Выбор в качестве основных точек температурной шкалы точек таяния льда и кипения воды совершенно произволен. Полученная таким образом температурная шкала оказалась неудобной для теоретических исследований.

Опираясь на законы термодинамики, Кельвину удалось построить так называемую абсолютную температурную шкалу (ее в настоящее время называют термодинамической шкалой температур или шкалой Кельвина), совершенно не зависящую ни от природы термометрического тела, ни от избранного термометрического параметра. Однако принцип построения такой шкалы выходит за пределы школьной программы. Мы рассмотрим этот вопрос, используя другие соображения.

Из формулы (2) вытекают два возможных способа установления температурной шкалы: использование изменения давления определенного количества газа при постоянном объеме или изменение объема при постоянном давлении. Такую шкалу называют идеальной газовой шкалой температуры .

Температура, определяемая равенством (2), называется абсолютной температурой . Абсолютная температура Τ не может быть отрицательной, так как слева в равенстве (2) стоят заведомо положительные величины (точнее, она не может быть разных знаков, она может быть либо положительной, либо отрицательной. Это зависит от выбора знака постоянной k . Так как условились температуру тройной точки считать положительной, то абсолютная температура может быть только положительной). Следовательно, наименьшее возможное значение температуры Т = 0 есть температура, когда давление или объем равны нулю.

Предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объеме или объем идеального газа стремится к нулю (т.е. газ как бы должен сжаться в "точку") при неизменном давлении, называется абсолютным нулем . Это самая низкая температура в природе.

Из равенства (3), учитывая, что \(~\mathcal h W_K \mathcal i = \frac{m_0 \mathcal h \upsilon^2 \mathcal i}{2}\) , вытекает физический смысл абсолютного нуля: абсолютный нуль - температура, при которой должно прекратиться тепловое поступательное движение молекул . Абсолютный нуль недостижим.

В Международной системе единиц (СИ) используют абсолютную термодинамическую шкалу температур. За нулевую температуру по этой шкале принят абсолютный нуль. В качестве второй опорной точки принята температура, при которой находятся в динамическом равновесии вода, лед и насыщенный пар, так называемая тройная точка (по шкале Цельсия температура тройной точки равна 0,01 °С). Каждая единица абсолютной температуры, называемая Кельвином (обозначается 1 К), равна градусу Цельсия.

Погружая колбу газового термометра в тающий лед, а затем в кипящую воду при нормальном атмосферном давлении, обнаружили, что давление газа во втором случае в 1,3661 раза больше, чем в первом. Учитывая это и пользуясь формулой (2), можно определить, что температура таяния льда T 0 = 273,15 К.

Действительно, запишем уравнение (2) для температуры T 0 таяния льда и температуры кипения воды (T 0 + 100):

\(~\frac{p_1V}{N} = kT_0 ;\) \(~\frac{p_2V}{N} = k(T_0 + 100) .\)

Разделим второе уравнение на первое, получим:

\(~\frac{p_2}{p_1} = \frac{T_0 + 100}{T_0} .\)

\(~T_0 = \frac{100}{\frac{p_2}{p_1} - 1} = \frac{100}{1,3661 - 1} = 273,15 K.\)

На рисунке 2 схематически показаны шкала Цельсия и термодинамическая шкала.

Абсолютный температурный нуль соответствует 273,15 градусам Цельсия ниже нуля, 459,67 ниже нуля по Фаренгейту. Для температурной шкалы Кельвина такая температура сама по себе является нулевой отметкой.

Сущность абсолютного нуля температуры

Понятие абсолютного нуля исходит из самой сущности температуры. Любое тело , которую отдает во внешнюю среду в ходе . При этом снижается температура тела, т.е. энергии остается меньше. Теоретически этот процесс может продолжаться до тех пор, пока количество энергии не достигнет такого минимума, при котором отдавать ее тело уже не сможет.
Отдаленное предвестие такой идеи можно найти уже у М.В.Ломоносова. Великий русский ученый объяснял теплоту «коловратным» движением. Следовательно, предельная степень охлаждения – это полная остановка такого движения.

По современным представлениям, абсолютный нуль температуры – , при котором молекулы наименьшим возможным уровнем энергии. При меньшем количестве энергии, т.е. при более низкой температуре ни одно физическое тело существовать не может.

