Определение

Особенности

Принцип работы

Гидроэнергетика в мире

Крупнейшие ГЭС в мире

Тукуруи ГЭС

Гранд-Кули

Саяно-Шушенская ГЭС

Красноярская ГЭС

Черчилл-Фолс (ГЭС)

Плотина Гувера

Асуанские плотины

Гидроэлектростанции (ГЭС) Российской Федерации

Предыстория развития гидростроения в Российской Федерации

Крупнейшие гидроэлектростанции (ГЭС) Российской Федерации

Братская ГЭС

Усть-Илимская ГЭС

Богучанская ГЭС

Волжская ГЭС

Жигулёвская ГЭС

Бурейская ГЭС

Аварии и происшествия на ГЭС

Плотина Вайонт

Новосибирская ГЭС

Аварии на Саяно-Шушенской ГЭС

Малая гидроэлектростанция (ГЭС)

Гидроэлектроста́нция (ГЭС ) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции (ГЭС) обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электричества на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.








Особенности

Исходная стоимость электричества на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.

Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии

Возобновляемый источник энергии

Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций

Строительство ГЭС обычно более капиталоёмкое

Часто эффективные ГЭС более удалены от потребителей

Водохранилища часто занимают значительные территории

Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию .

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции (ГЭС) располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля за работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

мощные — вырабатывают от 25 МВТ до 250 МВт и выше;

средние — до 25 МВт;

малые гидроэлектростанции (ГЭС) — до 5 МВт.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции (ГЭС).

Гидроэлектростанции (ГЭС) также делятся в зависимости от максимального использования напора воды:

высоконапорные — более 60 м;

средненапорные — от 25 м;

низконапорные — от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях (ГЭС) применяются различные виды турбин. Для высоконапорных — ковшовые и радиально осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины различаются некоторыми техническими характеристиками, а также камерами — железными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

русловые и приплотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции (ГЭС) строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.

плотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

деривационные гидроэлектростанции (ГЭС). Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида безнапорные, или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные моменты (времена не пиковой нагрузки), агрегаты ГАЭС работают как насосы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и, соответственно, приводит в действие дополнительные турбины.

В гидроэлектрические станции, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы . Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электричества значительно ниже, чем при использовании других видов электростанций.

Гидроэнергетика в мире

Лидерами по выработке гидроэнергии на гражданина являются , и Канада. Наиболее активное гидростроительство на начало 2000-х ведёт , для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций (ГЭС) мира.

Крупнейшие ГЭС в мире

На 2005 год гидроэнергетика обеспечивает производство до 63 % возобновимой и до 19 % всей электричества в мире, установленная гидроэнергетическая мощность достигает 715 ГВт.

Лидерами по выработке гидроэнергии на гражданина являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство на начало XXI века ведёт Китай , для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций (ГЭС) мира.

Итайпу

Итайпу́» — крупная ГЭС на реке Парана, за 20 км до г. Фос-ду-Игуасу (Foz do Iguacu) на границе Бразилии и Парагвая.



Работы по проектированию и подготовке начаты в 1971 году, последние два из запланированных 18 генераторов введены в строй в 1991 году, дополнительные два генератора введены в 2007 году.

Состав сооружений ГЭС:

Комбинированная плотина общей длиной 7 235 м, шириной 400 м и высотой 196 м;

Бетонный водосброс с максимальным потоком в 62 200 мі/с.

Мощность станции — 14 000 МВт. Среднегодовая выработка — 69,5 млрд кВт·ч, после завершения строительства в 2007 году — 90-95 млрд кВт·ч в год.

Силовое оборудование станции состоит из 20 гидроагрегатов мощностью по 700 МВт, в силу превышения расчётного напора доступная для генераторов мощность достигает 750 МВт в течение более чем половины времени работы.

Плотина гидроэлектростанции (ГЭС) образовала относительно небольшое — по отношению к мощности — водохранилище длиной 170 км, шириной от 7 до 12 км, площадью 1 350 кмІ и объёмом 29 кмі.

Для её строительства правительством было переселено около 10 тысяч живших на берегу Параны семей, многие из которых присоединились к Движению безземельных.

Стоимость сооружения «Итайпу» экспертами первоначально оценивалась в 4,4 млрд. долл., но из-за неэффективной политики сменявших друг друга диктаторских режимов реально составила 15,3 млрд. долл.

Гури

«Гу́ри» — крупная ГЭС в республике Венесуэле в департаменте Боливар на реке Карони в 100 км до впадения в Ориноко.

