Отражение света - это явление, при котором падение света на границу раздела двух сред MN часть падающего светового потока, изменив направление своего распространения, остается в той же самой среде. Падающий луч AO – луч, показывающий направление распространения света. Отраженный луч OB - луч, показывающий направление распространения отраженной части светового потока.

Угол падения – угол между падающим лучом и перпендикуляром к отражающей поверхности.

Угол отражения - угол между отраженным лучом и перпендикуляром, восставленным к границе раздела сред в точке падения луча.

Закон отражения света: 1) падающий и отраженный лучи лежат в одной плоскости с перпендикуляром, восставленным в точке падения луча к границе раздела двух сред; 2) угол отражения равен углу падения.

Зеркало, поверхность которого представляет собой плоскость, называется плоским зеркалом. Зеркальное отражение – это направленное отражение света.

Если граница раздела сред представляет собой поверхность, размеры неровности которой больше длины волны падающего на неё света, то взаимно параллельные световые лучи, падающие на такую поверхность, после отражения не сохраняют свою параллельность, а рассеиваются по всевозможным направлениям. Такое отражение света называют рассеянным или диффузным.

Действительное изображение – это изображение, которое получается при пересечении лучей.

Мнимое изображение – это изображение, которое получается при продолжении лучей.

Построение изображений в сферических зеркалах.

Сферическим зеркалом MK называют поверхность шарового сегмента, зеркально отражающую свет. Если свет отражается от внутренней поверхности сегмента, то зеркало называют вогнутым, а если от внешней поверхности сегмента – выпуклым . Вогнутое зеркало является собирающим, а выпуклое – рассеивающим.

Центр сферы C , из которой вырезан шаровой сегмент, образующий зеркало, называют оптическим центром зеркала , а вершину шарового сегмента O – его полюсом ; R – радиус кривизны сферического зеркала.

Любую прямую, проходящую через оптический центр зеркала, называют его оптической осью(KC ; MC ). Оптическую ось, проходящую через полюс зеркала, называют главной оптической осью (OC ). Лучи, идущие вблизи главной оптической оси, называют параксиальными .

Точку F , в которой пересекаются после отражения приосевые лучи, падающие на сферическое зеркало параллельно главной оптической оси, называют главным фокусом.

Расстояние от полюса до главного фокуса сферического зеркала называют фокусным OF .

Любой луч, падающий по одной из его оптических осей, отражается от зеркала по той же оси.

Формула вогнутого сферического зеркала :
, гдеd –расстояние от предмета до зеркала (м),f –расстояние от зеркала до изображения (м).

Формула фокусного расстояния сферического зеркала :
или

Величину D, обратную фокусному расстоянию F сферического зеркала, называют его оптической силой.


/диоптрия/.

Оптическая сила вогнутого зеркала положительна, а у выпуклого – отрицательна.

Линейным увеличением Г сферического зеркала называют отношение размера создаваемого им изображения Н к размеру изображаемого предмета h, т.е.
.

Тема урока: «Плоское зеркало. Получение изображения в плоском зеркале».

Оборудование: два зеркала, транспортир, спички, проект ученицы 8 класса по теме «Исследование отражения света от плоского зеркала» и презентация к уроку.

Цель:

2.Развивать навыки наблюдения и построения изображений в плоском зеркале.

3.Воспитывать творческий подход к учебной деятельности, желание экспериментировать.

Мотивация:

Зрительные впечатления часто оказываются ошибочными. Иногда трудно бывает отличить кажущиеся световые явления от действительного. Одним из примеров обманчивого зрительного впечатления является кажущееся изображение предмета в плоском зеркале. Наша задача сегодня научиться строить изображение предмета в одном и двух зеркалах, расположенных под углом друг к другу.

Значит, темой нашего урока будет «Построение изображения в плоских зеркалах».

Первичная актуализация знаний.

На прошлом уроке изучали одно из основных законов распространения света – это закон отражения света.

а)угол падения < 30 0

б) угол отражения > угла падения

в) отраженный луч лежит в плоскости рисунка

    Угол между падающим лучом и плоским зеркалом равен углу между падающим лучом и отраженным. Чему равен угол падения? (ответ 30 0 )

Изучение нового материала.

Одно из свойств нашего зрения состоит в том, что мы можем видеть предмет только лишь по прямолинейному направлению, по которому свет от предмета попадает в наши глаза. Глядя на плоское зеркало мы смотрим на предмет, находящийся перед зеркалом, а поэтому свет от предмета непосредственно не попадает в глаза, а попадает лишь после отражения. Поэтому мы видим предмет за зеркалом, а не где он в действительности находится. Значит, изображение в зеркале мы видим мнимое, прямое.

Напишите свое имя печатными буквами. Прочтите его с помощью зеркала. Что получилось? Оказывается изображение повернуто к зеркалу лицом. Скажите, какие печатные буквы не изменяются при отражении в плоском зеркале?