Теория и практика

Абсолютный нуль температуры – понятие теоретическое, достичь его на практике невозможно в принципе, даже в условиях научных лабораторий с самой сложной аппаратурой. Но ученым удается охлаждать вещество до очень низких температур, которые близки к абсолютному нулю.

При таких температурах вещества приобретают удивительные свойства, которых они не могут иметь при обычных обстоятельствах. Ртуть, которую называют «живым серебром» из-за ее пребывания в состоянии, близком к жидкому, при такой температуре становится твердой – до такой степени, что ею можно забивать гвозди. Некоторые металлы становятся хрупкими, как стекло. Такой же твердой и становится резина. Если при температуре, близкой к абсолютному нулю, ударить молотком какой-нибудь резиновый предмет, он разобьется, как стеклянный.

Такое изменение свойств тоже связано с природой теплоты. Чем выше температура физического тела, тем интенсивнее и хаотичнее двигаются молекулы. По мере снижения температуры движение становится менее интенсивным, а структура – более упорядоченной. Так газ становится жидкостью, а жидкость твердым телом. Предельный уровень упорядоченности – кристаллическая структура. При сверхнизких температурах ее приобретают даже такие вещества, которые в обычном состоянии остаются аморфными, например, резина.

Интересные явления происходят и с металлами. Атомы кристаллической решетки колеблются с меньше амплитудой, рассеяние электронов уменьшается, поэтому падает электрическое сопротивление. Металл приобретает сверхпроводимость, практическое применение которой представляется весьма заманчивым, хотя и труднодостижимым.

Источники:

Тело – это одно из основных понятий в физике, под которым подразумевается форма существования материи или вещества. Это материальный объект, который характеризуется объемом и массой, иногда также другими параметрами. Физическое тело явно отделено от других тел границей. Существует несколько особенных видов физических тел, не следует понимать их перечисление как классификацию.

В механике под физическим телом чаще всего понимается материальная точка. Это некая абстракция, главным свойством которой является факт того, что реальными размерами тела для решения конкретной задачи можно пренебречь. Иными , материальная точка – это вполне конкретное тело, которое имеет размеры, форму и прочие подобные характеристики, но они не важны для того, чтобы решить имеющуюся задачу. К примеру, если нужно посчитать объекта на определенном участке пути, с его длиной при решении задачи можно совершенно не считаться. Еще один тип физических тел, рассматриваемый механикой – это абсолютно твердое тело. Механика такого тела точно такая же, как и механика материальной точки, но дополнительно обладает и другими свойствами. Абсолютно твердое тело состоит из точек, но ни расстояние между ними, ни распределение массы не меняются под нагрузками, которым подвергается тело. Это означает, что оно не может быть деформировано. Чтобы определить положение абсолютно твердого тела, достаточно задать привязанную к нему систему координат, обычно декартову. В большинстве случаев центр массы является также и центром системы координат. В абсолютно твердого тела не существует, но для решения многих задач такая абстракция очень удобна, хотя в релятивистской механике она не рассматривается, так как при движениях, скорость которых сравнима со скоростью света, эта модель демонстрирует внутренние противоречия. Противоположностью абсолютно твердому телу является деформируемое тело, которого могут смещаться друг относительно друга. Существуют особенные типы физических тел и в других отраслях физики. Например, в термодинамике введено понятие абсолютно черного тела. Это идеальная модель, физическое тело, которое поглощает абсолютно все электромагнитное излучение, попадающее на него. При этом, само оно вполне может продуцировать электромагнитное излучение и иметь любой цвет. Пример объекта, который наиболее приближен по свойствам к абсолютно черному телу – это Солнце. Если взять вещества, распространенные за Земле, то можно вспомнить о саже, которая поглощает 99% , попадающего на нее, кроме инфракрасного, с поглощением которого справляется гораздо хуже.

Видео по теме

- 48.67 Кб

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Воронежский Государственный Педагогический Университет»

Кафедра общей физики

на тему: «Абсолютный ноль температуры»

Выполнила: студентка 1-го курса, ФМФ,

ПИ, Кондратенко Ирина Александровна

Проверил: ассистент кафедры общей

физики Афонин Г.В.

