Школьных и вузовских учебниках можно встретить множество самых различных объяснений температуры. Температура определяется как величина, отличающая горячее от холодного, как степень нагретости тела, как характеристика состояния теплового равновесия, как величина, пропорциональная энергии, приходящейся на степень свободы частицы, и т.д. и т.п. Чаще всего температуру вещества определяют как меру средней энергии теплового движения частиц вещества, или как меру интенсивности теплового движения частиц. Небожитель физики – теоретик удивится: «А чего тут непонятного? Температура – это dQ / dS , где Q – теплота, а S – энтропия!» Такое изобилие определений у любого критически мыслящего человека вызывает подозрение, что общепринятого научного определения температуры в настоящее время в физике не существует.

Попытаемся найти простое и конкретное толкование этого понятия на уровне, доступном для выпускника средней школы. Представим себе такую картину. Выпал первый снег, и два брата на перемене в школе затеяли забаву , известную под названием «снежки». Посмотрим, какая энергия передается игрокам в ходе этого состязания. Для простоты полагаем, что все снаряды попадают в цель. Игра протекает с явным перевесом для старшего брата. У него и снежные шарики покрупнее, да и бросает он их с большей скоростью . Энергия всех брошенных им снежков , где N с – количество бросков, а - средняя кинетическая энергия одного шарика. Средняя энергия находится по обычной формуле:

здесь m - масса снежков, а v - их скорость.

Однако не вся затраченная старшим братом энергия будет передана его младшему партнеру. В самом деле, снежки попадают в цель под разными углами, поэтому некоторые из них, отразившись от человека, уносят часть первоначальной энергии. Правда, бывают и «удачно» брошенные шарики, результатом которых может быть синяк под глазом. В последнем случае вся кинетическая энергия снаряда передается обстреливаемому субъекту. Таким образом, мы приходим к выводу, что энергия снежков, переданная младшему брату, будет равна не E с , а
, где Θ с – усреднённое значение кинетической энергии, которое передается младшему партнеру при попадании в него одного снежного шарика . Понятно, что чем больше энергия, приходящаяся в среднем на один брошенный шарик, тем больше будет и средняя энергия Θ с , передаваемая мишени одним снарядом. В простейшем случае зависимость между ними может быть прямо пропорциональной: Θ с =a . Соответственно младший школьник затратил за всё состязание энергию
, но энергия, переданная старшему брату, будет меньше: она равна
, где N м – число бросков, а Θ м – усреднённая энергия одного снежка, поглощенная старшим братом.

Нечто подобное происходит при тепловом взаимодействии тел. Если привести в контакт два тела, то молекулы первого тела за небольшой промежуток времени передадут второму телу энергию в виде теплоты
, где Δ S 1 – количество соударений молекул первого тела со вторым телом, а Θ 1 – это средняя энергия, которую молекула первого тела передаёт за одно столкновение второму телу. За это же время молекулы второго тела потеряют энергию
. Здесь Δ S 2 – число элементарных актов взаимодействия (число ударов) молекул второго тела с первым телом, а Θ 2 - средняя энергия, которую молекула второго тела передаёт за один удар первому телу. Величина Θ в физике получила название температуры . Как показывает опыт, она связана со средней кинетической энергией молекул тел соотношением:

(2)

А теперь можно подвести итоги всех приведенных выше рассуждений. Какой же вывод мы должны сделать относительно физического содержания величины Θ ? Он, на наш взгляд, совершенно очевиден.

тела передаёт другому макроскопическому объекту за одно

соударение с этим объектом.

Как следует из формулы (2) температура – это энергетический параметр, значит, единицей измерения температуры в системе СИ является джоуль. Так, что строго говоря, Вы должны жаловаться примерно так: «Похоже, вчера я простудился, голова болит, и температура – аж 4,294·10 -21 Дж!» Не правда ли, непривычная единица измерения температуры, да и величина какая-то уж слишком малая? Но не забывайте, что речь идет об энергии, которая составляет часть от средней кинетической энергией всего-то одной молекулы!