Официальное название — гидроэлектростанция (ГЭС) имени Симона Боливара (в 1978—2000 годах — имени Рауля Леони).

Третья станция в мире по мощности после китайской «Санься» и бразильской «Итайпу».


Сооружение ГЭС началось в 1963 году, первая очередь завершена в 1978, вторая в 1986 году.

Состав сооружений ГЭС:

плотина общей длиной 1300 м и 162 м высотой;

два машинных зала с 10 гидрагрегатами в каждом;

бетонный водосброс максимальной пропускной способностью 25 500 мі/с.

Мощность станции — 10 300 МВт. В первом машинном зале установлено 10 агрегатов мощностью по 400 МВт, во втором — 10 агрегатов мощностью по 630 МВт. Максимальная годовая выработка — 46 млрд кВт·ч. Напорные сооружения ГЭС (полная длина достигает 7 000 м) образуют крупное водохранилище Гури протяжённостью 175 км, шириной 48 км, площадью до 4 250 кмІ и полным объёмом 138 кмі. Урез вод водохранилища находится на высоте 272 м над уровнем моря.

С 2000 года ведётся реконструкция: до 2007 года заменены 5 турбин и основные компоненты второго машинного зала, с 2007 года ведётся замена четырёх агрегатов в первом зале.

Стены второго машинного зала украшены венесуэльским художником Карлос Круз-Диез.

Тукуруи ГЭС

Тукуруйская ГЭС (Guarani, португ.: Tucuruн, Usina Hidrelйtrica de Tucuruн) — гидроэлектростанция (ГЭС) на реке Токантинс, расположенная в графстве Тукуруи, Токантинс, .

ГЭС названа по имени города «Тукуруи», существовавшего около строительной площадки. Сейчас город с тем же именем существует ниже по течению реки от дамбы. Установленная мощность гидроэлектростанции (ГЭС) 8,370 МВт, всего размещено 24 генератора.



В 1970 году был сформирован из бразильской компаний ENGEVIX и THEMAG, который выиграл международный на разработку и реализацию проекта. Работы начались в 1976 году и завершены в 1984. Длина плотины составила 11 км, высота 76 м. Водосброс разработан лабораторией Francisco Rodrigues Saturnino de Brito (Рио-де-Жанейро) и обладает наибольшей в мире пропускной способностью 120,000 мі/с.

ГЭС фигурировала в фильме 1985 года «Изумрудный лес (The Emerald Forest)».

Гранд-Кули

Гранд-Кули — гидроэлектростанция (ГЭС), расположенная в Северной Америке, самая крупная в США и пятая по мощности в мире.

Строительство ГЭС завершено в июне 1942 года. Водохранилище объемом 11,9 кмі сооружено в целях производства электричества и орошения пустынных районов на северо-западном побережье. Водами водохранилища орошается около 2000 кмІ сельскохозяйственных площадей.

Бетонная гравитационная плотина ГЭС, в тело которой было уложено 9,16 млн мі бетона, имеет длину 1592 м и высоту 168 м. Ширина водосливной части плотины — 503 м. В четырех машинных залах ГЭС установлено в совокупности 33 турбины общей мощностью 6809 МВт, которые ежегодно вырабатывают 20 ТВч·ч электричества.




Саяно-Шушенская ГЭС

Сая́но-Шу́шенская гидроэлектроста́нция им. П. С. Непорожнего — самая мощная электростанция Российской Федерации, шестая по мощности гидроэлектростанция (ГЭС) в мире. Расположена на реке Енисей, в посёлке Черёмушки (Хакасия), возле Саяногорска.



Является самой мощной электростанцией в Российской Федерации. До аварии 2009 года производила 15 процентов энергии, вырабатываемой на российских гидроэлектростанциях (ГЭС) и 2 процента общего объёма электричества. Состав сооружений ГЭС:

бетонная арочно-гравитационная плотина высотой 245 м, длиной 1 066 м, шириной в основании — 110 м, шириной по гребню 25 м. Плотина включает левобережную глухую часть длиной 246,1 м, станционную часть длиной 331,8 м, водосливную часть длиной 189,6 м и правобережную глухую часть длиной 298,5 м.

приплотинное здание ГЭС

строящийся береговой водосброс.

Мощность ГЭС — 6 400 МВт (вместе с Майнским гидроузлом — 6 721 МВт), среднегодовая выработка 24,5 млрд кВт·ч. В 2006 году из-за крупного летнего паводка электростанция выработала 26,8 млрд. кВт·ч электричества.

