Когда люди долгое время взаимодействуют в рамках определенной сферы деятельности, они начинают искать способ оптимизировать процесс коммуникации. Система математических знаков и символов представляет собой искусственный язык, который был разработан, чтобы уменьшить объем графически передаваемой информации и при этом полностью сохранить заложенный в сообщение смысл.

Любой язык требует изучения, и язык математики в этом плане - не исключение. Чтобы понимать значение формул, уравнений и графиков, требуется заранее владеть определенной информацией, разбираться в терминах, системе обозначений и т. д. При отсутствии такого знания текст будет восприниматься как написанный на незнакомом иностранном языке.

В соответствии с запросами общества графические символы для более простых математических операций (например, обозначение сложения и вычитания) были выработаны раньше, чем для сложных понятий наподобие интеграла или дифференциала. Чем сложнее понятие, тем более сложным знаком оно обычно обозначается.

Модели образования графических обозначений

На ранних этапах развития цивилизации люди связывали простейшие математические операции с привычными для них понятиями на основе ассоциаций. Например, в Древнем Египте сложение и вычитание обозначались рисунком идущих ног: направленные по направлению чтения строки они обозначали «плюс», а в обратную сторону - «минус».

Цифры, пожалуй, во всех культурах изначально обозначались соответствующим количеством черточек. Позже для записи стали использоваться условные обозначения - это экономило время, а также место на материальных носителях. Часто в качестве символов использовались буквы: такая стратегия получила распространение в греческом, латинском и многих других языках мира.

История возникновения математических символов и знаков знает два наиболее продуктивных способа образования графических элементов.

Преобразование словесного представления

Изначально любое математическое понятие выражается некоторым словом или словосочетанием и не имеет собственного графического представления (помимо лексического). Однако выполнение расчетов и написание формул словами - процедура длительная и занимающая неоправданно много места на материальном носителе.

Распространенный способ создания математических символов - трансформация лексического представления понятия в графический элемент. Иначе говоря, слово, обозначающее понятие, с течением времени сокращается или преобразуется каким-либо другим способом.

Например, основной гипотезой происхождения знака «плюс» является его сокращение от латинского et , аналогом которого в русском языке является союз «и». Постепенно в скорописи первая буква перестала писаться, а t сократилась до креста.

Другой пример - знак «икс», обозначающий неизвестное, который изначально представлял собой сокращение от арабского слова «нечто». Сходным образом произошли знаки для обозначения квадратного корня, процента, интеграла, логарифма и др. В таблице математических символов и знаков можно встретить более десятка графических элементов, появившихся таким образом.

Назначение произвольного символа

Второй распространенный вариант образования математических знаков и символов - назначение символа произвольным образом. В этом случае слово и графическое обозначение между собой не связаны - знак обычно утверждается в результате рекомендации одного из членов научного сообщества.

Например, знаки умножения, деления, равенства были предложены математиками Уильямом Отредом, Иоганном Раном и Робертом Рекордом. В некоторых случаях несколько математических знаков могли быть введены в науку одним ученым. В частности, Готфрид Вильгельм Лейбниц предложил целый ряд символов, в том числе интеграла, дифференциала, производной.

Простейшие операции

Такие знаки, как «плюс» и «минус», а также символы, обозначающие умножение и деление, знает каждый школьник, несмотря на то, что для последних двух упомянутых операций существует несколько возможных графических знаков.

Можно с уверенностью говорить, что складывать и вычитать люди умели ещё за много тысячелетий до нашей эры, а вот стандартизованные математические знаки и символы, обозначающие данные действия и известные нам сегодня, появились лишь к XIV-XV столетию.

Впрочем, несмотря на установление определенной договоренности в научном сообществе, умножение и в наше время может изображаться тремя различными знаками (диагональный крестик, точка, звёздочка), а деление - двумя (горизонтальная черта с точками сверху и снизу или наклонная черта).

Латинские буквы

На протяжении многих столетий научное сообщество использовало для обмена информацией исключительно латынь, и многие математические термины и знаки обнаруживают свои истоки именно в этом языке. В некоторых случаях графические элементы стали результатом сокращения слов, реже - их намеренного или случайного преобразования (например, вследствие описки).

Обозначение процента («%»), вероятнее всего, происходит от ошибочного написания сокращения cto (cento, т. е. «сотая доля»). Сходным образом произошёл знак «плюс», история которого описана выше.

Гораздо большее было образовано путём намеренного сокращения слова, хотя это не всегда очевидно. Далеко не каждый человек узнает в знаке квадратного корня букву R , т. е. первый знак в слове Radix («корень»). Символ интеграла также представляет собой первую букву слова Summa, однако интуитивно она похожа на прописную f без горизонтальной черты. К слову, в первой публикации издатели совершили именно такую ошибку, напечатав f вместо данного символа.

Греческие буквы

В качестве графических обозначений для различных понятий используются не только латинские, но и В таблице математических символов можно найти целый ряд примеров такого наименования.

Число Пи, представляющее собой отношение длины окружности к её диаметру, произошло от первой буквы греческого слова, обозначающего окружность. Существует ещё несколько менее известных иррациональных чисел, обозначаемых буквами греческого алфавита.

Крайне распространенным знаком в математике является «дельта», отражающая величину изменения значения переменных. Ещё одним употребительным знаком является «сигма», выполняющая функцию знака суммы.