Воронеж-2013

Введение………………………………………………………. 3

1.Абсолютный ноль…………………………………………...4

2.История……………………………………………………… 6

3.Явления, наблюдаемые вблизи абсолютного нуля………..9

Заключение…………………………………………………… 11

Список используемой литературы…………………………..12

Введение

На протяжении многих лет исследователи ведут наступление на абсолютный нуль температуры. Как известно, температура, равная абсолютному нулю, характеризует основное состояние системы многих частиц - состояние с наименьшей возможной энергией, при которой атомы и молекулы совершают так называемые «нулевые» колебания. Таким образом, глубокое охлаждение, близкое к абсолютному нулю (считается, что сам абсолютный нуль на практике недостижим), открывает неограниченные возможности для изучения свойств вещества.

1. Абсолютный ноль

Абсолютный нуль температуры (реже - абсолютный ноль температуры) - минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному нулю соответствует температура −273,15 °C.

В рамках применимости термодинамики абсолютный нуль на практике недостижим. Его существование и положение на температурной шкале следует из экстраполяции наблюдаемых физических явлений, при этом такая экстраполяция показывает, что при абсолютном нуле энергия теплового движения молекул и атомов вещества должна быть равна нулю, то есть хаотическое движение частиц прекращается, и они образуют упорядоченную структуру, занимая чёткое положение в узлах кристаллической решётки (жидкий гелий составляет исключение). Однако, с точки зрения квантовой физики и при абсолютном нуле температуры существуют нулевые колебания, которые обусловлены квантовыми свойствами частиц и физического вакуума, их окружающего.

При стремлении температуры системы к абсолютному нулю к нулю стремятся и ее энтропия, теплоемкость, коэффициент теплового расширения, прекращается хаотическое движение частиц, составляющих систему. Одним словом вещество становится супервеществом с сверхпроводимостью и сверхтекучестью.

Абсолютный нуль температуры на практике недостижим, а получение температур, предельно приближающихся к нему, представляет сложную экспериментальную проблему, но уже получены температуры, лишь на миллионные доли градуса отстоящие от абсолютного нуля. .

Найдем значение абсолютного нуля по шкале Цельсия, приравнивая объем V нулю и учитывая, что

Отсюда абсолютный нуль температуры равен -273°С.

Это предельная, самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказал Ломоносов.

Рис.1. Абсолютная шкала и шкала Цельсия

Единица абсолютной температуры в системе СИ называется кельвином (сокращенно К). Следовательно, один градус по шкале Цельсия равен одному градусу по шкале Кельвина: 1 °С = 1 К.

Таким образом, абсолютная температура является производной величиной, зависящей от температуры Цельсия и от экспериментально определяемого значения а. Однако она имеет фундаментальное значение.

С точки зрения молекулярно-кинетической теории абсолютная температура связана со средней кинетической энергией хаотического движения атомов или молекул. При Т = О К тепловое движение молекул прекращается.

2. История

Физическое понятие « абсолютный нуль температуры» имеет для современной науки очень важное значение: с ним тесно связано такое понятие, как сверхпроводимость, открытие которой произвело настоящий фурор во второй половине ХХ века.

Чтобы понять, что же такое абсолютный ноль, следует обратиться к работам таких известных физиков, как Г. Фаренгейт, А. Цельсий, Ж. Гей-Люссак и У. Томсон. Именно они сыграли ключевую роль в создании используемых до сих пор основных температурных шкал.

Первым свою температурную шкалу предложил в 1714 году немецкий физик Г. Фаренгейт. При этом за абсолютный нуль, то есть за самую низкую точку этой шкалы, была принята температура смеси, которая включала в себя снег и нашатырь. Следующим важным показателем стала нормальная температура тела человека, которая стала равняться 1000. Соответственно, каждое деление данной шкалы получило название «градус Фаренгейта», а сама шкала – «шкалы Фаренгейта».

Спустя 30 лет шведский астроном А. Цельсий предложил свою температурную шкалу, где основными точками стали температура таяния льда и точка кипения воды. Эта шкала получила название «шкалы Цельсия», она до сих пор популярна в большинстве стран мира, в том числе и в России.