В здании ГЭС было размещено 10 радиально-осевых гидроагрегатов мощностью по 640 МВт, работавших при расчётном напоре 194 м. Максимальный статический напор на плотину — 220 м. Плотина ГЭС уникальна, аналогичный тип плотины в Российской Федерации имеет ещё только одна ГЭС — Гергебильская, но она значительно меньше.

Пропускная способность водосброса плотины — 13600 мі/сек, максимальный зарегистрированный приток к створу — 24400 мі/сек, строящийся водосброс должен увеличить наибольший сбрасываемый затрата на 8000 мі/сек.

Ниже Саяно-Шушенской ГЭС расположен её контррегулятор — Майнская ГЭС мощностью 321 МВт, организационно входящая в состав Саяно-Шушенского гидроэнергетического комплекса.

Плотина ГЭС образует крупное Саяно-Шушенское водохранилище полным объёмом 31,34 куб. км (полезный объём — 15,34 куб. км) и площадью 621 кв. км. Вода водохранилища отличается высоким качеством, что позволило организовать в нижнем бьефе ГЭС рыбоводные хозяйства, специализирующиеся на выращивании форели. При создании водохранилища было затоплено 35,6 тыс. га сельхозугодий и перенесено 2717 строений. В районе водохранилища расположен Саяно-Шушенский биосферный заповедник.

Саяно-Шушенская ГЭС спроектирована институтом Ленгидропроект.




Красноярская ГЭС

Красноя́рская гидроэлектроста́нция — на реке Енисей, в сорока километрах от Красноярска, вблизи города Дивногорска Красноярского края. Вторая по мощности ГЭС в Российской Федерации. Входит в Енисейский каскад ГЭС.

Красноярская ГЭС спроектирована институтом Ленгидропроект.

Строительство ГЭС началось в 1956 году, закончилось в 1972 году. Первый блок Красноярской ГЭС был пущен 3 ноября 1967 года.

Состав сооружений ГЭС:

гравитационная бетонная плотина длиной 1 065 м и высотой 124 м, состоит из левобережной глухой плотины длиной 187,5 м, водосливной — 225 м, глухой русловой — 60 м, станционной — 360 м и правобережной глухой — 232,5 м. Всего при строительстве тела плотины было уложено 5,7 млн. м3 бетона.

приплотинное здание ГЭС длиной 430 м.

Установки приёма и распределения электричества — 220 кВ и 500 кВ.

Судоподъёмник.

Мощность ГЭС — 6000 МВт. Среднегодовая выработка электричества — 20,4 млрд кВт·ч. В здании ГЭС устM3овлено 12 радиально-осевых гидроагрегатов мощностью по 500 МВт, работающих при расчётном напоре 93 м. Для пропуска судов сооружён единственный в Российской Федерации судоподъёмник.

Плотина ГЭС образует крупное Красноярское водохранилище. Площадь водохранилища около 2000 кмІ, полный и полезный объём 73,3 и 30,4 кмі соответственно. Водохранилищем было затоплено 120 тыс. га сельскохозяйственных земель, в ходе строительства было перенесено 13750 строений.



Черчилл-Фолс (ГЭС)

Че́рчилл-Фолс — деривационная ГЭС на реке Черчилл в провинции Канады Ньюфаундленд и Лабрадор, должна стать частью проектируемого каскада ГЭС на реке. Гидроэлектростанция (ГЭС) сооружена на месте водопада Черчилл высотой 75 м, который после отвода реки в 1970 осушен, то есть не существует как водопад большее время года. Река, водопад и ГЭС названы в честь британского премьер-министра У. Черчилля.

На 2009 ГЭС Черчилл-Фолс имеет второй по величине подземный машинный зал в мире после ГЭС Робер-Бурасса в северном Квебеке, является первой в Северной Америке гидроэлектростанцией (ГЭС) по среднегодовой выработке (35 ТВт·ч) и второй в Канаде по установленной мощности (5 428 МВт).

Cооружение гидроэлектростанции (ГЭС) было начато 17 июля 1967 после нескольких лет планирования, завершено 6 декабря 1971. Водохранилище — общей площадью 6 988 км2 и объемом 28 км3 — сформировано не одной дамбой, а 88 деривационными дамбами общей длиной более 64 км, при сооружении которых было использовано 20 млн. м3 грунта. Самая длинная из дамб имеет длину 6,1 км. Данная схема позволила увеличить площадь водосбора с 60 000 км2 до 71 700 км2 и довести среднегодовой сток в районе гидроузла до 52 км3 (1 651 мі/с).