Более того, практически все греческие буквы так или иначе используются в математике. Однако данные математические знаки и символы и их значение знают только люди, занимающиеся наукой профессионально. В быту и повседневной жизни эти знания человеку не требуются.

Знаки логики

Как ни странно, многие интуитивно понятные символы были придуманы совсем недавно.

В частности, горизонтальная стрелка, заменяющая слово «следовательно», была предложена лишь в 1922 года Кванторы существования и всеобщности, т. е. знаки, читающиеся как: «существует…» и «для любого…», были введены в 1897 и 1935 году соответственно.

Символы из области теории множеств были придуманы в 1888-1889 гг. А перечеркнутый круг, который сегодня известен любому учащемуся средней школы как знак пустого множества, появился в 1939 году.

Таким образом, знаки для столь непростых понятий, как интеграл или логарифм, были придуманы на столетия раньше, чем некоторые интуитивно понятные символы, легко воспринимаемые и усваиваемые даже без предварительной подготовки.

Математические символы на английском

Ввиду того, что значительная часть понятий была описана в научных трудах на латыни, ряд названий математических знаков и символов на английском и русском языке одинаковы. Например: Plus («плюс»), Integral («интеграл»), Delta function («дельта-функция»), Perpendicular («перпендикулярный»), Parallel («параллельный»), Null («нуль»).

Часть понятий в двух языках называются различным образом: так, деление - это Division, умножение - Multiplication. В редких случаях английское название для математического знака получает некоторое распространение в русском языке: например, косая черта в последние годы нередко именуется «слешем» (англ. Slash).

Таблица символов

Самый простой и удобный способ ознакомиться с перечнем математических знаков - посмотреть специальную таблицу, в которой содержатся знаки операций, символы математической логики, теории множеств, геометрии, комбинаторики, математического анализа, линейной алгебры. В данной таблице представлены основные математические знаки на английском языке.

Математические знаки в текстовом редакторе

При выполнении различного рода работ зачастую требуется использовать формулы, где употребляются знаки, отсутствующие на клавиатуре компьютера.

Как и графические элементы из практически любой области знаний, математические знаки и символы в «Ворде» можно найти во вкладке «Вставка». В версиях программы 2003 или 2007 года существует опция «Вставка символа»: при нажатии на кнопку в правой части панели пользователь увидит таблицу, в которой представлены все необходимые математические знаки, греческие строчные и прописные буквы, различные виды скобок и многое другое.

В версиях программы, вышедших после 2010 года, разработана более удобная опция. При нажатии на кнопку «Формула» происходит переход в конструктор формул, где предусмотрено использование дробей, занесения данных под корень, смена регистра (для обозначения степеней или порядковых номеров переменных). Здесь же могут быть найдены все знаки из таблицы, представленной выше.

Стоит ли учить математические символы

Система математических обозначений представляет собой искусственный язык, который лишь упрощает процесс записи, но не может принести понимание предмета стороннему наблюдателю. Таким образом, запоминание знаков без изучения терминов, правил, логических связей между понятиями не приведет к овладению данной областью знаний.

Человеческий мозг легко усваивает знаки, буквы и сокращения - математические обозначения запоминаются сами при изучении предмета. Понимание смысла каждого конкретного действия создает настолько прочные что знаки, обозначающие термины, а зачастую и формулы, связанные с ними, остаются в памяти на многие годы и даже десятилетия.

В заключение

Поскольку любой язык, в том числе искусственный, является открытым к изменениям и дополнениям, число математических знаков и символов непременно будет расти с течением времени. Не исключено, что какие-то элементы будут заменены или скорректированы, а другие - стандартизованы в единственно возможном виде, что актуально, например, для знаков умножения или деления.

Умение пользоваться математическими символами на уровне полного школьного курса является в современном мире практически необходимым. В условиях бурного развития информационных технологий и науки, повсеместной алгоритмизации и автоматизации владение математическим аппаратом следует воспринимать как данность, а освоение математических символов - как неотъемлемую его часть.

Поскольку расчеты используются и в гуманитарной сфере, и в экономике, и в естественных науках, и, разумеется, в области техники и высоких технологий, понимание математических понятий и знание символов станет полезным для любого специалиста.

из двух), 3 > 2 (три больше двух) и т.п.

Развитие математической символики было тесно связано с общим развитием понятий и методов математики. Первыми Знаки математические были знаки для изображения чисел - цифры , возникновение которых, по-видимому, предшествовало письменности. Наиболее древние системы нумерации - вавилонская и египетская - появились ещё за 3 1 / 2 тысячелетия до н. э.

Первые Знаки математические для произвольных величин появились много позднее (начиная с 5-4 вв. до н. э.) в Греции. Величины (площади, объёмы, углы) изображались в виде отрезков, а произведение двух произвольных однородных величин - в виде прямоугольника, построенного на соответствующих отрезках. В «Началах» Евклида (3 в. до н. э.) величины обозначаются двумя буквами - начальной и конечной буквами соответствующего отрезка, а иногда и одной. У Архимеда (3 в. до нашей эры) последний способ становится обычным. Подобное обозначение содержало в себе возможности развития буквенного исчисления. Однако в классической античной математике буквенного исчисления создано не было.