И
так, изображение в зеркале мы видим мнимое, прямое, повернутое к зеркалу лицом. Например, поднятая правая рука нам представляется левой и наоборот.

П
лоское зеркало – это единственный оптический прибор, в котором изображение и предмет конгруэнтны друг другу. Этот прибор широко используется в нашей жизни и не только для поправления прически.

Слайд№5


Какой вывод при построении сделаем? (Расстояние от зеркала до изображения такое же как и от зеркала до предмета, изображение расположено на перпендикуляре к зеркалу, расстояние до изображения меняется во столько же раз как и до предмета.)

Слайд №6


Закрепление нового материала

В1. Человек приближается к плоскому зеркалу со скоростью 1м/с. С какой скоростью он движется к своему изображению? (2м/с)

В2. Человек стоит перед вертикальным зеркалом на расстоянии 1м от него. Какого расстояние от человека до его изображения? (2м)

В3 Постройте изображение остроугольного треугольника АВС в плоском зеркале.

Очень интересно смотреть в два зеркала сразу, расположенных под углом друг к другу. Поставьте зеркала под углом 90 0 ,расположите спичку между ними, пронаблюдайте, что будет происходить с изображениями, если угол между зеркалами уменьшать?

Как построить такое изображение?


Вот какой вывод сделала Анна Спицова составляя свой проект. Вы с ней согласны? Определите, сколько изображений будет в зеркале, если угол между зеркалами будет 45 0 , 20 0 ?

Слайд №8


К
ак же построить такое изображение?

Как вы думаете, где можно применять многократное изображение предмета в нескольких плоских зеркалах?


Мотивация «на завтра»

Сегодня на уроке мы с вами ответили на вопрос как построить изображение в одном плоском зеркале и в двух, расположенных под углом друг к другу, а сколько еще загадок хранит в себе обычная, всем нам привычная вещь: зеркало. На этом мы не заканчиваем изучение плоского зеркала, может у вас возникнет желание, например, рассчитать какого размера должно быть зеркало, чтобы увидеть себя в полный рост, как зависит изображение от угла наклона и т.д. Помните, что новое открывают не те, кто много знает, а те кто много ищет.

Д/З:

§64, упр31(1,2), для желающих: изготовить калейдоскоп или перископ.

Видеоурок 2: Плоское зеркало - Физика в опытах и экспериментах

Лекция:


Плоское зеркало

Плоское зеркало - это глянцевая поверхность. Если на такую поверхность падают параллельные пучки света, то и отражаются они параллельно друг другу. При рассмотрении данной темы мы сможем узнать, по каким причинам мы видим себя, когда смотрим в зеркало.

Итак, давайте для начала вспомним законы отражения, и способы их доказательства. Взгляните на рисунок.

Предположим, что S - некоторая точка, которая светится или отражает свет. Рассмотрим два произвольных луча, которые падают на некоторую глянцевую поверхность. Перенесем данную точку симметрично, относительно разделу сред. После того, как два данных луча отражаются от поверхности, они попадают к нам в глаз. Наш мозг устроен таким образом, что любое отражение он воспринимает в качестве изображения, которое находится за пределами границы разделения сред. Самое важное в данном объяснении является то, что это нам действительно кажется из-за собственного восприятия.


Изображение, которое мы видим в зеркале, называется мнимым , то есть не существует на самом деле.


Увидеть мы можем даже то изображение, которое не находится непосредственно над зеркалом, или же если их размеры не соизмеримы. Самое важное - лучи от данного предмета должны поступать к нам в глаз. Именно поэтому мы можем видеть лицо водителя в автобусе и он наше, не смотря на то, что он не находится напротив зеркала.


Построение изображений в плоском зеркале

Строим изображение предмета в зеркале.

Если отражающая поверхность зеркала является плоской, то оно относится к типу плоских зеркал. Свет всегда отражается от плоского зеркала без рассеяния по законам геометрической оптики:

  • Угол падения равен углу отражения.
  • Падающий луч, отраженный луч и нормаль к поверхности зеркала в точке падения лежат в одной плоскости.

Следует помнить, что у стеклянного зеркала отражающая поверхность (обычно тонкий слой алюминия или серебра) помещается на его задней стороне. Ее покрывают защитным слоем. Это означает, что хотя основное отраженное изображение формируется на этой поверхности, свет будет также отражаться и от передней поверхности стекла. Образуется вторичное изображение, которое гораздо слабее основного. Оно, как правило, невидимо в повседневной жизни, но создает серьезные проблемы в области астрономии. По этой причине все астрономические зеркала имеют отражающую поверхность, нанесенную на переднюю сторону стекла.

Типы изображений

Существует два типа изображений: действительное и мнимое.