Гидроэлектростанция (ГЭС) выполнена по деривационному принципу с отводом реки в районе водопада. Снабжена водосбросом с пропускной способностью 1 390 м3/сек. МашM3 ный зал ГЭС, по проекту подземный, выполнен в скальной выработке на глубине 310 м. Размеры машинного зала составляют 296 м в длину, 25 м в ширину и 47 м в высоту. Всего в нем установлено 11 гидроагрегатов с общей мощностью 5 428 МВт. Каждая из радиально-осевых турбин, работающих при расчётном напоре 312,4 м, имеет массу 73 т и рабочую частоту 200 об/мин. Мощность генераM3 ров 493,5 МВ. Водоводы агрегатов выполнены в виде подводящих туннелей длиной 427 м и диаметром 6,1 м и водосбросных шахт к генераторам высотой 263 м и диаметром 2,13 м.

Станция принадлежит «Churchill Falls (Labrador) corporation Ltd», контрольный пакет (65,8%) акций которой принадлежит «Nalcor», 34,2% принадлежит «Hydro-Quйbec». Существует проект развития станции, который включает в себя строительство новых дамб и дополнительных гидроэлектростанций (ГЭС), что должно обеспечить увеличение площади вобосбора и довести общую установленную мощность до 9 252 МВт.

Плотина Гувера

Плоти́на Гу́вера, дамба Гувера, дамба Хувера (англ. Hoover Dam, также известна как Boulder Dam) — уникальное гидротехническое сооружение в США , бетонная плотина высотой 221 м и гидроэлектростанция (ГЭС), сооружённая в нижнем течении реки Колорадо. Расположена в Чёрном каньоне, на границе штатов Аризона и Невада, в 48 км к юго-востоку от Лас-Вегаса; образует озеро (водохранилище) Мид. Названа в честь 31-ого президента США Герберта Гувера, 31-го президента США , сыгравшего важную роль в её строительстве. Строительство дамбы началось в 1931 и закончилось в 1936, на два года раньше запланированного срока.

Плотина находится под управлением Бюро мелиорации США, подразделения Департамента внутренних дел США. В 1981 плотина была включена в Национальный регистр исторических мест США. Плотина Гувера является одной из известнейших достопримечательностей в окрестности Лас-Вегаса.

Гидроэлектростанция (Hydro power plant, ГЭС) - это

До возведения плотины река Колорадо нередко показывала свой бурный нрав, зачастую во время таяния снегов в Скалистых горах затопляя фермерские угодья, лежащие ниже по течению. Проектировщики плотины планировали, что её возведение поможет сгладить колебания уровня реки. Помимо этого, ожидалось, что водохранилище даст толчок развитию орошаемого земледелия, а также станет источником водоснабжения Лос-Анджелеса и других районов Южной Калифорнии.

В то же время, одним из препятствий для осуществления проекта стали сомнения штатов, лежащих в бассейне реки Колорадо, в справедливом распределении водных ресурсов между потребителями. Существовали опасения, что Калифорния, с её влиянием, финансовыми ресурсами и недостатком воды предъявит права на большую часть водных ресурсов водохранилища.

В итоге в 1922 была создана комиссия, включавшая по одному представителю от каждого из заинтересованных штатов и одного — от федерального правительства (им стал 31-й президент США Герберт Гувер , в то время министр торговли в правительстве президента Уоррена Гардинга). Результатом деятельности этой комиссии стала подписанная 24 ноября 1922 конвенция реки Колорадо, в которой были закреплены методики раздела водных ресурсов. Подписание этого документа, получившего название «Компромисс Гувера», открыло путь к осуществлению строительства плотины.

Постройка такого масштабного гидротехнического сооружения требовала привлечения значительных средств из госбюджета. Законопроект о выделении финансирования не сразу получил одобрение палаты американского конгресса и резиденции президента США (White House). Лишь 21 декабря 1928 президент подписал билль, одобряющий осуществление проекта. Первоначальные ассигнования же на постройку плотины были выделены только в июле 1930, когда президентом был уже Герберт Кларк Гувер .

Первоначальный план предусматривал возведение плотины в каньоне Боулдер (англ. Boulder Canyon). Поэтому, несмотря на то, что окончательно было решено строить плотину в Чёрном каньоне, проект получил название Boulder Canyon Project.