Начатки буквенного изображения и исчисления возникают в позднеэллинистическую эпоху в результате освобождения алгебры от геометрической формы. Диофант (вероятно, 3 в.) записывал неизвестную (х ) и её степени следующими знаками:

[ - от греческого термина dunamiV (dynamis - сила), обозначавшего квадрат неизвестной, - от греческого cuboV (k_ybos) - куб]. Справа от неизвестной или её степеней Диофант писал коэффициенты, например 3х 5 изображалось

(где = 3). При сложении Диофант приписывал слагаемые друг к другу, для вычитания употреблял специальный знак ; равенство Диофант обозначал буквой i [от греческого isoV (isos) - равный]. Например, уравнение

(x 3 + 8x ) - (5x 2 + 1) = х

У Диофанта записалось бы так:

(здесь

означает, что единица не имеет множителя в виде степени неизвестного).

Несколько веков спустя индийцы ввели различные Знаки математические для нескольких неизвестных (сокращения наименований цветов, обозначавших неизвестные), квадрата, квадратного корня, вычитаемого числа. Так, уравнение

3х 2 + 10x - 8 = x 2 + 1

В записи Брахмагупты (7 в.) имело бы вид:

Йа ва 3 йа 10 ру 8

Йа ва 1 йа 0 ру 1

(йа - от йават - тават - неизвестное, ва - от варга - квадратное число, ру - от рупа - монета рупия - свободный член, точка над числом означает вычитаемое число).

Создание современной алгебраической символики относится к 14-17 вв.; оно определялось успехами практической арифметики и учения об уравнениях. В различных странах стихийно появляются Знаки математические для некоторых действий и для степеней неизвестной величины. Проходят многие десятилетия и даже века, прежде чем вырабатывается тот или иной удобный символ. Так, в конце 15 и. Н. Шюке и Л. Пачоли употребляли знаки сложения и вычитания

(от лат. plus и minus), немецкие математики ввели современные + (вероятно, сокращение лат. et) и -. Ещё в 17 в. можно насчитать около десятка Знаки математические для действия умножения.

Различны были и Знаки математические неизвестной и её степеней. В 16 - начале 17 вв. конкурировало более десяти обозначений для одного только квадрата неизвестной, например се (от census - латинский термин, служивший переводом греческого dunamiV, Q (от quadratum), , A (2), , Aii, aa , a 2 и др. Так, уравнение

x 3 + 5x = 12

имело бы у итальянского математика Дж. Кардано (1545) вид:

у немецкого математика М. Штифеля (1544):

у итальянского математика Р. Бомбелли (1572):

французского математика Ф. Виета (1591):

у английского математика Т. Гарриота (1631):

В 16 и начале 17 вв. входят в употребление знаки равенства и скобки: квадратные (Р. Бомбелли , 1550), круглые (Н. Тарталья , 1556), фигурные (Ф. Виет , 1593). В 16 в. современный вид принимает запись дробей.

Значительным шагом вперёд в развитии математической символики явилось введение Виетом (1591) Знаки математические для произвольных постоянных величин в виде прописных согласных букв латинского алфавита В, D, что дало ему возможность впервые записывать алгебраические уравнения с произвольными коэффициентами и оперировать ими. Неизвестные Виет изображал гласными прописными буквами А, Е,... Например, запись Виета

В наших символах выглядит так:

x 3 + 3bx = d.

Виет явился творцом алгебраических формул. Р. Декарт (1637) придал знакам алгебры современный вид, обозначая неизвестные последними буквами лат. алфавита х, у, z, а произвольные данные величины - начальными буквами а, b, с. Ему же принадлежит нынешняя запись степени. Обозначения Декарта обладали большим преимуществом по сравнению со всеми предыдущими. Поэтому они скоро получили всеобщее признание.

Дальнейшее развитие Знаки математические было тесно связано с созданием анализа бесконечно малых, для разработки символики которого основа была уже в большой мере подготовлена в алгебре.

Даты возникновения некоторых математических знаков


знак

значение

Кто ввёл

Когда введён
Знаки индивидуальных объектов

¥

бесконечность

Дж. Валлис

1655

e

основание натуральных логарифмов

Л. Эйлер

1736

p

отношение длины окружности к диаметру

У. Джонс

Л. Эйлер


1706

i

корень квадратный из -1

Л. Эйлер

1777 (в печати 1794)

i j k

единичные векторы, орты

У. Гамильтон

1853

П (а)

угол параллельности

Н.И. Лобачевский

1835
Знаки переменных объектов

x,y, z

неизвестные или переменные величины

Р. Декарт

1637

r

вектор

О. Коши

1853
Знаки индивидуальных операций

+

сложение

немецкие математики

Конец 15 в.



вычитание

´

умножение

У. Оутред

1631

×

умножение

Г. Лейбниц

1698

:

деление

Г. Лейбниц

1684

a 2 , a 3 ,…, a n

степени

Р. Декарт

1637

И. Ньютон

1676



корни

К. Рудольф

1525

А. Жирар

1629

Log

логарифм

И. Кеплер

1624

log

Б. Кавальери

1632

sin

синус

Л. Эйлер

1748

cos

косинус

tg

тангенс

Л. Эйлер

1753

arc.sin

арксинус

Ж. Лагранж

1772

Sh


гиперболический синус
В. Риккати
1757

Ch


гиперболический косинус

dx, ddx, …

дифференциал

Г. Лейбниц

1675 (в печати 1684)

d 2 x, d 3 x,…




интеграл

Г. Лейбниц

1675 (в печати 1686)



производная

Г. Лейбниц

1675

¦¢x

производная

Ж. Лагранж

1770, 1779

y’

¦¢(x)

Dx

разность

Л. Эйлер

1755



частная производная

А. Лежандр

1786



определённый интеграл

Ж. Фурье

1819-22



сумма

Л. Эйлер

1755

П

произведение

К. Гаусс

1812

!

