также находится неспаренный электрон. При этом происходит образование ковалентной связи по обменному механизму:

Обменный механизм образования ковалентной связи реализуется в том случае, если общая электронная пара образуется из неспаренных электронов, принадлежащих разным атомам.

Процессом, противоположным образованию ковалентной связи по обменному механизму, является разрыв связи, при котором к каждому атому отходит по одному электрону (). В результате этого образуются две незаряженные частицы, имеющие неспаренные электроны:


Такие частицы называются свободными радикалами.

Свободные радикалы - атомы или группы атомов, имеющие неспаренные электроны.

Свободнорадикальные реакции - это реакции, которые протекают под действием и при участии свободных радикалов.

В курсе неорганической химии это реакции взаимодействия водорода с кислородом, галогенами, реакции горения. Реакции этого типа отличаются высокой скоростью, выделением большого количества тепла.

Ковалентная связь может образоваться и по донорно-акцепторному механизму. Одна из орбиталей атома (или аниона), на которой находится неподеленная электронная пара, перекрывается с незаполненной орбиталью другого атома (или катиона), имеющего незаполненную орбиталь, при этом формируется ковалентная связь, например:

Разрыв ковалентной связи приводит к образованию положительно и отрицательно заряженных частиц (); так как в данном случае оба электрона из общей электронной пары остаются при одном из атомов, у другого атома получается незаполненная орбиталь:

Рассмотрим электролитическую диссоциацию кислот:


Можно легко догадаться, что частица, имеющая неподеленную электронную пару R: — , т. е. отрицательно заряженный ион, будет притягиваться к положительно заряженным атомам или к атомам, на которых существует по крайней мере частичный или эффективный положительный заряд.
Частицы с неподеленными электронными парами называют нуклеофильными агентами (nucleus - «ядро», положительно заряженная часть атома), т. е. «друзьями» ядра, положительного заряда.

Нуклеофилы (Nu ) - анионы или молекулы, имеющие неподеленную пару электронов, взаимодействующие с участками молекул, на которых сосредоточен эффективный положительный заряд.

Примеры нуклеофилов: Сl — (хлорид-ион), ОН — (гидроксид-анион), СН 3 O — (метоксид-анион), СН 3 СОО — (ацетат-анион).

Частицы, имеющие незаполненную орбиталь, напротив, будут стремиться заполнить ее и, следовательно, будут притягиваться к участкам молекул, на которых присутствует повышенная электронная плотность, отрицательный заряд, неподеленная электронная пара. Они являются электрофилами, «друзьями» электрона, отрицательного заряда или частиц с повышенной электронной плотностью.

Электрофилы - катионы или молекулы, имеющие незаполненную электронную орбиталь, стремящиеся к заполнению ее электронами, так как это приводит к более выгодной электронной конфигурации атома.

Электрофилом с незаполненной орбиталью является не любая частица. Так, например, катионы щелочных металлов имеют конфигурацию инертных газов и не стремятся к приобретению электронов, так как имеют низкое сродство к электрону.
Из этого можно сделать вывод, что несмотря на наличие у них незаполненной орбитали, подобные частицы не будут являться электрофилами.

Основные механизмы протекания реакций

Выделено три основных типа реагирующих частиц - свободные радикалы, электрофилы, нуклеофилы - и три соответствующих им типа механизма реакций:

  • свободнорадикальные;
  • электрофильные;
  • нулеофильные.

Кроме классификации реакций по типу реагирующих частиц, в органической химии различают четыре вида реакций по принципу изменения состава молекул: присоединения, замещения, отщепления, или элиминирования (от англ. to eliminate - удалять, отщеплять) и перегруппировки. Так как присоединение и замещение могут происходить под действием всех трех типов реакционноспособных частиц, можно выделить несколько основных механизмов протекания реакций.

Кроме того, рассмотрим реакции отщепления, или элиминирования, которые идут под воздействием нуклеофильных частиц - оснований.
6. Элиминирование:

Отличительной чертой алкенов (непредельных углеводородов) является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

Гидрогалогенирование (присоединение галоген водорода):

При присоединении галогенводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному .

При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции разложения

Реакции замещения

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:

Реакции присоединения

При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

  1. Гидрирование – присоединение молекулы водорода:

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрирования , дегидратации , дегидрогалогенирования и т.п.:

Реакции изомеризации и перегруппировка

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:

Реакции окисления

В результате воздействия окисляющего реагента происходит повышение степени окисления углерода в органическом атоме, молекуле или ионе процесс за счет отдачи электронов, вследствие чего образуется новое соединение:

Реакции конденсации и поликонденсации

Заключаются во взаимодействии нескольких (двух и более) органических соединений с образованием новых С-С связей и низкомолекулярного соединения:

Поликонденсация – образование молекулы полимера из мономеров, содержащих функциональные группы с выделением низкомолекулярного соединения. В отличие от реакции полимеризации, в результате которых образуется полимер, имеющий состав, аналогичный мономеру, в результате реакций поликонденсации состав образованного полимера отличается от его мономера:

Реакции разложения

Это процесс расщепления сложного органического соединения на менее сложные или простые вещества:

С 18 H 38 → С 9 H 18 + С 9 H 20

Классификация химических реакций по механизмам

Протекание реакций с разрывом ковалентных связей в органических соединениях возможно по двум механизмам (т.е. пути, приводящему к разрыву старой связи и образованию новой) – гетеролитическому (ионному) и гомолитическому (радикальному).

Гетеролитический (ионный) механизм

В реакциях, протекающих по гетеролитическому механизму образуются промежуточные частицы ионного типа с заряженным атомом углерода. Частицы, несущие положительный заряд называются карбкатионы, отрицательный – карбанионы. При этом происходит не разрыв общей электронной пары, а ее переход к одному из атомов, с образованием иона:

Склонность к гетеролитическому разрыву проявляют сильно полярные, например Н–O, С–О и легко поляризуемые, например С–Вr, С–I связи.

Реакции, протекающие по гетеролитическому механизму делят на нуклеофильные и электрофильные реакции. Реагент, располагающий электронной парой для образования связи называют нуклеофильным или электронодонорным. Например, HO — ,RO — , Cl — , RCOO — , CN — , R — , NH 2 , H 2 O, NH 3 , C 2 H 5 OH, алкены, арены.

Реагент, имеющий незаполненную электронную оболочку и способные присоединить пару электронов в процессе образования новой связи.называют электрофильным реагентам относятся следующие катионы: Н + , R 3 C + , AlCl 3 , ZnCl 2 , SO 3 , BF 3 , R-Cl, R 2 C=O

Реакции нуклеофильного замещения

Характерны для алкил- и арилгалогенидов:

Реакции нуклеофильного присоединения

Реакции электрофильного замещения


Реакции электрофильного присоединения

Гомолитический (радикальный механизм)

В реакциях, протекающих по гомолитическому (радикальному) механизму на первой стадии происходит разрыв ковалентной связи с образованием радикалов. Далее образовавшийся свободный радикал выступает в качестве атакующего реагента. Разрыв связи по радикальному механизму свойственен для неполярных или малополярных ковалентных связей (С–С, N–N, С–Н).

Различают реакции радикального замещения и радикального присоединения

Реакции радикального замещения

Характерны для алканов

Реакции радикального присоединения

Характерны для алкенов и алкинов

Таким образом, мы рассмотрели основные типы химических реакций в органической химии

Категории ,

CH 3 -CH 3 + Cl 2 – (hv) ---- CH 3 -CH 2 Cl + HCl

C 6 H 5 CH 3 + Cl 2 --- 500 C --- C 6 H 5 CH 2 Cl + HCl

    Реакции присоединеия

Такие реакции характерны для органических соединений, содержащих кратные(двойные или тройные) связи. К реакциям этого типа относятся реакции присоединения галогенов, галогеноводородов и воды к алкенам и алкинам

CH 3 -CH=CH 2 + HCl ---- CH 3 -CH(Cl)-CH 3

    Реакции отщепления (элиминирования)

Это реакции, приводящие к образованию кратных связей. При отщеплении галогеноводородов и воды наблюдается определенная селективность реакции, описываемая правилом Зайцева, согласно которому атом водорода отщепляется от того атома углерода, при котором находится меньше атомов водорода. Пример реакции