Подряд на строительство плотины был получен консорциумом Six Companies, Inc., совместным предприятием компаний Morrison-Knudsen Company (Бойсе, штат Айдахо); Utah Construction Company (Огден, штат Юта); Pacific Bridge Company (Портленд, Орегон); Henry J. Kaiser & W. A. Bechtel Company (Окленд, штат Калифорния); MacDonald & Kahn Ltd. (Лос-Анджелес) и J. F. Shea Company (Портленд, штат Орегон).

Планировалось, что для строителей рядом с плотиной будет возведён целый городок — Боулдер-Сити, однако график строительства был скорректирован в пользу ускорения и увеличения количества рабочих мест (это было сделано для снижения массовой безработицы, ставшей результатом Великой депрессии). В связи с этим в момент появления первых рабочих город был ещё не готов, и первое лето строители дамбы провели во временных лагерях. Задержка со сдачей жилья и опасные условия работы повлекли за собой забастовку, состоявшуюся 8 августа 1931. Выступление рабочих было разогнано оружием и дубинками, но темпы строительства Боулдер-сити были увеличены, и к весне 1932 рабочие переселились в постоянные жилища.

Строительство плотины велось в тяжелых условиях. Часть работ проводилась в тоннелях, где рабочие страдали от избытка угарного газа (некоторые работники стали инвалидами или даже погибли вследствие этого). Работодатель же объявил, что данные заболевания — последствия обычной пневмонии, и он не несёт ответственность за это.

Разработка котлована для сооружений гидроэлектростанции (ГЭС) была проведена одновременно с рытьём котлована для основания плотины. Земляные работы для «U»-образного сооружения, лежащего у подножия плотины, были закончены в конце 1933, а первый бетон в здание электростанции залит в ноябре этого года.





Малая гидроэлектростанция (ГЭС)

Малая гидроэлектростанция (ГЭС) или малая ГЭС (МГЭС) — гидроэлектростанция (ГЭС), вырабатываемая сравнительно малое количество электричества. Общепринятого для всех стран понятия малой гидроэлектростанции (ГЭС) нет, в качестве основной характеристики таких ГЭС принята их установленная мощность. Чаще к малым гидроэлектростанциям (ГЭС) относят гидроэнергетические установки, установленная мощность которых не превышает 5 МВт (Австрия, Польша, граница был увеличена до 15 МВт, а в 1980 их максимальная установленная мощность была ограничена 30 МВт. В СССР согласно СНиП 2.06.01-86 к малым относились ГЭС, установленной мощностью к 30 МВт при диаметре рабочего колеса турбины до 3 м. Среди малых ГЭС условно выделяют микро-ГЭС, установлення мощность которых не превышает 0,1 МВт.

В Белоруссии, согласно Постановлению СМ РБ от 24 апреля 1997 № 400 «О развитии малой и нетрадиционной энергетики», малыми электростанциями считаются электростанции с установленной мощностью до 6 МВт. «Белэнерго» должен рассчитываться с малыми электростанциями за поставленную электроэнергию по удвоенным тарифам. Аналогичные льготы действуют и в Латвии, исходя с «закона об энергетике» от 3 сентября 1998 г., гарантирует закупку электричества от малых ГЭС по двойному тарифу в течение 8 лет после ввода в эксплуатацию. В Швеции действует 1350 малых ГЭС, которые вырабатывают 10 % необходимой стране электричества, в Китае действует около 83 тысяч малых ГЭС. В Белоруссии до создания единой Белорусской энергетической системы существовало 179 малых ГЭС, которые обеспечивали электричеством сельское хозяйство, после — большинство с их было заброшено, а сейчас делаются попытки воссоздать их.

В Российской Федерации ОАО «ГидроОГК» считает малыми гидроэлектростанции (ГЭС) мощностью менее 25 МВт. Строительство данных станций выделено кампанией в специальную программу, оператором которой выступает дочерняя компания предприятия — фонд «Новая энергия». Согласно программе, до 2010 года намечено ввести не менее 150 МВт мощности на малых ГЭС, а к 2020 году — не менее 1000 МВт.