Действительное формируется на пленке видеокамеры, фотоаппарата или на сетчатке глаза. Световые лучи проходят через линзу или объектив, сходятся, падая на поверхность, и на своем пересечении образуют изображение.

Мнимое (виртуальное) получается, когда лучи, отражаясь от поверхности, образуют расходящуюся систему. Если достроить продолжение лучей в противоположную сторону, то они обязательно пересекутся в определенной (мнимой) точке. Именно из таких точек формируется мнимое изображение, которое невозможно зарегистрировать без использования плоского зеркала или других оптических приборов (лупы, микроскопа или бинокля).

Изображение в плоском зеркале: свойства и алгоритм построения

Для реального объекта, изображение, полученное с помощью плоского зеркала, является:

  • мнимым;
  • прямым (не перевернутым);
  • размеры изображения равны размерам объекта;
  • изображение находится на таком же расстоянии за зеркалом, как объект перед ним.

Построим изображение некоторого объекта в плоском зеркале.

Воспользуемся свойствами мнимого изображения в плоском зеркале. Нарисуем изображение красной стрелки с другой стороны зеркала. Расстояние А равно расстоянию В, а изображение имеет тот же размер, что и объект.

Мнимое изображение получается на пересечении продолжения отраженных лучей. Изобразим световые лучи, идущие от мнимой красной стрелки к глазу. Покажем, что лучи мнимые, нарисовав их пунктиром. Непрерывные линии, идущие от поверхности зеркала, показывают путь отраженных лучей.

Проведем от объекта прямые линии в точки отражения лучей на поверхности зеркала. Учитываем, что угол падения равен углу отражения.

Плоские зеркала используются во многих оптических приборах. Например, в перископе, плоском телескопе, графопроекторе, секстанте и калейдоскопе. Стоматологическое зеркало для осмотра полости рта тоже плоское.

Построение изображений в сферических зеркалах

Для того чтобы построить изображение любого точечного источника света в сферическом зеркале, достаточно построить ход любых двух лучей , исходящих из этого источника и отраженных от зеркала. Точка пересечения самих отраженных лучей даст действительное изображение источника, а точка пересечения продолжений отраженных лучей – мнимое.

Характерные лучи. Для построения изображений в сферических зеркалах удобно пользоваться определенными характерными лучами, ход которых легко построить.

1. Луч 1 , падающий на зеркало параллельно главной оптической оси, отразившись, проходит через главный фокус зеркала в вогнутом зеркале (рис. 3.6, а ); в выпуклом зеркале через главный фокус проходит продолжение отраженного луча 1 ¢ (рис. 3.6 ,б ).

2. Луч 2 , проходящий через главный фокус вогнутого зеркала, отразившись, идет параллельно главной оптической оси – луч 2 ¢ (рис. 3.7,а ). Луч 2 , падающий на выпуклое зеркало так, что его продолжение проходит через главный фокус зеркала, отразившись, также идет параллельно главной оптической оси – луч 2 ¢ (рис. 3.7, б ).

Рис. 3.7

3. Рассмотрим луч 3 , проходящий через центр вогнутого зеркала – точку О (рис. 3.8, а ) и луч 3 , падающий на выпуклое зеркало так, что его продолжение проходит через центр зеркала – точку О (рис. 3.8, б ). Как мы знаем из геометрии, радиус окружности перпендикулярен касательной к окружности в точке касания, поэтому лучи 3 на рис. 3.8 падают на зеркала под прямым углом , то есть углы падения этих лучей равны нулю. А значит, отраженные лучи 3 ¢ в обоих случаях совпадают с падающими.

Рис. 3.8

4. Луч 4 , проходящий через полюс зеркала – точку Р , отражается симметрично относительно главной оптической оси (лучи на рис. 3.9), поскольку угол падения равен углу отражения.

Рис. 3.9

СТОП! Решите самостоятельно: А2, А5.

Читатель: Как-то я взял обычную столовую ложку и попытался разглядеть в ней свое изображение. Изображение я увидел, но оказалось, что если смотреть на выпуклую часть ложки, то изображение прямое , а если на вогнутую, то перевернутое . Интересно, почему это так? Ведь ложку, я думаю, можно рассматривать как некоторое подобие сферического зеркала.

Задача 3.1. Постройте изображения небольших вертикальных отрезков одинаковой длины в вогнутом зеркале (рис. 3.10). Фокусное расстояние задано. Считается известным, что изображения небольших прямолинейных отрезков, перпендикулярных главной оптической оси, в сферическом зеркале представляют собой также небольшие прямолинейные отрезки, перпендикулярные главной оптической оси.

Решение.

1. Случай а. Заметим, что в данном случае все предметы находятся перед главным фокусом вогнутого зеркала.