На практике температуру измеряют в произвольно выбранных единицах : флорентах, кельвинах, градусах Цельсия, градусах Ранкина, градусах Фаренгейта и т.д. (Могу же я определить длину не в метрах, а в кабельтовых, саженях, шагах, вершках, футах и т.п. Помнится, в одном из мультфильмов длину удава считали даже в попугаях!)

Для измерения температуры необходимо использовать некоторый датчик, который следует привести в контакт с исследуемым предметом , Этот датчик мы будем называть термометрическим телом . Термометрическое тело должно обладать двумя свойствами. Во-первых, это оно должно быть значительно меньше исследуемого объекта (правильней сказать, теплоемкость термометрического тела должна быть много меньше теплоемкости исследуемого предмета). Вы никогда не пробовали измерить температуру, скажем, комара с помощью обычного медицинского градусника? А Вы попробуйте! Что, ничего не получается? Все дело в том, что в процессе теплообмена насекомое не сможет изменить энергетическое состояние градусника, так как суммарная энергия молекул комара ничтожно мала по сравнению с энергией молекул градусника .

Ну, ладно, возьму маленький предмет, к примеру, карандаш, и с его помощью попробую измерить свою температуру. Опять что-то не ладится... А причина неудачи заключается в том, что термометрическое тело должно обладать ещё одним обязательным свойством: при контакте с исследуемым объектом в термометрическом теле должны происходить изменения, которые можно зарегистрировать визуально, либо с помощью приборов.

Присмотритесь, как устроен обычный бытовой термометр. Его термометрическое тело - маленький сферический сосуд, соединенный с тонкой трубкой (капилляром). Сосуд заполняется жидкостью (чаще всего ртутью или подкрашенным спиртом). При контакте с горячим или холодным предметом жидкость изменяет свой объём, и соответственно изменяется высота столбика в капилляре. Но для того, чтобы зарегистрировать изменения высоты столбика жидкости необходимо к термометрическому телу приладить ещё и шкалу. Прибор, содержащий термометрическое тело и выбранную определенным образом шкалу, называется термометром . Наибольшее распространение в настоящее время получили термометры со шкалой Цельсия и шалой Кельвина.

Шкала Цельсия устанавливается по двум репéрным (опорным) точкам. Первым репером является тройная точка воды – такие физические условия, при которых три фазы воды (жидкость, газ, твердое тело) находятся в равновесии . Это значит, что масса жидкости, масса кристаллов воды и масса водяных паров остаются при этих условиях неизменными. В такой системе, конечно же, идут процессы испарения и конденсации, кристаллизации и плавления, но они уравновешивают друг друга. Если не нужна очень высокая точность измерения температуры (например, при изготовлении бытовых термометров), первую реперную точку получают, помещая термометрическое тело в тающий при атмосферном давлении снег или лёд. Второй реперной точкой является условия, при которых жидкая вода находится в равновесии со своим паром (проще сказать, точка кипения воды) при нормальном атмосферном давлении. На шкале термометра делаются отметки, соответствующие реперным точкам; интервал между ними делится на сто частей. Одно деление выбранной таким образом шкалы называется градусом Цельсия (˚C). Тройная точка воды принимается за 0 градусов шкалы Цельсия.

Шкала Цельсия получила наибольшее практическое применение в мире; к сожалению, она имеет ряд существенных недостатков. Температура по этой шкале может принимать отрицательные значения, между тем кинетическая энергия и соответственно температура могут быть только положительными. Кроме того, показания термометров со шкалой Цельсия (за исключением реперных точек) зависят от выбора термометрического тела.