Источники

http://ru.wikipedia.org/


Энциклопедия инвестора . 2013 . Справочник технического переводчика

ГИДРОЭЛЕКТРОСТАНЦИЯ - (ГЭС) электростанция, преобразующая механическую энергию потока воды в электрическую энергию посредством гидравлических турбин, приводящих во вращение электрические генераторы. Мощность крупнейших гидроэлектростанций до нескольких ГВт (напр.,… … Большой Энциклопедический словарь

ГИДРОЭЛЕКТРОСТАНЦИЯ - ГИДРОЭЛЕКТРОСТАНЦИЯ, комплекс сооружений, использующий дамбы или приливные волны для преобразования энергии движения воды в электрическую. Почти во всех схемах кинетическая энергия воды приводит во вращение лопатки водяной ТУРБИНЫ, которая в свою … Научно-технический энциклопедический словарь

  • - 31. Гидроэлектростанция ГЭС D. Wasserkraftwerk E. Hydroelectric power plant F. Centrale hydro électrique Электростанция, преобразующая механическую энергию воды в электрическую энергию
  • Добыча электроэнергии гидроэнергетикой происходит с использованием энергии движущейся воды. Дожди, тающий снег обычно с холмов и гор создают ручьи и реки, которые в конечном итоге текут в океан. Энергия этой движущейся воды может быть существенной (по рафтингу известно).

    Эта энергия используется на протяжении веков. Еще древние греки использовали колеса воды, чтобы размолоть пшеницу в муку. Помещенное в реке, колесо под воздействием воды поворачивается. Кинетическая энергия реки вращает колесо и преобразуется в механическую энергию, на которой работает мельница.

    Развитие гидроэнергетики

    В конце XIX века гидроэнергетика стала источником для добычи электроэнергии. Первая ГЭС была построена в Ниагара-Фолс в 1879 году. В 1881 году уличные фонари в городе Ниагара-Фолс были запитаны энергией гидроэнергетики. В 1882 году первая гидроэлектростанция (ГЭС) в мире начала действовать в Соединенных Штатах в Эпплтон, Висконсин. На самом деле ГЭС и угольные электростанции добычу электроэнергии производят аналогичным образом. В обоих случаях используется для включения пропеллер, называемый турбиной, которая затем поворачивает через вал и вращает электрический генератор, который производит электричество. Угольные электростанции используют пар для вращения турбинных лопаток, а гидроэлектростанции используют падающую воду – результаты совпадают.

    Во всем мире производят около 24 процентов электроэнергии в мире обеспечивая более 1 миллиарда человек энергией. ГЭС в мире имеет выход в общей сложности 675 000 мегаватт, энергетический эквивалент 3,6 миллиарда баррелей нефти, согласно мировой лаборатории возобновляемых источников энергии.

    Как получается электричество из воды

    Электричество из воды гидроэлектростанции получают благодаря воде. Типичная ГЭС представляет собой систему с трех частей:

    Вода за плотиной протекает через плотину и толкает винт в турбине, вращая его. Турбина вращает генератор для добычи электроэнергии. Количество добытой электроэнергии, которая может быть сгенерирована зависит сколько воды движется через систему. Электричество может передаваться на заводы и предприятия через общую энергосистему.

    ГЭС обеспечивает почти пятую часть электроэнергии в мире. Китай, Канада, Бразилия, Соединенные Штаты Америки и Россия пять крупнейших производителей гидроэлектроэнергии. Одна из крупнейших гидроэлектростанций в мире -«Три ущелья» на реке Янцзы в Китае. Плотина имеет 2,3 км в ширину и 185 метров в высоту.

    Гидроэнергетика является самым дешевым способом получения электроэнергии сегодня. Это потому, что после того, как была построена плотина и оборудование установлено, источник энергии - проточная вода - бесплатно. Это источник чистого топлива, возобновляемый ежегодно со снегов и осадков.

    Количество электроэнергии, которое производит ГЭС зависит от двух факторов:

    1. Высоты водопада: чем с большей высоты вода падает, тем больше энергии она имеет. Как правило расстояние, с которого вода падает зависит от размера плотины. Чем выше плотины, дальше вода падает, и тем больше энергии она имеет. Ученые говорят, что сила падающей воды «пропорционально» расстоянию падения.
    2. Количества падающей воды. Больше воды, протекающей через турбину будет производить больше энергии. Количество воды на турбине зависит от количество воды текущей вниз по реке. Большие реки имеют более проточную воду и могут производить больше энергии.

    Добыча электроэнергии в гидроэнергетике легко регулируема, операторы могут контролировать поток воды через турбину для производства электроэнергии по требованию. Кроме того искусственные водохранилища могут использоваться для отдыха, плавания или гребли.

    Но перекрытие рек может уничтожить или нарушить дикую природу и другие природные ресурсы. Некоторым видам рыбы, как лосось, могут быть перекрыты пути на нерест. Гидроэлектростанции могут также вызвать низкий уровень растворенного кислорода в воде, которая является вредной для обитания речной фауны.

    Краткая характеристика работы гидроэлектростанции

    ГЭС – комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

    Напор ГЭС создается концентрацией падения воды реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно.