Рис. 3.11

Будем строить изображения только верхних точек наших отрезков. Для этого проведем через все верхние точки: А , В и С один общий луч 1 , параллельный главной оптической оси (рис. 3.11). Отраженный луч 1 F 1 .

Теперь из точек А , В и С пустим лучи 2 , 3 и 4 через главный фокус зеркала. Отраженные лучи 2 ¢, 3 ¢ и 4 ¢ пойдут параллельно главной оптической оси.

Точки пересечения лучей 2 ¢, 3 ¢ и 4 ¢ с лучом 1 ¢ являются изображениями точек А , В и С . Это точки А ¢, В ¢ и С ¢ на рис. 3.11.

Чтобы получить изображения отрезков достаточно опустить из точек А ¢, В ¢ и С ¢ перпендикуляры на главную оптическую ось.

Как видно из рис. 3.11, все изображения получились действительными и перевернутыми.

Читатель : А что значит – действительными?

Автор : Изображение предметов бывает действительным и мнимым . С мнимым изображением мы уже познакомились, когда изучали плоское зеркало: мнимое изображение точечного источника – это точка, в которой пересекаются продолжения отраженных от зеркала лучей. Действительное изображение точечного источника – это точка, в которой пересекаются сами отраженные от зеркала лучи.

Заметим, что чем дальше находился предмет от зеркала, тем меньшим получилось его изображение и тем ближе это изображение к фокусу зеркала. Заметим также, что изображение отрезка, нижняя точка которого совпадала с центром зеркала – точкой О , получилось симметричным предмету относительно главной оптической оси.

Надеюсь, теперь Вам понятно, почему, рассматривая свое отражение в вогнутой поверхности столовой ложки, Вы увидели себя уменьшенным и перевернутым: ведь предмет (Ваше лицо) находилось явно перед главным фокусом вогнутого зеркала.

2. Случай б. В данном случае предметы находятся между главным фокусом и поверхностью зеркала.

Первый луч – луч 1 , как и в случае а , пустим через верхние точки отрезков – точки А и В 1 ¢ пройдет через главный фокус зеркала – точку F 1 (рис. 3.12).

Теперь воспользуемся лучами 2 и 3 , исходящими из точек А и В и проходящими через полюс зеркала – точку Р . Отраженные лучи 2 ¢ и 3 ¢ составляют с главной оптической осью те же углы, что и падающие лучи.

Как видно из рис. 3.12, отраженные лучи 2 ¢ и 3 ¢ не пересекаются с отраженным лучом 1 ¢. Значит, действительных изображений в данном случае нет . Зато продолжения отраженных лучей 2 ¢ и 3 ¢ пересекаются с продолжением отраженного луча 1 ¢ в точках А ¢ и В ¢ за зеркалом , образуя мнимые изображения точек А и В .

Опустив перпендикуляры из точек А ¢ и В ¢ на главную оптическую ось, получим изображения наших отрезков.

Как видно из рис. 3.12, изображения отрезков получились прямыми и увеличенными , причем чем ближе предмет к главному фокусу, тем больше его изображение и тем дальше это изображение от зеркала.

СТОП! Решите самостоятельно: А3, А4.

Задача 3.2. Постройте изображения двух небольших одинаковых вертикальных отрезков в выпуклом зеркале (рис. 3.13).

Рис. 3.13 Рис. 3.14

Решение. Пустим луч 1 через верхние точки отрезков А и В параллельно главной оптической оси. Отраженный луч 1 ¢ пойдет так, что его продолжение пересечет главный фокус зеркала – точку F 2 (рис. 3.14).

Теперь пустим на зеркало лучи 2 и 3 из точек А и В так, чтобы продолжения этих лучей проходили через центр зеркала – точку О . Эти лучи отразятся так, что отраженные лучи 2 ¢ и 3 ¢ совпадут с падающими лучами.



Как видим из рис. 3.14, отраженный луч 1 ¢ не пересекается с отраженными лучами 2 ¢ и 3 ¢. Значит, действительных изображений точек А и В нет . Зато продолжение отраженного луча 1 ¢ пересекается с продолжениями отраженных лучей 2 ¢ и 3 ¢ в точках А ¢ и В ¢. Следовательно, точки А ¢ и В ¢ – мнимые изображения точек А и В .

Для построения изображений отрезков опустим перпендикуляры из точек А ¢ и В ¢ на главную оптическую ось. Как видно из рис. 3.14, изображения отрезков получились прямыми и уменьшенными. Причем чем ближе предмет к зеркалу, тем больше его изображение и тем ближе оно к зеркалу. Однако даже очень удаленный предмет не может дать изображение, удаленное от зеркала дальше главного фокуса зеркала .

Надеюсь, теперь понятно, почему, рассматривая свое отражение в выпуклой поверхности ложки, вы видели себя уменьшенным, но не перевернутым.

СТОП! Решите самостоятельно: А6.