Шкала Кельвина лишена недостатков шкалы Цельсия. В качестве рабочего вещества в термометрах со шкалой Кельвина должен использоваться идеальный газ. Шкала Кельвина также устанавливается по двум реперным точкам. Первой реперной точкой являются такие физические условия, при которых прекращается тепловое движение молекул идеального газа. Эта точка принимается в шкале Кельвина за 0. Второй реперной точкой является тройная точка воды. Интервал между реперными точками разделен на 273,15 части. Одно деление выбранной таким образом шкалы называют кельвином (К). Число делений 273,15 выбрано по тем соображениям, чтобы цена деления шкалы Кельвина совпадала с ценой деления шкалы Цельсия, тогда изменение температуры по шкале Кельвина совпадает с изменением температуры по шкале Цельсия; тем самым облегчается переход от показаний одной шкалы к другой. Температура по шкале Кельвина обозначается обычно буквой Т . Связь между температурами t в шкале Цельсия и температурой Т , измеренной в кельвинах, устанавливается соотношениями

и
.

Для перехода от температуры Т , измеренной в К, к температуре Θ в джоулях служит постоянная Больцмана k =1.38·10 -23 Дж/К, она показывает, сколько джоулей приходится на 1 К:

Θ = kT .

Некоторые умники пытаются найти какой-то тайный смысл в постоянной Больцмана; между тем k – самый заурядный коэффициент для пересчёта температуры из кельвинов в джоули.

Обратим внимание читателя на три специфические особенности температуры. Во-первых, она является усреднённым (статистическим) параметром ансамбля частиц. Представьте себе, что вы решили найти средний возраст людей на Земле. Для этого заходим в детский садик , суммируем возраст всех ребятишек и делим эту сумму на число детей. Оказывается, что средний возраст людей на Земле – 3.5 года! Вроде считали-то правильно, а результат получили нелепый. А всё дело в том, что в статистике надо оперировать громадным количеством объектов или событий. Чем выше их количество (в идеале оно должно быть бесконечно большим), тем точней будет значение среднестатистического параметра. Потому понятие температуры применимо только к телам, содержащим громадное количество частиц. Когда журналист в погоне за сенсацией сообщает, что температура частиц, падающих на космический корабль, равна нескольким миллионам градусов, родственникам космонавтов не надо падать в обморок: с кораблем ничего страшного не происходит: просто малограмотный работник пера выдает энергию небольшого количества космических частиц за температуру. А вот если корабль, направляясь на Марс, сбился бы с курса и приблизился бы к Солнцу, тогда – беда: число частиц, бомбардирующий корабль громадное, а температура солнечной короны – 1,5 миллиона градусов.

Во-вторых, температура характеризует тепловое, т.е. неупорядочное движение частиц. В электронном осциллографе картинка на экране рисуется узким, сфокусированным в точку, потоком электронов. Эти электроны проходят некоторую одинаковую разность потенциалов и приобретают примерно одинаковую скорость. Для такого ансамбля частиц грамотный специалист указывают их кинетическую энергию (к примеру, 1500 электрон-вольт), которая, конечно же, не является температурой этих частиц.

Наконец, в-третьих, заметим, что передача теплоты от одного тела к другому может осуществляться не только за счет непосредственного столкновения частиц этих тел, но и за счет поглощения энергии в виде квантов электромагнитного излучения (этот процесс происходит, когда Вы загораете на пляже). Поэтому более общее и точное определение температуры следует сформулировать так:

Температура тела (вещества, системы) – физическая величина, численно равная усреднённой энергии, которую молекула этого

тела передаёт другому макроскопическому объекту за один

элементарный акт взаимодействия с этим объектом .

В заключение, вернёмся к определениям, о которых шла речь в начале этой статьи. Из формулы (2) следует, что если известна температура вещества, то можно однозначно определить среднюю энергию частиц вещества. Таким образом, температура действительно является мерой средней энергии теплового движения молекул или атомов (заметим, кстати, что среднюю энергию частиц определить непосредственно в эксперименте невозможно). С другой стороны кинетическая энергия пропорциональна квадрату скорости; значит, чем больше температура, тем выше скорости молекул, тем интенсивнее их движение. Следовательно, температура является мерилом интенсивности теплового движения частиц. Определения эти, безусловно, приемлемые, но носят они уж слишком общий, чисто качественный характер.