В 1802 году, проводя свои знаменитые опыты, французский ученый Ж. Гей-Люссак обнаружил, что объем массы газа при постоянном давлении находится в прямой зависимости от температуры. Но самое любопытное состояло в том, что при изменении температуры на 10 по шкале Цельсия, объем газа увеличивался или уменьшался на одну и ту же величину. Произведя необходимые вычисления, Гей-Люссак установил, что эта величина равнялась 1/273 от объема газа. Из этого закона следовал напрашивающийся вывод: температура, равная -273°С, является наименьшей температурой, даже подойдя к которой вплотную, достичь ее невозможно. Именно эта температура получила название «абсолютный нуль температуры». Более того, абсолютный нуль стал отправной точкой для создания шкалы абсолютной температуры, активное участие в котором принял английский физик У. Томсон, известный также, как лорд Кельвин. Его основное исследование касалось доказательства того, что ни одно тело в природе не может быть охлаждено ниже, чем абсолютный нуль. При этом он активно использовал второй закон термодинамики, поэтому, введенная им в 1848 году абсолютная шкала температур стала называться термодинамической или «шкалой Кельвина».В последующие годы и десятилетия происходило только числовое уточнение понятия «абсолютный ноль».

Рис.2. Соотношение между температурными шкалами Фаренгейта (F), Цельсия (C) и Кельвина (K).

Стоит также обратить внимание, что абсолютный ноль играет очень важную роль в системе СИ. Все дело в том, что в 1960 году на очередной Генеральной конференции по мерам и весам единица термодинамической температуры – кельвин – стала одной из шести основных единиц измерений. При этом специально оговаривалось, что один градус Кельвина

численно равен одному градусу Цельсия, только вот точкой отсчета «по Кельвину» принято считать абсолютный ноль.

Основной физический смысл абсолютного нуля состоит в том, что, согласно основным физическим законам, при такой температуре энергия движения элементарных частиц, таких как атомы и молекулы, равна нулю, и в этом случае должно прекратиться любое хаотическое движение этих самых частиц. При температуре, равной абсолютному нулю, атомы и молекулы должны занять четкое положение в основных пунктах кристаллической решетки, образуя упорядоченную систему.

В настоящее время, используя специальное оборудование, ученые смогли получить температуру, лишь на несколько миллионных долей превышающую абсолютный ноль. Достичь же самой этой величины физически невозможно из-за второго закона термодинамики.

3.Явления, наблюдаемые вблизи абсолютного нуля

При температурах, близких к абсолютному нулю, на макроскопическом уровне могут наблюдаться чисто квантовые эффекты, такие как:

1.Сверхроводимость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура). Известны несколько сотен соединений, чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние.

Сверхпроводимость - квантовое явление. Оно характеризуется также эффектом Мейснера, заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. Существование этого эффекта показывает, что сверхпроводимость не может быть описана просто как идеальная проводимость в классическом понимании. Открытие в 1986-1993 гг. ряда высокотемпературных сверхпроводников (ВТСП) далеко отодвинуло температурную границу сверхпроводимости и позволило практически использовать сверхпроводящие материалы не только при температуре жидкого гелия (4.2 К), но и при температуре кипения жидкого азота (77 К), гораздо более дешевой криогенной жидкости.

2.Сверхтекучесть - способность вещества в особом состоянии (квантовой жидкости), возникающем при понижении температуры к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разреженных атомных бозе-конденсатах, твёрдом гелии.

Сверхтекучесть объясняется следующим образом. Поскольку атомы гелия являются бозонами, квантовая механика допускает нахождение в одном состоянии произвольного числа частиц. Вблизи абсолютного нуля температур все атомы гелия оказываются в основном энергетическом состоянии. Поскольку энергия состояний дискретна, атом может получить не любую энергию, а только такую, которая равна энергетическому зазору между соседними уровнями энергии. Но при низкой температуре энергия столкновений может оказаться меньше этой величины, в результате чего рассеяния энергии попросту не будет происходить. Жидкость будет течь без трения.

3. Конденсат Бозе - Эйнштейна - агрегатное состояние вещества, основу которого составляют бозоны, охлаждённые до температур, близких к абсолютному нулю (меньше миллионной доли градуса выше абсолютного нуля). В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне.

Заключение

Изучение свойств вещества вблизи абсолютного нуля представляет большой интерес для науки и техники.

Многие свойства вещества, завуалированные при комнатных температурах тепловыми явлениями (например, тепловыми шумами), при понижении температуры начинают все более и более проявляться, позволяя в чистом виде изучать закономерности и связи, присущие данному веществу. Исследования в области низких температур позволили открыть много новых явлений природы, таких, например, как сверхтекучесть гелия и сверхпроводимость металлов.

При низких температурах резко меняются свойства материалов. Одни металлы повышают свою прочность, становятся пластичными, другие становятся хрупкими, как стекло.

Изучение физико-химических свойств при низких температурах позволит в будущем создать новые вещества с заранее заданными свойствами. Все это весьма ценно для конструирования и создания космических кораблей, станций и приборов.

Известно, что при радиолокационных исследованиях космических тел принимаемый радиосигнал весьма мал и его трудно выделить из различных шумов. Созданные недавно учеными молекулярные генераторы и усилители работают при весьма низких температурах и поэтому обладают очень низким уровнем шума.

Низкотемпературные электрические и магнитные свойства металлов, полупроводников и диэлектриков позволяют разработать принципиально новые радиотехнические устройства микроскопических размеров.

Сверхнизкие температуры используются для создания вакуума, необходимого, например, для работы гигантских ускорителей ядерных частиц.

Список используемой литературы

  1. http://wikipedia.org
  2. http://rudocs.exdat.com
  3. http://fb.ru

Краткое описание

На протяжении многих лет исследователи ведут наступление на абсолютный нуль температуры. Как известно, температура, равная абсолютному нулю, характеризует основное состояние системы многих частиц - состояние с наименьшей возможной энергией, при которой атомы и молекулы совершают так называемые «нулевые» колебания. Таким образом, глубокое охлаждение, близкое к абсолютному нулю (считается, что сам абсолютный нуль на практике недостижим), открывает неограниченные возможности для изучения свойств вещества.

Задумывались ли вы над тем, насколько низкой может быть температура? Что представляет собой абсолютный ноль? Удастся ли человечеству когда-нибудь его достичь и какие возможности откроются после такого открытия? Эти и другие подобные вопросы издавна занимали умы многих физиков да и просто любознательных людей.

Что есть абсолютный ноль

Даже если с детства не любили физику, вам наверняка знакомо понятие температуры. Благодаря молекулярно-кинетической теории теперь мы знаем, что между ней и движениями молекул и атомов существует определенная статическая связь: чем больше температура любого физического тела, тем быстрее движутся его атомы, и наоборот. Возникает вопрос: «Существует ли такая нижняя граница, при которой элементарные частицы застынут на месте?». Ученые считают, что это теоритически возможно, столбик термометра окажется на отметке -273,15 градуса по шкале Цельсия. Данное значение получило название абсолютный ноль. Другими словами, это минимально возможный предел, до которого может быть охлаждено физическое тело. Есть даже абсолютная температурная шкала (шкала Кельвина), в которой абсолютный ноль является точкой отсчета, а единичное деление шкалы равно одному градусу. Ученые по всему миру не прекращают работы по достижению данного значения, так как это сулит человечеству огромные перспективы.

Почему это так важно

Предельно низкие и предельно высокие температуры тесно связаны с понятием сверхтекучести и сверхпроводимости. Исчезновение электрического сопротивления в сверхпроводниках позволит достичь немыслимых значений КПД и исключить любые потери энергии. Если бы удалось найти способ, который позволит свободно достичь значения "абсолютный нуль", многие проблемы человечества были бы решены. Поезда, парящие над рельсами, более легкие и менее объемные двигатели, трансформаторы и генераторы, высокоточная магнитоэнцефалография, высокоточные часы - вот лишь несколько примеров того, что может принести сверхпроводимость в нашу жизнь.

Последние научные достижения

В сентябре 2003 года исследователи из MIT и NASA сумели охладить газ натрий до рекордно низкого значения. В ходе эксперимента до финишной отметки (абсолютный ноль) им не хватило всего половины миллиардной доли градуса. В процессе тестов натрий все время находился в магнитном поле, которое удерживало его от прикосновения к стенкам контейнера. Если бы удалось преодолеть температурный барьер, молекулярное движение в газе полностью бы остановилось, ведь такое охлаждение извлекло бы всю энергию из натрия. Исследователи применили методику, автор которой (Вольфганг Кеттерле) получил в 2001 году Нобелевскую премию по физике. Ключевым моментом в проводимых тестах были газовые процессы конденсации Бозе-Эйнштейна. Меж тем, никто еще не отменял третье начало термодинамики, согласно которому абсолютный ноль - это не только непреодолимая, но и недостижимая величина. К тому же действует принцип неопределенности Гейзенберга, и атомы просто не могут остановиться как вкопанные. Таким образом, пока что абсолютный нуль температуры для науки остается недостижимым, хоть ученые и смогли приблизиться к нему на ничтожно маленькое расстояние.

Термин «температура» появился во времена, когда ученые-физики думали, что теплые тела состоят из большего количества специфической субстанции - теплорода, - чем такие же тела, но холодные. А температура трактовалась как величина, соответствующая количеству теплорода в теле. С тех пор температуру любых тел измеряют в градусах. Но на самом деле это мера кинетической энергии движущихся молекул, и, исходя из этого, ее следует измерять в Джоулях, в соответствии с Системой единиц Си.

Понятие «абсолютный ноль температуры» исходит из второго начала термодинамики. По нему процесс перехода тепла от холодного тела к горячему невозможен. Это понятие введено английским физиком У. Томсоном. Ему за достижения в физике было даровано дворянское звание «лорд» и титул «барон Кельвин». В 1848 г. У.Томсон (Кельвин) предложил использовать температурную шкалу, в которой за начальную точку принял абсолютный ноль температуры, соответствующий предельному холоду, а ценой деления взял градус Цельсия. Единицей Кельвина является 1/27316 доля температуры тройной точки воды (около 0 град. С), т.е. температуры, при которой чистая вода сразу находится в трех видах: лед, жидкая вода и пар. температуры - это минимально возможная низкая температура, при которой движение молекул останавливается, и из вещества уже невозможно извлечь тепловую энергию. С тех пор шкала абсолютных температур стала называться его именем.

Температура измеряется по разным шкалам

Наиболее употребляемая шкала температуры носит название «шкала Цельсия». Она построена на двух точках: на температуре фазового перехода воды из жидкости в пар и воды в лед. А. Цельсий в 1742 г. предложил расстояние между опорными точками разделить на 100 промежутков, а воды принять за ноль, при этом точку замерзания за 100 градусов. Но швед К. Линней предложил сделать наоборот. С тех пор вода замерзает при ноле градусов А. Цельсия. Хотя точно по Цельсию она должна кипеть. Абсолютный ноль по Цельсию соответствует минус 273,16 градусов Цельсия.

Есть еще несколько температурных шкал: Фаренгейта, Реомюра, Ранкина, Ньютона, Рёмера. Они имеют разные и цену деления. Например шкала Реомюра тоже построена на реперах кипения и замерзания воды, но она имеет 80 делений. Шкала Фаренгейта, появившаяся в 1724 г., используется в быту только в некоторых странах мира, в т. ч. США; одна - температура смеси водяной лед - нашатырь и другая - человеческого тела. Шкала делится на сто делений. Ноль Цельсия соответствует 32 Перевод градусов в фаренгейты можно сделать по формуле: F = 1,8 C + 32. Обратный перевод: С = (F - 32)/1,8, где: F - градусы Фаренгейта, С - градусы Цельсия. Если вам лень считать, сходите в онлайн-сервис по переводу Цельсия в Фаренгейты. В рамочке наберите число градусов Цельсия, нажмите «Рассчитать», выберите «Фаренгейт» и нажмите «Пуск». Результат появится сразу.

Названа в честь английского (точнее шотландского) физика Уильяма Дж. Ранкина, бывшего современником Кельвина и одним из создателей технической термодинамики. В его шкале важных точек три: начало - абсолютный ноль, точки замерзания воды 491,67 градус Ранкина и закипания воды 671,67 град. Число делений между замерзанием воды и ее закипанием и у Ранкина, и у Фаренгейта равно 180.

Большинством этих шкал пользуются исключительно физики. А 40% опрошенных в наши дни американских школьников выпускных классов сказали, что они не знают, что такое абсолютный ноль температуры.