факториал

К. Крамп

1808

|x|

модуль

К. Вейерштрасс

1841

lim

предел


У. Гамильтон,

многие математики


1853,

начало 20 в.


lim

n = ¥

lim

n ® ¥

x

дзета-функция

Б. Риман

1857

Г

гамма-функция

А. Лежандр

1808

В

бета-функция

Ж. Бине

1839

D

дельта (оператор Лапласа)

Р. Мёрфи

1833

Ñ

набла (оператор Гамильтона)

У. Гамильтон

1853
Знаки переменных операций

jx

функция

И. Бернули

1718

f (x)

Л. Эйлер

1734
Знаки индивидуальных отношений

=

равенство

Р. Рекорд

1557

>

больше

Т. Гарриот

1631

<

меньше

º

сравнимость

К. Гаусс

1801


параллельность

У. Оутред

1677

^

перпендикулярность

П. Эригон

1634

И. Ньютон в своём методе флюксий и флюент (1666 и следующие гг.) ввёл знаки для последовательных флюксий (производных) величины (в виде

и для бесконечно малого приращения o . Несколько ранее Дж. Валлис (1655) предложил знак бесконечности ¥.

Создателем современной символики дифференциального и интегрального исчислений является Г. Лейбниц . Ему, в частности, принадлежат употребляемые ныне Знаки математические дифференциалов

dx, d 2 x, d 3 x

и интеграла

Огромная заслуга в создании символики современной математики принадлежат Л. Эйлеру . Он ввёл (1734) в общее употребление первый знак переменной операции, именно знак функции f (x ) (от лат. functio). После работ Эйлера знаки для многих индивидуальных функций, например тригонометрических, приобрели стандартный характер. Эйлеру же принадлежат обозначения постоянных е (основание натуральных логарифмов, 1736), p [вероятно, от греческого perijereia (periphereia) - окружность, периферия, 1736], мнимой единицы

(от французского imaginaire - мнимый, 1777, опубликовано в 1794).

В 19 в. роль символики возрастает. В это время появляются знаки абсолютной величины |x| (К. Вейерштрасс , 1841), вектора (О. Коши , 1853), определителя

(А. Кэли , 1841) и др. Многие теории, возникшие в 19 в., например Тензорное исчисление, не могли быть развиты без подходящей символики.

Наряду с указанным процессом стандартизации Знаки математические в современной литературе весьма часто можно встретить Знаки математические , используемые отдельными авторами только в пределах данного исследования.

С точки зрения математической логики, среди Знаки математические можно наметить следующие основные группы: А) знаки объектов, Б) знаки операций, В) знаки отношений. Например, знаки 1, 2, 3, 4 изображают числа, т. е. объекты, изучаемые арифметикой. Знак операции сложения + сам по себе не изображает никакого объекта; он получает предметное содержание, когда указано, какие числа складываются: запись 1 + 3 изображает число 4. Знак > (больше) есть знак отношения между числами. Знак отношения получает вполне определённое содержание, когда указано, между какими объектами отношение рассматривается. К перечисленным трём основным группам Знаки математические примыкает четвёртая: Г) вспомогательные знаки, устанавливающие порядок сочетания основных знаков. Достаточное представление о таких знаках дают скобки, указывающие порядок производства действий.

Знаки каждой из трёх групп А), Б) и В) бывают двух родов: 1) индивидуальные знаки вполне определённых объектов, операций и отношений, 2) общие знаки «неременных», или «неизвестных», объектов, операций и отношений.

Примеры знаков первого рода могут служить (см. также таблицу):

A 1) Обозначения натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9; трансцендентных чисел е и p; мнимой единицы i.

Б 1) Знаки арифметических действий +, -, ·, ´,:; извлечения корня , дифференцирования

знаки суммы (объединения) È и произведения (пересечения) Ç множеств; сюда же относятся знаки индивидуальных функций sin, tg, log и т.п.

1) Знаки равенства и неравенства =, >, <, ¹, знаки параллельности || и перпендикулярности ^, знаки принадлежности Î элемента некоторому множеству и включения Ì одного множества в другое и т.п.

Знаки второго рода изображают произвольные объекты, операции и отношения определённого класса или объекты, операции и отношения, подчинённые каким-либо заранее оговорённым условиям. Например, при записи тождества (a + b )(a - b ) = a 2 - b 2 буквы а и b обозначают произвольные числа; при изучения функциональной зависимости у = х 2 буквы х и у - произвольные числа, связанные заданным отношением; при решении уравнения

х обозначает любое число, удовлетворяющее данному уравнению (в результате решения этого уравнения мы узнаём, что этому условию соответствуют лишь два возможных значения +1 и -1).

С логической точки зрения, законно такого рода общие знаки называть знаками переменных, как это принято в математической логике, не пугаясь того обстоятельства, что «область изменения» переменного может оказаться состоящей из одного единственного объекта или даже «пустой» (например, в случае уравнений, не имеющих решения). Дальнейшими примерами такого рода знаков могут служить:

A 2) Обозначения точек, прямых, плоскостей и более сложных геометрических фигур буквами в геометрии.

Б 2) Обозначения f, , j для функций и обозначения операторного исчисления, когда одной буквой L изображают, например, произвольный оператор вида:

Обозначения для «переменных отношений» менее распространены, они находят применение лишь в математической логике (см. Алгебра логики ) и в сравнительно абстрактных, по преимуществу аксиоматических, математических исследованиях.

Лит.: Cajori ., A history of mathematical notations, v. 1-2, Chi., 1928-29.

Статья про слово "Знаки математические " в Большой Советской Энциклопедии была прочитана 39765 раз

«Символы не являются только записью мыслей,
средством её изображения и закрепления, -
нет, они воздействуют на самую мысль,
они… направляют её, и бывает достаточно
переместить их на бумаге… для того, чтобы
безошибочно достигнуть новых истин».

Л.Карно

Математические знаки служат в первую очередь для точной (однозначно определённой) записи математических понятий и предложений. Их совокупность в реальных условиях их применения математиками составляет то, что называется, математическим языком.

Математические знаки позволяют записывать в компактной форме предложения, громоздко выраженные на обычном языке. Это облегчает их запоминание.

Прежде чем использовать в рассуждениях те или иные знаки, математик старается сказать, что каждый из них обозначает. Иначе его могут не понять.
Но математики не всегда могут сказать сразу, что отражает тот или иной символ, введённый ими для какой-либо математической теории. Например, сотни лет математики оперировали отрицательными и комплексными числами, однако объективный смысл этих чисел и действие с ними удалось раскрыть лишь в конце XVIII и в начале XIX века.

1. Символизм математических кванторов

Подобно обычному языку, язык математических знаков позволяет обмениваться установленными математическими истинами, но являясь лишь вспомогательным средством, присоединяемым к обычному языку и без него существовать, не может.

Математическое определение:

На обычном языке:

Пределом функции F (x) в некоторой точке X0 называется постоянное число А, такое что для произвольного числа Е>0 существует такое положительное d(E), что из условия |X - X 0 |

Запись в кванторах (на математическом языке)

2. Символизм математических знаков и геометрических фигур.

1) Бесконечность — концепция, используемая в математике, философии и естественных науках. Бесконечность какого-то понятия или атрибута некоторого объекта означает невозможность указать для него границы или количественную меру. Термин бесконечность соответствует нескольким различным понятиям, в зависимости от области применения, будь то математика, физика, философия, теология или повседневная жизнь. В математике не существует одного понятия бесконечности, она наделяется особыми свойствами в каждом разделе. Более того, эти различные «бесконечности» не взаимозаменяемы. К примеру, теория множеств подразумевает разные бесконечности, причём одна может быть больше другой. Скажем, количество целых чисел бесконечно большое (оно называется счётным). Чтобы обобщить понятие количества элементов для бесконечных множеств, в математике вводится понятие мощности множества. При этом не существует одной «бесконечной» мощности. Например, мощность множества действительных чисел больше мощности целых чисел, потому что между этими множествами нельзя построить взаимно-однозначное соответствие, а целые числа включены в действительные. Таким образом, в этом случае одно кардинальное число (равно мощности множества) «бесконечнее» другого. Основоположником этих понятий был немецкий математик Георг Кантор. В математическом анализе ко множеству действительных чисел добавляются два символа, плюс и минус бесконечность, применяющиеся для определения граничных значений и сходимости. Нужно отметить, что в этом случае речь об «осязаемой» бесконечности не идёт, так как любое утверждение, содержащее этот символ, можно записать, используя только конечные числа и кванторы. Эти символы (как и многие другие) были введены для сокращения записи более длинных выражений. Бесконечность также неразрывно связана с обозначением бесконечно малого, к примеру, ещё Аристотель сказал:
«… всегда возможно придумать большее число, потому что количество частей, на которые можно разделить отрезок, не имеет предела; поэтому бесконечность потенциальна, никогда не действительна, и какое бы число делений не задали, всегда потенциально можно поделить этот отрезок на еще большее число». Заметим, что Аристотель внес большой вклад в осознание бесконечности, разделив её на потенциальную и актуальную, и вплотную подошел с этой стороны к основам математического анализа, также указав на пять источников представления о ней:

  • время,
  • разделение величин,
  • неиссякаемость творящей природы,
  • само понятие границы, толкающее за её пределы,
  • мышление, которое неостановимо.

Бесконечность в большинстве культур появилась как абстрактное количественное обозначение чего-то непостижимо большого, в применении к сущностям без пространственных или временных границ.
Далее бесконечность получила развитие в философии и теологии наравне с точными науками. К примеру, в теологии бесконечность Бога не столько даёт количественное определение, сколько означает неограниченность и непостижимость. В философии это атрибут пространства и времени.
Современная физика вплотную подходит к отрицаемой Аристотелем актуальности бесконечности — то есть доступности в реальном мире, а не только в абстрактном. Например, есть понятие сингулярности, тесно связанное с чёрными дырами и теорией большого взрыва: это точка в пространстве—времени, в которой масса в бесконечно малом объёме сосредоточена с бесконечной плотностью. Уже есть солидные косвенные доказательства существования чёрных дыр, хотя теория большого взрыва находится ещё в стадии разработки.

2) Круг — геометрическое место точек плоскости, расстояние от которых до заданной точки, называемой центром круга, не превышает заданного неотрицательного числа, называемого радиусом этого круга. Если радиус равен нулю, то круг вырождается в точку. Окружность — геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом.
Круг - символ Солнца, Луны. Один из самых распространённых символов. А также является символом бесконечности, вечности, совершенства.

3) Квадрат (ромб) - является символом комбинации и упорядочивания четырёх различных элементов, например четыре основных стихий или четырёх времён года. Символ числа 4, равенства, простоты, прямоты, истины, справедливости, мудрости, чести. Симметрия является той идеей посредством которой человек пытается постичь гармонию и с давних времён считалась символом прекрасного. Симметрией обладают так называемые “фигурные” стихи, текст которых имеет очертание ромба.
Стихотворение - ромб.

Мы -
Среди тьмы.
Глаз отдыхает.
Сумрак ночи живой.
Сердце жадно вздыхает,
Шепот звёзд долетает порой.
И лазурные чувства теснятся толпой.
Всё забылось в блеске росистом.
Поцелуем душистым!
Поскорее блесни!
Снова шепни,
Как тогда:
«Да!»

(Э.Мартов, 1894г)

4) Прямоугольник. Из всех геометрических форм это наиболее рациональная, наиболее надёжная и правильная фигура; эмпирически это объясняется тем фактом, что всегда и везде прямоугольник был излюбленной формой. С помощью него человек приспосабливал пространство или какой-либо предмет для непосредственного использования в своём быту, например: дом, комната, стол, кровать и т.п.

5) Пентагон - правильный пятиугольник в виде звезды символ вечности, совершенства, вселенной. Пентагон - амулет здоровья, знак на дверях для того, чтобы отогнать ведьм, эмблема Тота, Меркурия, кельтского Гавайна и др., символ пяти ран Иисуса Христа, благополучия, удачи у евреев, легендарный ключ Соломона; знак высокого положения в обществе у Японцев.

6) Правильный шестиугольник, гексагон - символ изобилия, красоты, гармонии, свободы, брака, символ числа 6, образ человека (две руки, две ноги, голова и туловище).

7) Крест - символ высших сакральных ценностей. Крест моделирует духовный аспект, восхождение духа, устремление к богу, к вечности. Крест - универсальный символ единства жизни и смерти.
Конечно, с этими утверждениями можно и не соглашаться.
Однако никто не будет отрицать, что любое изображение вызывает у человека ассоциации. Но проблема в том, что одни предметы, сюжеты или графические элементы вызывают у всех людей (вернее, у многих) одинаковые ассоциации, а другие - совершенно различные.

8) Треугольник - это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, соединяющих эти три точки.
Свойства треугольника как фигуры: прочность, неизменяемость.
Аксиома А1 стереометрии гласит: «Через 3 точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна!»
Чтобы проверить глубину понимания этого утверждения обычно задают задачу на засыпку: «На столе сидят три мухи, на трёх концах стола. В определённый момент они разлетаются по трём взаимно - перпендикулярным направлениям с одинаковой скоростью. Когда они снова окажутся в одной плоскости?». Ответом служит тот факт, что три точки всегда, в любой момент, определяют единственную плоскость. И именно 3 точки определяют треугольник, поэтому эта фигура в геометрии считается самой устойчивой и прочной.
Треугольник обычно относят к острой, «наступательной» фигуре, связанной с мужским началом. Равносторонний треугольник - мужской и солнечный знак, представляющий божество, огонь, жизнь, сердце, гору и восхождение, благополучие, гармонию и королевскую власть. Перевёрнутый треугольник - женский и лунный символ, олицетворяет воду, плодовитость, дождь, божественную милость.

9) Шестиконечная Звезда (Звезда Давида) - состоит из двух наложенных один на другой равносторонних треугольников. Одна из версий происхождения знака связывает его форму с формой цветка Белой лилии, имеющего шесть лепестков. Цветок традиционно располагался под храмовым светильником, таким образом, что священник зажигал огонь, как бы, в центре Маген Давида. В каббале два треугольника символизируют свойственную человеку дуальность: добро против зла, духовное против физического и так далее. Треугольник, направленный остриём вверх, символизирует наши добрые дела, которые поднимаются на небеса и вызывают поток благодати, нисходящий обратно в этот мир (что символизирует треугольник, направленный вниз). Иногда Звезду Давида называют Звездой Творца и связывают каждый из её шести концов с одним из дней недели, а центр - с субботой.
Государственные символы США также содержат Шестиконечную Звезду в разных видах, в частности есть она на Большой печати США и на денежных знаках. Звезда Давида изображена на гербах немецких городов Шер и Гербштедт, а так же украинских Тернополя и Конотопа. Три шестиконечные звезды изображены на флаге Бурунди и олицетворяют национальный девиз: «Единство. Работа. Прогресс».
В христианстве шестиконечная звезда - символ Христа, а именно соединения во Христе божественной и человеческой природы. Именно поэтому этот знак вписан в Православный Крест.

10) Пятиконечная Звезда - Основной отличительной эмблемой большевиков является красная пятиконечная звезда, официально установленная весной 1918 года. Первоначально большевистская пропаганда назвала её “ Марсовой звездой” (якобы принадлежащей античному богу войны - марсу), а затем стала заявлять, что “ Пять лучей звезды, означает союз трудящихся всех пяти континентов в борьбе против капитализма”. В действительности же пятиконечная звезда не имеет никакого отношения ни к воинствующему божеству Марсу, ни к международному пролетариату, это - древний оккультный знак (очевидно ближневосточного происхождения), называющийся “пентаграммой” или “Звездой Соломона”.
Правительству”, находящемуся под полным контролем масонства.
Весьма часто сатанисты рисуют пентаграмму двумя концами вверх, чтобы туда было легко вписать дьявольскую голову “Пентаграмма Бафомета”. Портрет “Пламенного революционера” помещён внутри “Пентаграммы Бафомета”, являющейся центральной частью композиции проектируемого в 1932 году особого чекистского ордена “ Феликса Дзержинского” (далее проект был отклонён Сталиным, глубоко ненавидящим “Железного Феликса”).

Отметим, что зачастую пентаграмма размещалась большевиками на красноармейском обмундировании, в военной технике, различных знаках и всевозможных атрибутах наглядной агитации чисто по-сатанински: двумя “рогами” вверх.
Марксистские планы “всемирной пролетарской революции” имели явно масонское происхождение, ряд виднейших марксистов состоял в масонстве. К ним относился Л.Троцкий, именно он и предложил сделать масонскую пентаграмму опознавательной эмблемой большевизма.
Интернациональные масонские ложи тайно оказывали большевикам всестороннюю поддержку, особенно финансовую.

3. Масонские знаки

Масоны

Девиз: «Свобода. Равенство. Братство».

Общественное движение свободных людей, которые на основе свободного выбора позволяют стать лучше, стать ближе к богу следственно, они признаны улучшить мир.
Масоны - соратники Творца, сподвижники общественного прогресса, против инерции, косности и невежества. Выдающиеся представители масонства - Карамзин Николай Михайлович, Суворов Александр Васильевич, Кутузов Михаил Илларионович, Пушкин Александр Сергеевич, Геббельс Иозеф.

Знаки

Лучезарное око (дельта) - знак древний, религиозный. Он говорит о том, что Бог надзирает над творениями своими. Изображением этого знака масоны спрашивали у Бога благословения на какие-либо грандиозные действия, на труды свои. Лучезарное око расположено на фронтоне Казанского Собора в Санкт-Петербурге.

Сочетание циркуля и угольника в масонском знаке.

Для непосвящённого - это орудие труда (каменщика), а для посвящённых - это способы познания мира и соотношения божественной премудрости и человеческого разума.
Угольник, как правило, снизу - это человеческое познание мира. С точки зрения масонства, человек приходит в мир, что познать божественный замысел. А для познания необходим инструментарий. Самая эффективная наука в познание мира - математика.
Угольник - древнейший математический инструмент, известный с незапамятных времён. Градуировка угольника - уже большой шаг вперёд в математическом инструментарии познания. Человек познаёт мир с помощью наук математика из них первейшая, но не единственная.
Однако угольник деревянный, и он вмещает то, что может вместить. Его нельзя раздвинуть. Если ты попытаешься его раздвинуть, чтобы он вмещал больше, - ты поломаешь его.
Так люди, пытающиеся познать всю бесконечность божественного замысла, либо умирают, либо сходят с ума. «Знай, свои границы!» - вот, что сообщает Миру этот знак. Будь ты даже Эйнштейн, Ньютон, Сахаров - величайшие умы человечества! - понимай, что ты ограничен временем, в котором ты рождён; в познании мира, языком, объёмом мозга, самыми разными человеческими ограничениями, жизнью твоего тела. Поэтому - да, познавай, но понимай, что ты никогда до конца не познаешь!
А циркуль? Циркуль есть божественная премудрость. Циркулем можно описать круг, а если раздвинуть ему ножки, то будет прямая. А в символических системах круг и прямая - две противоположности. Прямая обозначает человека, его начало и конец (как тире между двумя датами - рождения и смерти). Круг - символ божества, поскольку является совершенной фигурой. Они друг другу противостоят - божественная и человеческая фигуры. Человек не совершенен. Бог - совершенен во всём.

Для божественной премудрости нет невозможного, она может принять и вид человеческий (-) и вид божественный (0), всё может в себя вместить. Таким образом, человеческий разум постигает божественную премудрость, объемлет ее. В философии это утверждение является постулатом об абсолютной и относительной истине.
Люди всегда познают истину, но всегда относительную истину. А абсолютная истина ведома только Богу.
Познавай всё больше, осознавая, что не сможешь познать истину до конца - какие глубины мы находим в обыкновенном циркуле с угольником! Кто бы мог подумать!
Вот в чём прелесть и очарование масонской символики, в её огромной интеллектуальной глубине.
Начиная с эпохи Средневековья циркуль, как инструмент для вычерчивания безупречных кругов стал символом геометрии, космического порядка и планомерных действий. В это время часто рисовали Бога Саваофа в образе творца и архитектора Вселенной с циркулем в руках (Уильям Блейк ‘‘Великий Архитектор’’, 1794 г).

Шестиугольная Звезда (Вифлеема)

Буква G - обозначение бога (нем. - Got), великого геометра Вселенной.
Шестиугольная Звезда, означала Единство и Борьбу Противоположностей, борьбу Мужчины и Женщины, Добра и Зла, Света и Тьмы. Не может одно существовать без другого. Напряжение, которое возникает между этими противоположностями, создаёт мир в том виде, в каком мы его знаем.
Треугольник вверх означает - «Человек стремится к Богу». Треугольник вниз - «Божество нисходит к Человеку». В их соединении и существует наш мир, который и есть соединение Человеческого и Божественного. Буква G здесь означает, что Бог живёт в нашем мире. Он реально присутствует во всём, им сотворённом.

Заключение

Математические знаки служат в первую очередь для точной записи математических понятий и предложений. Их совокупность составляет то, что называется математическим языком.
Решающей силой развития математической символики является не “свободная воля” математиков, а требования практики, математических исследований. Именно реальные математические исследования помогают выяснить, какая система знаков наилучшим образом отображает структуру количественных и качественных отношений, в силу чего могут быть эффективным орудием их дальнейшего применения в символах и эмблемах.

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык , составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I - обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается - Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, ... , L, М, N, ...

1,2,3,4,...,12,13,14,...

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, ... , l, m, n, ...

Линии уровня обозначаются: h - горизонталь; f- фронталь.

Для прямых используются также следующие обозначения:

(АВ) - прямая, проходящая через точки А а В;

[АВ) - луч с началом в точке А;

[АВ] - отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,...,ζ,η,ν,...

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) - плоскость α определяется параллельными прямыми а и b;

β(d 1 d 2 gα) - поверхность β определяется направляющими d 1 и d 2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC - угол с вершиной в точке В, а также ∠α°, ∠β°, ... , ∠φ°, ...

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

Величина угла АВС;

Величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками - ||.

Например:

|АВ| - расстояние между точками А и В (длина отрезка АВ);

|Аа| - расстояние от точки А до линии a;

|Аα| - расстояшие от точки А до поверхности α;

|аb| - расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π 1 и π 2 , где π 1 - горизонтальная плоскость проекций;

π 2 -фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π 3 , π 4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х - ось абсцисс; у - ось ординат; z - ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А", В", С", D", ... , L", М", N", горизонтальные проекции точек; А", В", С", D", ... , L", М", N", ... фронтальные проекции точек; a" , b" , c" , d" , ... , l", m" , n" , - горизонтальные проекции линий; а" ,b" , с" , d" , ... , l" , m" , n" , ... фронтальные проекции линий; α", β", γ", δ",...,ζ",η",ν",... горизонтальные проекции поверхностей; α", β", γ", δ",...,ζ",η",ν",... фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса 0α , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h 0α - горизонтальный след плоскости (поверхности) α;

f 0α - фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: H a - горизонтальный след прямой (линии) а;

F a - фронтальный след прямой (линии) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,..., n:

А 1 , А 2 , А 3 ,...,А n ;

a 1 , a 2 , a 3 ,...,a n ;

α 1 , α 2 , α 3 ,...,α n ;

Ф 1 , Ф 2 , Ф 3 ,...,Ф n и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A 0 , B 0 , С 0 , D 0 , ...

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А 0 , В 0 , С 0 , D 0 , ...

1 0 , 2 0 , 3 0 , 4 0 , ...

a 0 , b 0 , c 0 , d 0 , ...

α 0 , β 0 , γ 0 , δ 0 , ...

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1:

А 1 0 , В 1 0 , С 1 0 , D 1 0 , ...

1 1 0 , 2 1 0 , 3 1 0 , 4 1 0 , ...

a 1 0 , b 1 0 , c 1 0 , d 1 0 , ...

α 1 0 , β 1 0 , γ 1 0 , δ 1 0 , ...

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами
№ по пор. Обозначение Содержание Пример символической записи
1 Совпадают (АВ)≡(CD) - прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2 Конгруентны ∠ABC≅∠MNK - угол АВС конгруентен углу MNK
3 Подобны ΔАВС∼ΔMNK - треугольники АВС и MNK подобны
4 || Параллельны α||β - плоскость α параллельна плоскости β
5 Перпендикулярны а⊥b - прямые а и b перпендикулярны
6 Скрещиваются с d - прямые с и d скрещиваются
7 Касательные t l - прямая t является касательной к линии l.
βα - плоскость β касательная к поверхности α
8 Отображаются Ф 1 →Ф 2 - фигура Ф 1 отображается на фигуру Ф 2
9 S Центр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
-
10 s Направление проецирования -
11 P Параллельное проецирование р s α Параллельное проецирование - параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные
№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1 M,N Множества - -
2 A,B,C,... Элементы множества - -
3 { ... } Состоит из... Ф{A, B, C,... } Ф{A, B, C,... } - фигура Ф состоит из точек А, В,С, ...
4 Пустое множество L - ∅ - множество L пустое (не содержит элементов) -
5 Принадлежит, является элементом 2∈N (где N - множество натуральных чисел) -
число 2 принадлежит множеству N
А ∈ а - точка А принадлежит прямой а
(точка А лежит на прямой а)
6 Включает, cодержит N⊂М - множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α - прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7 Объединение С = A U В - множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = ∪ [ВС] ∪ - ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС],
8 Пересечение множеств М=К∩L - множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅- пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β - прямая а есть пересечение
плоскостей α и β
а ∩ b = ∅ - прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ
№ по пор. Обозначение Содержание Пример символической записи
1 Конъюнкция предложений; соответствует союзу "и".
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2 Дизъюнкция предложений; соответствует союзу "или". Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
-
3 Импликация - логическое следствие. Предложение р⇒q означает: "если р, то и q" (а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4 Предложение (р⇔q) понимается в смысле: "если р, то и q; если q, то и р" А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5 Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: "для всякого x: имеет место свойство Р(х) "
∀(ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6 Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: "существует х, обладающее свойством Р(х)"
(∀α)(∃a).Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1 Квантор единственности существования, читается: существует единственное
(-я, -й)... Выражение ∃1(x)(Рх) означает: "существует единственное (только одно) х,
обладающее свойством Рх"
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8 (Px) Отрицание высказывания P(x) аb(∃α )(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9 \ Отрицание знака
≠ -отрезок [АВ] не равен отрезку .а?b - линия а не параллельна линии b