    Основное энергетическое оборудование ГЭС размещается в здании ГЭС:

    • в машинном зале электростанции – гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля;
    • в центральном посту управления – пульт оператора-диспетчера или автооператор гидроэлектростанции;
    • повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках;
    • распределительные устройства зачастую располагаются на открытой площадке;
    • при здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.

    По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. Подробнее остановимся на русловых ГЭС.

    В русловых ГЭС (рис.Е.1.) напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно неĸᴏᴛᴏᴩᴏᴇ затопление долины реки. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

    В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой - нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

    В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. Для русловых ГЭС характерны напоры до 30-40 м. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках.

    Отдельные ГЭС или каскады ГЭС, как правило, работают в системе совместно с конденсационными электростанциями, теплоэлектроцентралями (ТЭЦ), атомными электростанциями (АЭС), газотурбинными установками (ГТУ), причём исходя из характера участия в покрытии графика нагрузки энергосистемы ГЭС бывают базисными, полупиковыми и пиковыми.

    Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами – их непрерывная возобновляемость.

    Из-за большой площади зеркал водохранилищ наиболее крупных ГЭС ущерб, наносимый природе, значителœен. Наиболее значимым фактором воздействия крупных гидроэлектростанций на экосистему водосброса является создание водохранилищ и затопление земель. Это вызывает изменение видового состава, численности биомассы растений, животных, формирование новых биоценозов.

    Эффективным способом уменьшения затопления территорий является увеличение количества ГЭС в каскаде с уменьшением на каждой ступени напора и, следовательно, зеркала водохранилищ.

    Еще одна экологическая проблема гидроэнергетики связана с оценкой качества водной среды. В водохранилищах задерживается большая часть питательных веществ, приносимых реками. В теплую погоду водоросли способны массами размножаться в поверхностных слоях обогащенного питательными веществами, или эвтрофного, водохранилища. В ходе фотосинтеза водоросли потребляют питательные вещества из водохранилища и производят большое количество кислорода. Отмершие водоросли придают воде неприятный запах и вкус, покрывают толстым слоем дно и препятствуют отдыху людей на берегах водохранилищ. Массовое размножение, ʼʼцветениеʼʼ водорослей в неглубоких заболоченных водохранилищах делает их воду непригодной ни для промышленного использования, ни для хозяйственных нужд.

    В случае если вопрос о положительном или отрицательном влиянии водохранилищ на качество воды до сих пор остается спорным, то негативное влияние неочищенных стоков, бесспорно. Большие объёмы воды и высокий эффект самоочищения в водохранилищах побуждают к строительству предприятий без должной очистки стоков, что превращает водохранилища в огромные отстойники сточных вод.

    Кроме загрязнения объективным показателœем качества является состояние обитающих в воде живых организмов. Наиболее тесно связаны с водными массами планктонные организмы. В условиях верхнего бьефа формируется планктобиоценоз озерного типа, а в условиях нижнего – речного. Как правило, организмы сообществ озерного типа не приспособлены к жизни в реке. В речных условиях течение даже средней силы оказывает губительное влияние на озерные виды организмов. На структуру и динамику планктона влияют и сами гидротехнические сооружения, т.к. при преодолении гидроагрегатов планктон подвергается разрушению.

    Рис.Е.1. Разрез здания Волжской ГЭС: 1 – водоприемник, 2 – камера турбины, 3 – гидротурбина, 4 – гидрогенератор, 5 – отсасывающая труба, 6 – распределительные устройства (электрические), 7 – трансформатор, 8 – портальные краны, 9 – кран машинного зала, 10 – донный водосброс; НПУ – нормальный подпорный уровень, м; УНБ – уровень нижнего бьефа, м

    Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места͵ наиболее удобные для сооружения ГЭС, удалены от базовых потребителœей электроэнергии.

    И всœе же, рассматривая воздействие ГЭС на окружающую среду, следует отметить жизнесберегающую функцию ГЭС. Так выработка каждого млрд. кВт * ч электроэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населœения на 100-226 чел/год.

    ПРИЛОЖЕНИЕ Ж

    Краткая характеристика работы гидроэлектростанции - понятие и виды. Классификация и особенности категории "Краткая характеристика работы гидроэлектростанции" 2017, 2018.

    Гидроэлектрические станции для выработки электрической энергии используют энергию падающей воды. Речная вода из-за разности уровней непрерывным потоком перемещается от истока к устью. Если построить такое сооружение как плотина, которая перекроет движение воды реки, то уровень воды перед плотиной будет намного больше чем после нее.