CH3-CH(Cl)-CH 2 -CH 3 + KOH →CH 3 -CH=CH-CH 3 + HCl

    Полимеризации и поликонденсации

n(CH 2 =CHCl)  (-CH 2 -CHCl)n

    Окислительно-восстановительные

Наиболее интенсивная из окислительных реакций – это горение, реакция, характерная для всех классов органических соединений. При этом в зависимости от условий горения углерод окисляется до С (сажа), СО или СО 2 , а водород превращается в воду. Однако для химиков-органиков большой интерес представляют реакции окисления, проводимые в гораздо более мягких условиях, чем горение. Используемые окислители: растворы Br2 в воде или Cl2 в CCl 4 ; KMnO 4 в воде или разбавленной кислоте; оксид меди; свежеосажденные гидроксиды серебра (I) или меди(II).

3C 2 H 2 + 8KMnO 4 +4H 2 O→3HOOC-COOH + 8MnO 2 + 8KOH

    Этерификации (и обратной ей реакции гидролиза)

R 1 COOH + HOR 2 H+  R 1 COOR 2 + H 2 O

    Циклоприсоединение

Y R Y-R

+ ‖ → ǀ ǀ

R Y R-Y

+ →

11. Классификация органических реакций по механизму. Примеры.

Механизм реакции предполагает детальное постадийное описание химических реакций. При этом устанавливают, какие именно ковалентные связи разрываются, в каком порядке и каким путем. Столь же тщательно описывают образование новых связей в процессе реакции. Рассматривая механизм реакции, прежде всего обращают внимание на способ разрыва ковалентной связи в реагирующей молекуле. Таких способов два – гомолитический и гетеролитический.

Радикальные реакции протекают путем гомолитического (радикального) разрыва ковалентной связи:

Радикальному разрыву подвергаются неполярные или малополярные ковалентные связи (С–С, N–N, С–Н) при высокой температуре или под действием света. Углерод в радикале СН 3 имеет 7 внешних электронов (вместо устойчивой октетной оболочки в СН 4). Радикалы неустойчивы, они стремятся захватить недостающий электрон (до пары или до октета). Один из способов образования устойчивых продуктов – димеризация (соединение двух радикалов):

СН 3 + СН 3 СН 3 : СН 3 ,

Н + Н Н : Н.

Радикальные реакции – это, например, реакции хлорирования, бромирования и нитрования алканов:

Ионные реакции протекают с гетеролитическим разрывом связи. При этом промежуточно образуются короткоживущие органические ионы – карбкатионы и карбанионы – с зарядом на атоме углерода. В ионных реакциях связывающая электронная пара не разъединяется, а целиком переходит к одному из атомов, превращая его в анион:

К гетеролитическому разрыву склонны сильно полярные (Н–O, С–О) и легко поляризуемые (С–Вr, С–I) связи.

Различают нуклеофильные реакции (нуклеофил – ищущий ядро, место с недостатком электронов) и электрофильные реакции (электрофил – ищущий электроны). Утверждение, что та или иная реакция является нуклеофильной или электрофильной, условно всегда относится к реагенту. Реагент – участвующее в реакции вещество с более простой структурой. Субстрат – исходное вещество с более сложной структурой. Уходящая группа – это замещаемый ион, который был связан с углеродом. Продукт реакции – новое углеродсодержащее вещество (записывается в правой части уравнения реакции).

К нуклеофильным реагентам (нуклеофилам) относят отрицательно заряженные ионы, соединения с неподеленными парами электронов, соединения с двойными углерод-углеродными связями. К электрофильным реагентам (электрофилам) относят положительно заряженные ионы, соединения с незаполненными электронными оболочками (АlCl 3 , ВF 3 , FeCl 3), cоединения с карбонильными группами, галогены. Электрофилы – любые атом, молекула или ион, способные присоединить пару электронов в процессе образования новой связи. Движущая сила ионных реакций – взаимодействие противоположно заряженных ионов или фрагментов разных молекул с частичным зарядом (+ и –).