Каждый человек ежедневно сталкивается с понятием температуры. Термин прочно вошел в нашу повседневную жизнь: мы разогреваем в микроволновой печи продукты или готовим еду в духовом шкафу, интересуемся погодой на улице или узнаем, холодная ли вода в реке - все это тесно связано с данным понятием. А что такое температура, что означает этот физический параметр, в чем он измеряется? На эти и другие вопросы ответим в статье.

Физическая величина

Давайте рассмотрим, что такое температура с точки зрения изолированной системы, находящейся в термодинамическом равновесии. Термин пришел из латинского языка и означает "надлежащее смешение", "нормальное состояние", "соразмерность". Эта величина характеризует состояние термодинамического равновесия какой-либо макроскопической системы. В том случае, когда находится вне равновесия, с течением времени происходит переход энергии от более нагретых объектов к менее нагретым. В результате получается выравнивание (изменение) температуры во всей системе. Это является первым постулатом (нулевым началом) термодинамики.

Температура определяет распределение составных частиц системы по уровням энергии и по скоростям, степень ионизации веществ, свойства равновесного электромагнитного излучения тел, полную объемную плотность излучения. Так как для системы, которая находится в термодинамическом равновесии, перечисленные параметры равны, то их принято называть температурой системы.

Плазма

Кроме равновесных тел, существуют системы, у которых состояние характеризуется несколькими значениями температуры, не равными между собой. Хорошим примером является плазма. Она состоит из электронов (легких заряженных частиц) и ионов (тяжелых заряженных частиц). При их столкновениях происходит быстрая передача энергии от электрона к электрону и от иона к иону. А вот между неоднородными элементами происходит медленный переход. Плазма может находиться в состоянии, при котором электроны и ионы в отдельности близки к равновесию. В таком случае можно принять отдельные температуры каждого вида частиц. Однако между собой эти параметры будут отличаться.

Магниты

В телах, у которых частицы обладают магнитным моментом, передача энергии обычно происходит медленно: от поступательных к магнитным степеням свободы, которые связаны с возможностью изменения направлений момента. Получается, что существуют состояния, при которых тело характеризуется температурой, не совпадающей с кинетическим параметром. Она соответствует поступательному движению элементарных частиц. Магнитная температура определяет часть внутренней энергии. Она может быть как положительной, так и отрицательной. В процессе выравнивания энергия будет передаваться от частиц с большим значением к частицам с меньшим значением температуры в том случае, если они являются одновременно положительными либо отрицательными. В противной ситуации этот процесс будет протекать в обратном направлении - отрицательная температура будет «выше» положительной.

А зачем это надо?

Парадокс заключается в том, что обывателю, чтобы провести процесс измерения как в быту, так и в промышленности, даже нет необходимости знать, что такое температура. Для него будет достаточным понимать, что это степень нагретости объекта или среды, тем более что с этими терминами мы знакомы с детства. Действительно, большая часть практических приборов, предназначенных для измерения этого параметра, фактически измеряет иные свойства веществ, которые изменяются от уровня нагрева или охлаждения. Например, давление, электрическое сопротивление, объем т. д. Далее такие показания вручную или автоматически пересчитываются в нужную величину.

Получается, чтобы определить температуру, нет необходимости изучать физику. По такому принципу живет большая часть населения нашей планеты. Если работает телевизор, то нет необходимости разбираться в переходных процессах полупроводниковых приборов, изучать, в розетке или как поступает на сигнал. Люди привыкли, что в каждой области есть специалисты, которые смогут починить или отладить систему. Обыватель не хочет напрягать свой мозг, ведь куда лучше смотреть мыльную оперу или футбол по «ящику», потягивая холодное пиво.

А я хочу знать

Но есть люди, чаще всего это студенты, которые либо в меру своей любознательности, либо по необходимости вынуждены изучать физику и определять, что такое температура на самом деле. В результате в своем поиске они попадают в дебри термодинамики и изучают ее нулевой, первый и второй законы. Кроме того, пытливому уму придется постичь и энтропию. И в конце своего пути он наверняка признает, что определение температуры в качестве параметра обратимой тепловой системы, которая не зависит от типа рабочего вещества, не добавит ясности в ощущение этого понятия. И все равно видимой частью будут принятые международной системой единиц (СИ) какие-то градусы.