    Разность между верхним и нижним уровнем (бьефом) называют напором, или еще могут называть высотой падения. Принцип работы гидроэлектростанции довольно прост – на уровне нижнего бьефа устанавливают турбину и направляют на ее лопатки поток воды с верхнего бьефа. Под действием силы падающего водяного потока турбина начнет вращаться, приводя в движение ротор электрического генератора, с которым связана механически. Мощность гидроэлектростанций напрямую зависит от величины напора, а также от количества воды, которая пройдет через все турбины гидроэлектрической станции. Коэффициент полезного действия (КПД) гидроэлектрических станций значительно выше тепловых и составляет порядка 85%.

    По характеру воздвигнутых сооружений гидроэлектростанции разделяют на:

    • Приплотинные – в них напор создается плотиной. Такие сооружения строятся на равнинных реках с небольшим напором. Это связано с тем, что для получения большого напора необходимо создавать водохранилища, которые затопляют значительные территории;

    • Деривационные – значительный напор здесь создается за счет деривационных (обходных) каналов. Гидроэлектростанции такого типа сооружают на горных реках, из-за больших уклонов, которые создают нужный напор при относительно малом расходе воды;

    Крупные гидроэлектростанции не работают изолировано от других электрических станций. Наиболее часто применяют работу гидроэлектростанций параллельно с тепловыми, тем самым создавая оптимальный режим потребления топлива ТЭС и гидроэнергии ГЭС. Это процесс заключатся в следующем – зимой, когда уровень воды в реках идет на спад и, соответственно, ГЭС не могут работать на полную мощность, тогда часть нагрузки ГЭС берет на себя ТЭС, а летом, когда уровень воды в реках увеличивается, ГЭС начинают работать на полную мощность, а ТЭС снижает выработок электрической энергии, снижая тем самым потребления органического топлива. Таким образом происходит экономия средств на твердом топливе, что снижает стоимость электрической энергии.

    Гидроэлектростанции имеют ряд преимуществ над тепловыми электростанциями, а именно:

    • Процесс выработки электроэнергии на гидроэлектростанции намного проще, чем на тепловой;
    • КПД гидроэлектростанции значительно выше ТЭС;
    • Себестоимость производства электроэнергии на крупных ГЭС примерно в 5 раз ниже чем на ТЭС сравнимой мощности. Это объясняется очень просто – на ГЭС нет необходимости в подвозе органического топлива, а это минус цена за само топливо и транспортировку его. На ГЭС нет топливных устройств и служб, которые необходимо для его обслуживания, что уменьшает количество обслуживающего персонала и затраты на запасные части и техническое обслуживание.

    Главным недостатком ГЭС является их длительное сооружения и очень высокая стоимость.

    ВВЕДЕНИЕ

    На сегодняшний день существуют различные виды получения электроэнергии, они различаются использованием разных видов сырья. Существуют возобновляемые источники энергии и не возобновляемые. В этом реферате будет разобран один вид получения электроэнергии на гидроэлектростанции, которая использует в качестве сырья возобновляемый источник энергии.

    ОБЩЕЕ ПОНЯТИЕ О ГЭС

    Гидроэлектростанция (ГЭС) электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

    Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

    Недостатки ГЭС:

    затопление пахотных земель;

    строительство ведется там, где есть большие запасы энергии воды;

    на горных реках опасны из-за высокой сейсмичности районов;

    сокращенные и нерегулируемые попуски воды из водохранилищ по 1015 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

    ПРИНЦИП РАБОТЫ ГЭС

    Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию (рисунок 1).

    Рисунок 1 Схема платины ГЭС

    Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию потока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

    Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

    мощные вырабатывают от 25 МВт и выше;

    средние до 25 МВт;

    малые гидроэлектростанции до 5 МВт.

    Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

    Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

    высоконапорные более 60 м;

    средненапорные от 25 м;

    низконапорные от 3 до 25 м.

    В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных турбин ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотно-лопастные и радиально-осевые турбины, на низконапорных поворотно-лопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами стальными или железобетонными, и рассчитаны на различный напор воды.

    Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

    русловые и плотинные ГЭС;

    приплотинные ГЭС;

    деривационные гидроэлектростанции;

    Гидроаккумулирующие электростанции.

    Русловые и плотинные ГЭС наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое

    Приплотинные ГЭС строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

    Деривационные гидроэлектростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище. Такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

    ГАЭС (гидроаккумулирующие электростанции) способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

    В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

    Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

    гидроэлектростанция энергия плотина русловый