Температура как кинетическая энергия

Более "осязаемым" является подход, который называют молекулярно-кинетической теорией. Из него формируется представление того, что теплота рассматривается в качестве одной из форм энергии. Например, кинетическая энергия молекул и атомов, параметр, усредненный по огромному числу хаотично движущихся частиц, оказывается мерилом того, что принято называть температурой тела. Так, частицы нагретой системы движутся быстрее, чем холодной.

Поскольку рассматриваемый термин тесно связан с усредненной кинетической энергией группы частиц, было бы вполне естественным в качестве единицы измерения температуры использовать джоуль. Тем не менее этого не происходит, что объясняется тем, что энергия теплового движения элементарных частиц весьма мала по отношению к джоулю. Поэтому использование его неудобно. Тепловое движение измеряют в единицах, полученных из джоулей посредством специального переводного коэффициента.

Единицы измерения температуры

На сегодняшний день используется три основных единицы для отображения этого параметра. В нашей стране температуру принято определять в градусах по Цельсию. В основе этой единицы измерения лежит точка затвердевания воды - абсолютное значение. Она является началом отсчета. То есть температура воды, при которой начинает образовываться лед, является нулем. В данном случае вода служит образцовым мерилом. Это условное значение было принято для удобства. Вторым абсолютным значением является температура пара, то есть момент, когда вода из жидкого состояния переходит в газообразное.

Следующей единицей являются градусы по Кельвину. Началом отсчета этой системы принято считать точку Так, один градус Кельвина равен одному Отличием является только начало отсчета. Получаем, что нуль по Кельвину будет равен минус 273,16 градусов по Цельсию. В 1954 году на Генеральной конференции по мерам и весам было решено заменить термин «градус Кельвина» для единицы температуры на «кельвин».

Третьей общепринятой единицей измерения являются градусы Фаренгейта. До 1960 года они широко использовались во всех англоязычных странах. Однако и сегодня в быту в США используют эту единицу. Система в корне отличается от описанных выше. За начало отсчета принята температура замерзания смеси соли, нашатыря и воды в пропорции 1:1:1. Так, на шкале Фаренгейта точка замерзания воды равна плюс 32 градуса, а кипения - плюс 212 градусов. В этой системе один градус равен 1/180 разности этих температур. Так, диапазон от 0 до +100 градусов по Фаренгейту соответствует диапазону от -18 до +38 по Цельсию.

Абсолютный нуль температуры

Давайте разберемся, что означает этот параметр. Абсолютным нулем называют значение предельной температуры, при которой давление идеального газа обратится в нуль при фиксированном объеме. Это самое низкое значение в природе. Как предсказывал Михайло Ломоносов, «это наибольшая или последняя степень холода». Из этого следует химический в равных объемах газов при условии одинаковой температуры и давления содержится одинаковое количество молекул. Что из этого следует? Существует минимальная температура газа, при которой его давление либо объем обратятся в нуль. Эта абсолютная величина соответствует нулю по Кельвину, или 273 градусам по Цельсию.

Несколько интересных фактов о Солнечной системе

Температура на поверхности Солнца достигает 5700 кельвинов, а в центре ядра - 15 миллионов кельвинов. Планеты Солнечной системы сильно отличаются друг от друга по уровню нагрева. Так, температура ядра нашей Земли составляет примерно столько же, сколько на поверхности Солнца. Самой горячей планетой считается Юпитер. Температура в центре его ядра в пять раз выше, чем на поверхности Солнца. А вот самое низкое значение параметра зафиксировали на поверхности Луны - оно составило всего 30 кельвинов. Это значение даже ниже, чем на поверхности Плутона.

Факты о Земле

1. Самое высокое значение температуры, которое зафиксировал человек, составило 4 миллиарда градусов по Цельсию. Эта величина в 250 раз превышает температуру ядра Солнца. Рекорд поставлен Нью-Йоркской естественной лабораторией Брукхэвена в ионном коллайдере, длина которого составляет около 4 километров.

2. Температура на нашей планете тоже не всегда идеальная и комфортная. Например, в городе Верхноянске в Якутии температура в зимний период опускается до минус 45 градусов по Цельсию. А вот в эфиопском городе Даллол обратная ситуация. Там среднегодовая температура составляет плюс 34 градуса.

3. Самые экстремальные условия, при которых работают люди, зафиксированы в золотых шахтах в Южной Африке. Шахтеры трудятся на глубине трех километров при температуре плюс 65 градусов по Цельсию.

Давление газа определяют хаотические удары перемещающихся молекул. Это означает, что уменьшение давления при охлаждении газа можно объяснить уменьшением средней энергии поступательного движения молекул (). Давление газа достигнет нуля, когда в соответствии с основным законом молекулярно кинетической теории:

Концентрация молекул газа n считается постоянной отличной от нуля.

Абсолютная температура идеального газа

Для охлаждения газа существует предел. Абсолютным нулем называют температуру, при которой прекращается поступательное движение молекул.

Идеальный газ (в отличие от реальных газов) остается в газообразном состоянии при любых температурах. Величину температуры, при которой прекратится поступательное движение молекул, можно найти из закона, который определил Ж. Шарль: температурный коэффициент давления идеального газа не зависит от рода газа и равен . При этом давление идеального газа при произвольной температуре равно:

где t - температура по шкале Цельсия; - давление при . Приравняем давление в выражении (2) к нулю, выразим температуру, при которой молекулы идеального газа прекратят свое поступательное движение:

В. Кельвин предположил, что полученное значение абсолютного нуля будет соответствовать прекращению поступательного движения молекул любого вещества. Температуры ниже абсолютного нуля (T=0 К) природе не бывает. Так как при температуре абсолютного нуля нельзя отнимать энергию теплового движения молекул и уменьшать температуру тела, так как энергия теплового движения отрицательной быть не может. В лабораториях получена температура близкая к абсолютному нулю (около тысячной доли градуса).

Термодинамическая шкала температур

По термодинамической шкале температур (она же шкала Кельвина) началом отсчета считается абсолютный нуль температур. Температуру обозначают большой буквой T. Размер градуса совпадает с градусом по шкале Цельсия:

Одинаковыми будут производные, если брать их с использованием разных температурных кал:

При переходе от шкалы Кельвина к шкале Цельсия сохраняются определения термических коэффициентов объемного расширения и коэффициента давления.

В международной системе единиц (СИ) единица температуры является основной, ее называют кельвином (К). В системе СИ термодинамическая шкала температур используется для отсчета температуры.

В соответствии с международным соглашением размер кельвина определяют из таких условий: температуру тройной точки волы принимают равной 273,16 К. Тройной точке воды по Цельсию, соответствует 0,01 o С, температура таяния льда по кельвину равна 273,15 К.

Температура, измеряемая в кельвинах, называется абсолютной. Связью между абсолютной температурой и температурой по Цельсию отражает выражение:

Абсолютная температура, кинетическая энергия молекул и давление идеального газа

Величина средней энергии поступательного движения молекул прямо пропорциональна температуре газа:

где - постоянная Больцмана. Формула (6) означает, что средняя величина кинетической энергии поступательного движения молекул не зависит от рода идеального газа, а определено только его температурой.

Давление идеального газа определено только его температурой:

Примеры решения задач

ПРИМЕР 1

Задание При какой температуре по шкале Цельсия средняя кинетическая энергия поступательного движения молекул газа будет равна Дж?
Решение За основу решения задачи примем закон, связывающий температуру по термодинамической шкале и среднюю кинетическую энергию молекул:

Выразим из (1.1) абсолютную температуру:

Проведем вычисления температуры:

Температура в кельвинах и температура по Цельсию связаны между собой выражением:

Получаем, температура газа равна:

Ответ

ПРИМЕР 2

Задание Как изменяется средняя кинетическая энергия поступательного движения молекул идеального газа, если процесс можно представить графиком риc.1?


Решение За основу решения задачи примем уравнение состояния идеального газа в виде: