ПН2-600-630А-У3-КЭАЗ Iном = 597А Ток отключения 630

При возникновении эксплуатационных (технологических) перегрузок и аварийных режимов, являющихся следствием нарушений работы схемы, по электрическим цепям аварийного контура протекают токи, превосходящие номинальные значения, на которые рассчитано электрооборудование.

В результате воздействия аварийных токов и перегрева токопроводов нарушается электрическая изоляция, обгорают и плавятся контактные поверхности соединительных шин и электрических аппаратов. Электродинамические удары вызывают повреждение шин, изоляторов и обмоток реакторов.

Для ограничения амплитуды аварийных токов и длительности их протекания применяются специальные устройства и системы защиты электрооборудования. Устройства защиты должны отключить аварийную цепь раньше, чем могут выйти из строя отдельные ее элементы.

При больших перегрузках или коротких замыканиях устройства защиты должны сразу отключить всю электроустановку или часть ее с максимальным быстродействием для обеспечения дальнейшей работоспособности или, если авария является следствием выхода из строя одного из элементов цепи, предотвратить выход из строя другого электрооборудования.

В случае небольших перегрузок, не опасных для оборудования в течение определенного времени, система защиты может воздействовать на предупреждающую сигнализацию для сведения обслуживающего персонала или на систему автоматического регулирования для снижения тока.

Поскольку основным фактором, приводящим к выходу из строя электрооборудования, является тепловое действие аварийного тока, то по принципу построения защитные устройства делятся на токовые и тепловые.

Токовые защитные устройства контролируют значения или отношения значений протекающих через оборудование токов.

Тепловые защитные устройства измеряют непосредственно температуру электрооборудования.

Полупроводниковые приборы обладают низкой перегрузочной способностью по сравнению с другим силовым оборудованием, и к устройствам защиты полупроводниковых выпрямителей и других преобразователей предъявляются повышенные требования. Защитные устройства в установках с полупроводниковыми выпрямителями выбираются исходя из допустимых перегрузочных характеристик силовых диодов или тиристоров с учетом того, что при этом будет защищаться и другое оборудование, находящиеся в цепи аварии, поскольку оно обладает большей перегрузочной способностью.



Применение тех или иных средств защиты определяется параметрами силовой цепи преобразователя и перегрузочной способностью полупроводниковых приборов.

Независимо от параметров установки и типа применяемых защитных аппаратов и систем выделяют следующие общие требования к защите.

1. Быстродействие – обеспечение минимально возможного времени срабатывания защиты, не превышающего допустимого.

2. Селективность. Аварийное отключение должно производиться только в той цепи, где возникла причина аварии. А другие участки силовой цепи при этом должны оставаться в работе.

3. Электродинамическая стойкость. Максимальный ток, ограниченный защитными устройствами, не должен превышать допустимого для данной электроустановки значения по электродинамической стойкости.

4. Уровень перенапряжений. Отключение аварийного тока не должно вызывать перенапряжений, опасных для полупроводниковых приборов.

5. Надежность. Устройства защиты не должны выходить из строя при отключении аварийных токов.

6. Помехоустойчивость. При появлении помех в сети собственных нужд и в цепях управления устройства защиты не должно ложно срабатывать.

7. Чувствительность. Защита должна срабатывать при всех повреждениях и токах, опасных для полупроводниковых приборов, независимо от места и характера аварии.

Выбор предохранителей.

Предохранители выбираются по следующим условиям:

1) по номинальному напряжению сети:

Uном.пред. >= Uном.с.,

где Uном.пред. – номинальное напряжение предохранителя;

Uном.с. – номинальное напряжение сети;

2) по длительному расчетному току линии;

Iном.вст. >= Iдлит. ;

где Iном.вст. – номинальный ток плавкой вставки;

Iдлит – длительный расчетный ток цепи.

Кроме того при использовании безынерционных предохранителей не должно происходить перегорание плавкой вставки от кратковременных толчков тока, например от пусковых токов электродвигателей. Поэтому при выборе предохранителей таких электроприемников необходимо также выполнение и другого условия:

Iном.вст. >= Iпуск / 3,1 ,

где Iпуск – пусковой ток двигателя.

Часто возникает необходимость в защите магистральной линии, по которой питается группа электродвигателей, причем часть из них или все они могут пускаться одновременно. В этом случае предохранители выбираются по следующему соотношению:

Iном.вст. >= Iкр / 3,1 (при легких условиях пуска)

Iном.вст. >= Iкр / (1,5 – 2) (при тяжелых условиях пуска),

где Iкр = I’пуск + I’длит – максимальный кратковременный ток линии;

I’пуск – пусковой ток электродвигателя или группы одновременно включаемых двигателей, при пуске которых кратковременный ток линии достигает наибольшего значения;

I’длит – длительный расчетный ток линии до момента пуска электродвигателя (или группы электродвигателей), определяемый без учета рабочего тока пускаемого электродвигателя (или группы двигателей).

Для трехфазных электроприемников переменного тока;

где Рном - номинальная мощность электроприемника (или группы электроприемников), кВт; U – номинальное напряжение (для электроприемников переменного тока – линейное напряжение сети), кВ;

– коэффициент мощности; – КПД электродвигателя.

Выбор автоматических выключателей.

Выбор автоматических выключателей производится по номинальным напряжению и току с соблюдением следующих условий:

Uном.а. >= Uном.с.; Iном.а. >= Iдлит;

где Uном.а. – номинальное напряжение автоматического выключателя;

Uном.с. – номинальное напряжение сети; где Iном.а. – номинальный ток автоматического выключателя; Iдлит – длительный расчетный ток цепи.

Кроме того, должны быть правильно выбраны: номинальный ток расцепителей Iном.расц.; ток установки электромагнитного расцепительного элемента комбинированного расцепителя Iуст.эл.магн.; номинальный ток уставки теплового расцепителя или теплового элемента комбинированного расцепителя – Iном.уст.тепл.

Номинальные токи электромагнитного, теплового или комбинированного расцепителя должны быть не меньше номинального тока двигателя:

Iном.расц. >= Iном.дв.

Ток установки электромагнитного расцепителя (отсечки) или электромагнитного элемента комбинированного расцепителя с учетом неточности срабатывания расцепителя и отклонений действительного

пускового тока от католожных данных выбирается из условия

Iуст.эл.магн. >= 1,25 Iпуск. = 1,25 3,1 7 = 27 А Iп = 7 Iр

где Iпуск. – пусковой ток двигателя.

Номинальный ток установки теплового расцепителя или теплового элемента комбинированного расцепителя:

Iном.уст.тепл. >= Iном.дв.

Так же выбираются установки расцепителей автоматических выключателей и для защиты цепей других электроприемников системы электропитания, например цепей контрольно – измерительных приборов и др. (если в этом возникает необходимость, так как в большинстве случаев для защиты приборов и других подобных электроприемников малой мощности по соображениям чувствительности оказывается необходимым применять плавкие предохранители). При этом надо учитывать, что если автоматический выключатель с электромагнитным расцепителем устанавливается в цепях электроприемников, при включении которых не возникают броски пускового тока, то надобности в отстройке от последних нет и ток установки электромагнитного расцепителя в этом случае должен выбираться минимально – возможным.

Выбор тепловых реле магнитных пускателей.

Тепловые реле выбираются по номинальному току двигателя (или длительному расчетному току):

Iном.т.р >= Iном.дв. ;

При выборе теплового реле необходимо стремиться к тому, чтобы ток установки находился в центре диапазона регулирования.

Результаты расчета и выбора аппаратов защиты.

Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] Красник Валентин Викторович

Выбор аппаратов защиты

Выбор аппаратов защиты

Вопрос. Какие аппараты применяются в качестве защитных?

Ответ. Применяются автоматические выключатели или предохранители. Рекомендуется применять автоматические выключатели с комбинированным расцепителем.

Для обеспечения требований быстродействия, чувствительности, селективности в необходимых случаях могут применяться устройства защиты с использованием выносных реле (реле косвенного действия). Коэффициент чувствительности этих защит в конце защищаемой зоны должен быть не менее 1,5 (3.1.3).

Вопрос. Как выбираются аппараты защиты по отключающей способности?

Ответ. Выбираются соответственно максимальному значению тока КЗ в начале защищаемого участка электрической сети, то есть стойкими при этом токе в соответствии с определением гл. 1.4 Правил.

Установка аппаратов защиты, не стойких при максимальных значениях токов КЗ, допускается, если защищающий их групповой автоматический выключатель или ближайший автоматический выключатель по направлению к источнику питания является стойким при максимальном токе КЗ, и ток срабатывания его мгновенно действующего расцепителя (отсечки без выдержки времени) меньше, чем ток одноразовой предельной коммутационной способности каждого из группы защищаемых аппаратов, и если такое неселективное отключение всей группы аппаратов не грозит аварией, порчей дорогостоящего оборудования и материалов или расстройством сложного технологического процесса (3.1.4).

Вопрос. Каковы общие требования по выбору номинальных токов плавких вставок предохранителей и номинальных токов или уставок расцепителей автоматических выключателей, служащих для защиты отдельных участков сети?

Ответ. Во всех случаях выбираются по возможности наименьшими по расчетным токам этих участков, но таким образом, чтобы аппараты защиты не отключали электроустановки при кратковременных перегрузках (пусковых токах, пиках технологических нагрузок, токах при самозапуске и т. п.) (3.1.6).

Вопрос. Как присоединяются к сети предохранители и автоматические выключатели пробочного типа?

Ответ. Присоединяются так, чтобы при вывинченной пробке предохранителя (автоматического выключателя) винтовая гильза оставалась без напряжения.

Питающий проводник присоединяется, как правило, к неподвижным контактам автоматического выключателя.

При необходимости присоединения питающего проводника к подвижным контактам автоматического выключателя (например, в схемах с секционным выключателем) следует иметь в виду, что в этом случае предельная коммутационная способность некоторых типов автоматических выключателей уменьшается (3.1.7).

Вопрос. Какая надпись наносится на каждый аппарат защиты?

Ответ. Наносится надпись, указывающая номинальный ток аппарата, уставку расцепителя, значение номинального тока плавкой вставки. Рекомендуется на дверцах шкафов или щитков, в которых устанавливаются аппараты защиты, размещать схемы с указанием необходимых для защиты присоединений уставок расцепителей автоматических выключателей и номинальных токов плавких вставок предохранителей (3.1.7).

Вопрос. При каких условиях предусматривается защита от токов КЗ?

Ответ. Предусматривается, если наименьший расчетный ток в конце защищаемой линии превышает:

в 3 раза номинальный ток плавкой вставки предохранителя;

в 3 раза номинальный ток нерегулируемого расцепителя автоматического выключателя с обратно зависимой от тока характеристикой;

в 3 раза уставку срабатывания по току регулируемого расцепителя автоматического выключателя с обратно зависимой от тока характеристикой;

в 1,1 раза верхнее значение тока срабатывания автоматического выключателя, имеющего только мгновенно действующий или селективный максимальный расцепитель тока (отсечку).

При определении наименьшего значения тока КЗ учитываются активные и индуктивные сопротивления цепи КЗ, включая активное сопротивление электрической дуги, а также увеличение активного сопротивления проводника в результате нагрева.

Защита от токов КЗ по возможности выбирается с наименьшим временем отключения и селективностью действия.

Для кабельных сетей СН электростанций токовая отсечка принимается с наименьшим коэффициентом чувствительности около 1,3 при междуфазных и однофазных КЗ в конце защищаемого кабеля. При этом в случае необходимости для защиты от однофазных КЗ в конце кабеля должна выполняться отдельная защита, не требующая отстройки от пусковых токов присоединения, с коэффициентом чувствительности не менее 1,5. Допускается не охватывать отсечкой всю длину защищаемой КЛ, если при работе расцепителя с обратно зависимой от тока характеристикой обеспечивается термическая стойкость кабеля и селективность.

Вопрос. Какие аппараты применяются для защиты электроустановок постоянного тока?

Ответ. Применяются автоматические выключатели с комбинированным расцепителем или специальная выносная РЗ. Допускается применение предохранителей (3.1.8).

Вопрос. Какие условия выполняются для обеспечения селективности отключения поврежденного участка?

Ответ. Выполняются следующие условия:

при применении автоматических выключателей все КЗ в основной зоне защиты отключаются токовой отсечкой с коэффициентом чувствительности не менее 1,5;

КЗ в зоне резервирования отключаются с коэффициентом чувствительности не менее 1,3. Допускается осуществлять резервирование с использованием расцепителя с обратно зависимой от тока характеристикой при условии обеспечения термической стойкости кабеля;

при применении выносной РЗ коэффициенты чувствительности: для основной зоны – не менее 1,5; для зоны резервирования – не менее 1,2;

при применении предохранителей коэффициенты чувствительности: для основной зоны – не менее 5; для зоны резервирования – не менее 3 (3.1.9).

Вопрос. Какие присоединения обеспечиваются защитой от перегрузки?

Ответ. Обеспечиваются присоединения, выполненные с использованием СИП (ВЛИ), а также следующие сети внутри помещений:

линии, выполненные открыто проложенными проводниками с горючей наружной оболочкой или с горючей наружной изоляцией;

групповые сети в жилых зданиях, общественных зданиях и сооружениях, в служебно-бытовых помещениях промышленных предприятий, а также в пожароопасных зонах;

присоединения в жилых зданиях, в общественных зданиях и сооружениях, на промышленных предприятиях – только в случаях, когда по режиму работы может возникать длительная перегрузка проводников (3.1.10).

Вопрос. Какой принимается кратность токов аппаратов защиты к длительно допустимым токовым нагрузкам защищаемых проводников в сетях постоянного тока, защищаемых от перегрузки?

Ответ. Принимается не более:

0,8 – для номинального тока плавкой вставки;

1,0 – для номинального тока расцепителя автоматического выключателя с нерегулируемой обратно зависимой от тока характеристикой (независимо от наличия отсечки);

1,25 – для тока срабатывания автоматического выключателя с регулируемой обратно зависимой от тока характеристикой (независимо от наличия отсечки) (3.1.11).

Вопрос. В каких случаях защита не устанавливается?

Ответ. На двухцепных ВЛ в нулевом проводе расцепитель автоматического выключателя или выносная токовая защита не устанавливается (3.1.12).

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора

Глава 1.3. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ И ПРОВОДНИКОВ Область применения, общие требования Вопрос. На какие электрические аппараты и проводники распространяется настоящая глава Правил?Ответ. Распространяется на методы выбора электрических аппаратов и проводников

Из книги Правила устройства электроустановок в вопросах и ответах. Раздел 2. Передача электроэнергии. Пособие для изучения и подготовки к проверке знаний автора Красник Валентин Викторович

Выбор электрических аппаратов по условиям продолжительности режимов и сечений проводников по нагреву в этих режимах Вопрос. По каким параметрам выбираются все электрические аппараты?Ответ. Выбираются по номинальному напряжению и номинальному току. При этом

Из книги Правила устройства электроустановок в вопросах и ответах. Раздел 4. Распределительные устройства и подстанции. Пособие для изучения и подготовки к про автора Красник Валентин Викторович

Проверка электрических аппаратов на коммутационную способность при коротких замыканиях Вопрос. Исходя из каких нормированных показателей проверяются коммутационные электрические аппараты для отключения цепей при КЗ?Ответ. Проверяются исходя из нормированных

Из книги Правила устройства электроустановок в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний. Разделы 1, 6, 7 автора Красник Валентин Викторович

Выбор вида электропроводки. Выбор кабелей и проводов и способа их прокладки Вопрос. Как осуществляется выбор электропроводки?Ответ. Осуществляется в соответствии с табл. 2.1.3 и 2.1.4 настоящей главы Правил (2.1.54).Вопрос. Как производится выбор и расчет нулевых рабочих

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Места установки аппаратов защиты Вопрос. В каких местах сети устанавливаются аппараты защиты?Ответ. Аппараты защиты располагаются в удобных для обслуживания местах таким образам, чтобы была исключена возможность их случайных механических повреждений. Установка их

Из книги Современные методы обеззараживания воды автора Хохрякова Елена Анатольевна

Установка приборов и аппаратов Вопрос. Как должны устанавливаться аппараты рубящего типа?Ответ. Должны устанавливаться так, чтобы они не могли замкнуть цепь самопроизвольно, под действием силы тяжести. Их подвижные токоведущие части в отключенном положении, как

Из книги История зарождения воздухоплавания и авиации в России автора Веробьян Борис Сергеевич

Выбор вида электропроводки. выбор кабелей и проводов и способа их прокладки Вопрос 27. По каким критериям осуществляется выбор электропроводки и способ прокладки кабелей и проводов?Ответ. Осуществляется в соответствии с табл. 2.1.3 (п. 2.1.54).Таблица 2.1.3Выбор электропроводки.

Из книги История электротехники автора Коллектив авторов

Установка приборов и аппаратов Вопрос 4. Как должны устанавливаться аппараты рубящего типа?Ответ. Должны устанавливаться так, чтобы они не могли замкнуть цепь самопроизвольно, под действием силы тяжести. Их подвижные токоведущие части в отключенном положении, как

Из книги Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г. автора Коллектив авторов

1.3. Выбор электрических аппаратов и проводников Область применения, общие требованияВопрос 57. В чем состоит выбор электрических аппаратов по условиям продолжительных режимов?Ответ. Состоит в подборе их номинального напряжения по уровню изоляции и номинального тока по

Из книги автора

1.4. Проверка электрических аппаратов и проводников по условиям короткого замыкания Область применения, определенияВопрос 74. Какие электрические аппараты и проводники считаются стойкими при КЗ?Ответ. Считаются такие, которые при расчетных условиях КЗ выдерживают

Из книги автора

Гражданские применения беспилотных летательных аппаратов Беспилотные автоматизированные летательные аппараты, как самолеты, так и дирижабли, разработанные для военного применения, могут использоваться в гражданской жизни для мониторинга уличного движения или

Из книги автора

Виды летательных аппаратов легче воздуха Летательные аппараты легче воздуха составляют три категории: жесткие, полужесткие и нежесткие (с мягкой оболочкой). Оболочка жестких летательных аппаратов обычно сделана из легкого алюминия. Наиболее известными являются

Из книги автора

11.2. Материал мембран и конструкции аппаратов Мембраны изготавливаются из полимерных материалов: целлюлозы и ее эфиров, полиамидов, полиолефинов, сополимеров акрилонитрила с винилхлоридом, поливинилхлорида. Применяются и керамики, и металлы.Мембранные аппараты

Из книги автора

Глава VII Попытки создания отечественных винтокрылых летательных аппаратов Шел 1910 год. Пришло время вновь заявить о себе сторонникам аэропланов… И хотя Русское военное ведомство не считалось с аппаратами этого плана, «Первая Авиационная неделя» с 15 апреля по 2 мая 1910

Из книги автора

8.4.2. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ КОСМИЧЕСКИХ АППАРАТОВ (КА) Энергетические установки КА. Темпы освоения космического пространства в значительной степени определяются развитием автономных источников электропитания разнообразных космических аппаратов и в перспективе

1. Требования, предъявляемые при выборе аппаратуры защиты.

При выборе аппаратов защиты бортовых электрических сетей предъявляются следующие требования:

1. Аппараты защиты должны надежно срабатывать и отключать электрические цепи при КЗ и недопустимых перегрузках и не должны давать ложных срабатываний в нормальных режимах.

2. При срабатывании аппараты защиты должны действовать на отключение, при этом действие их должно быть необратимым (не должно быть автоматического повторного включения после устранения перегрузки или КЗ). Повторное включение должно осуществляться вручную.

3. Аппараты защиты должны обеспечивать селективное (избирательное) отключение участка цепи с КЗ. При этом неповрежденные участки системы электроснабжения не должны отключаться. При возникновении КЗ в сети системы электроснабжения аппараты защиты должны производить только те отключения, которые необходимы для устранения КЗ.

4. Чувствительность аппаратов защиты должна быть достаточной, чтобы срабатывать при наименьшей силе тока КЗ в зоне защиты и при опасных перегрузках.

5. Аппараты защиты в системах электроснабжения переменного тока должны реагировать на все виды КЗ: однофазные, двухфазные и трехфазные.

6. Линии переменного тока, питающие непосредственно потребители, для которых не допустимы неполнофазные режимы, должны защищаться трехфазными автоматами.

7. Аппараты защиты должны иметь достаточное быстродействие в целях обеспечения наименьшего времени перерыва питания потребителей, предотвращая возникновение пожара или повреждения элементов системы электроснабжения и нарушения устойчивости ее работы.

8. Для защиты сетей переменного и постоянного тока должны использоваться аппараты защиты, разрешенные для применения во вновь разрабатываемых и модифицируемых изделиях.

Примечание. В основном должны применяться автоматы защиты со свободным расцеплением. Автоматы без свободного расцепления допускается применять в случаях, когда не имеется автоматов защиты со свободным расцеплением с требуемыми характеристиками.

9. Аппараты защиты должны выбираться:

– по номинальному напряжению цепи;

– по величине и характеру токовой нагрузки.

10. Выбранные аппараты защиты должны обеспечить защиту проводов.

11. Выбранные аппараты защиты должны проверяться:

– на устойчивость к токам КЗ (на электродинамическую, термическую устойчивость и коммутационную способность);

– на селективность срабатывания при КЗ;

– на чувствительность к токам КЗ.

Примечание. Аппараты, предназначенные для защиты аварийной системы электроснабжения при питании от аварийных источников, на устойчивость к токам КЗ не проверяются. Эта проверка производится при питании системы от основных источников.



2. Методика выбора аппаратуры защиты.

Аппараты защиты в первичных распределительных сетях должны выбираться с учетом длительной максимальной силы тока линии, числа каналов расщепленной линии с учетом неравномерности распределения токов в проводах расщепленных линий.

Номинальная сила тока аппарата защиты одного канала расщепленной линии первичной распределительной сети определяется по формуле

где I н.а. – номинальная сила тока аппарата защиты расщепленной линии, А;

I л – сила тока линии, А;

a - коэффициент неравномерности токораспределения, для бортовых сетей принимается равным 1,075;

n – число каналов расщепленной линии;

k – число резервных каналов.

Рассмотрим методику выбора аппаратов защиты для вторичной распределительной сети, которая, как известно, обеспечивает питание потребителей электроэнергии непосредственно от шин РУ и ЦРУ.

Аппараты защиты фидеров потребителей электроэнергии должны выбираться исходя из условия обеспечения нормальной работы потребителей при силе тока в цепи, равной или меньше ее номинального значения, а также при неопасных перегрузках (например, при запуске двигателя) в различных условиях окружающей среды (температура, разрежение).

Примечание. Защита потребителей в технически обоснованных случаях должна предусматриваться разработчиком этих потребителей.

Для защиты цепей аппараты защиты должны выбираться с номинальным напряжением, равным или больше номинального напряжения защищаемой цепи.

Аппараты для защиты фидеров потребителей необходимо выбирать с учетом характера работы потребителей.

По характеру работы потребители электроэнергии подразделяются на две основные группы:

– потребители, не имеющие токи большой продолжительной пусковой силы и силы тока перегрузки (осветительные устройства, нагревательные устройства, трансформаторы, цепи управления агрегатами, контакторы, реле и т.п.);

– потребители электроэнергии, включающие электродвигатели (различные электромеханизмы, топливные и масляные насосы, электромашинные преобразователи, вентиляторы и т.д.).

Для фидеров потребителей, не имеющих большой пусковой силы тока, номинальная сила тока аппаратов защиты должна быть равной номинальной силе тока потребителя или иметь большее ближайшее к ней значение:

I н.а. ³ I н.пот , (2)

где I н.пот – номинальная сила тока потребителя, А.

Для фидеров потребителей, включающих двигатели с продолжительным и кратковременным режимом работы, аппараты защиты должны выбираться в соответствии с условиями:

где t пуск. max – время, при котором среднеквадратичная пусковая сила тока потребителя имеет максимальное значение, с;

- время срабатывания аппарата защиты по время-токовой (называют также ампер-секундной) характеристике для условий окружающей среды, в которых находится аппарат защиты при силе тока равной I ср.кв.пуск. max , с;

I ср.кв.пуск. max – максимальное среднеквадратичное значение пусковой силы тока, А.

t пуск. max и I ср.кв.пуск. max определяются по кривой изменения среднеквадратичной пусковой силы тока потребителя во времени. Среднеквадратичная пусковая сила тока для любого момента времени определяется из осциллограммы пусковой силы тока потребителя (Рис. 1)


по формуле

где n t – количество равных интервалов на участке t кривой изменения силы тока при пуске;

I 1 ,…,I nt – средние значения силы тока в интервалах на участке кривой, А.

Примечание. При приближенных расчетах значение I ср.кв.пуск. max для двигателей переменного тока с временем пуска < 1 сек может быть принято равным 0,9 I пуск. (I пуск. – значение пусковой силы тока двигателей, указанное в технических условиях на них), t пуск. max может быть принято равным 0,5 с.

Все вышесказанное иллюстрируется рис. 2а и 2б.


Для потребителей второй группы рекомендуется применять тепловые автоматы защиты. Это объясняется тем, что при защите таких потребителей предохранителями имеются существенные недостатки. Покажем это. На рис. 3 показаны ампер-секундные характеристики автомата защиты и предохранителя с одинаковым номинальным током, выбранным по условию (3). Из рисунка видно, что для автомата защиты условие (3) выполняется, т.к. t a1 (АЗ) > t пуск. max , а для предохранителя – нет, т.к. t a1 (Пр) < t пуск. max .

Если все же необходимо выбрать предохранитель, то чтобы выполнить условие (2), надо увеличить номинальный ток предохранителя. Тогда условие (2) запишется в виде I н.Пр1 > I н.пот. и ампер-секундная характеристика такого предохранителя (Пр1) сдвинется вправо (рис. 4) по отношению к первоначально выбранному предохранителю Пр и теперь условие (3) выполняется, т.е.

t a1 (Пр1) > t пуск. max . Но такое решение имеет существенный недостаток. Пусть имеется ток перегрузки I перегр. , т.е. I н.Пр1 > I перегр. > I н.пот.

Это приведет к тому, что в силу I н.Пр1 > I перегр предохранитель Пр1 не сработает. Но т.к. I перегр. > I н.пот. , то из-за перегрузки потребитель выйдет из строя. Таким образом в диапазоне токов I н.Пр1 < I > I н.пот. потребитель не защищен. Поэтому предохранители рекомендуется устанавливать в цепях, где нет перегрузки.

Если же по каким-либо причинам приходится ставить предохранители, то они должны выбираться так, чтобы максимальное значение среднеквадратичных пусковых сил токов не превышали половины силы тока срабатывания предохранителей , определенного по защитной характеристике в течение времени, равного t пуск. max , т.е.

в соответствии с рис. 2б.

Для защиты фидеров потребителей с повторно-кратковременной или импульсной нагрузкой номинальная сила тока аппаратов защиты должна выбираться из условия:

где I ср.кв.u – среднеквадратичная сила тока потребителя за время цикла действия повторно-кратковременной или импульсной нагрузки, А;

Время срабатывания аппарата защиты по время-токовой характеристике для условий окружающей среды, в которых находится аппарат защиты, при (I ср.кв.u ) max ;

(t u ) max – время, при котором среднеквадратичная сила тока импульсной или повторно-кратковременной нагрузки имеет максимальное значение, с;

(I ср.кв.u ) max – максимальное значение среднеквадратичной силы тока импульсной или повторно-кратковременной нагрузки, А.

(t u ) max и (I ср.кв.u ) max определяются по кривой изменения среднеквадратичной силы тока нагрузки во времени. Для любого момента времени (I ср.кв.u ) t определяется из осциллограммы силы тока импульсной или повторно-кратковременной нагрузки по формуле:

где I ср.кв. 1 ,…,I ср.кв.k – среднеквадратичные значения силы тока импульсов, А;

t 1 ,…,t k – длительность импульсов, с;

t ц – время цикла действия импульсной или повторно-кратковременной

нагрузки.

I ср.кв. 1 ,…,I ср.кв.k определяются по формуле, аналогичной (4), причем n в данном случае будет обозначать количество равных интервалов на участке тока импульса.

Предохранители должны выбираться так, чтобы максимальные значения среднеквадратичной силы тока импульсной или повторно-кратковременной нагрузки не превышали половины силы тока срабатывания предохранителей, определенной по защитной характеристике в течение времени, равного (t u) max (Рис. 5).


Для защиты фидеров, питающих группу потребителей, номинальная сила тока аппаратов защиты должна выбираться с учетом номинальной силы тока потребителей и одновременности их работы в соответствии с условием:

где I н.пот. – номинальная сила тока одновременно работающих потребителей.

Проектирование электроустановок квартир и коттеджей (Schneider Electric)

4.1. Общие принципы выбора защитной аппаратуры

Любая электроустановка должна быть защищена устройствами автоматического отключения в случае появления сверхтоков или недопустимых токов утечки. Под сверхтоком понимается любой ток, превышающий номинальный. В основном сверхтоки появляются вследствие перегрузки или короткого замыкания.


Устройства защиты должны выбираться с учетом параметров электроустановки, ожидаемых токов короткого замыкания, характеристик нагрузки, условий прокладки и тепловых характеристик проводников.


В соответствии с ПУЭ для электроустановок напряжением до 1 кВ и с системой заземления TN, характеризующейся глухозаземленной нейтралью источника питания и присоединением открытых токопроводящих частей к глухозаземленной нейтрали источника посредством нулевых защитных проводников, принятой для жилых зданий, в целях обеспечения электробезопасности время автоматического отключения не должно превышать значений, указанных ниже:


В качестве защитной аппаратуры автоматического отключения применяются плавкие предохранители и автоматические выключатели.


Плавкий предохранитель - это коммутационный аппарат, который вследствие расплавления одного или более специально спроектированных и калиброванных элементов размыкает цепь, в которую он включен, и отключает ток, когда он превышает заданную величину в течение достаточного времени.


Автоматический выключатель - это механический коммутационный аппарат, способный включать, пропускать и отключать токи при нормальном состоянии цепи, а также включать, выдерживать в течение заданного времени и автоматически отключать токи в аномальном состоянии цепи, такие как токи короткого замыкания.


Учитывая, что электроустановки жилища повышенной комфортности и коттеджей в последние годы оснащаются в основном автоматическими выключателями, ниже рассматривается только этот вид защитной аппаратуры.


В основу выбора защитной аппаратуры в зависимости от величины токов КЗ положено, что кривая время-токовой характеристики, соответствующая допустимой тепловой нагрузке защищаемой электросети, должна лежать выше зоны время-токовой характеристики устройства защиты для всех возможных токов КЗ между минимальным и максимальным значениями.


Под время-токовой характеристикой подразумевается кривая, отражающая взаимосвязь времени и ожидаемого тока в определенных условиях эксплуатации. Указанный принцип проиллюстрирован на рис. 4.1.


Для установленного времени срабатывания защиты кривая допустимых значений I2t (интеграл Джоуля) защищаемого проводника должна лежать выше кривой I2t защитного устройства, так как кривая характеристики I2t устройства защиты характеризует максимальные рабочие значения I2t как функцию ожидаемого тока КЗ. Значения I2t аппаратов защиты приводятся в технических данных предприятиями-изготовителями.


Время отключения полного тока КЗ в любой точке цепи не должно превышать времени, в течение которого температура проводников достигает допустимого предела. Это время для защищаемого проводника может быть приблизительно вычислено по формуле



где t - продолжительность, с;


S - сечение проводника, мм2;


I - действующее значение тока КЗ, А;


K = 115 или 135 - для медных проводников (115 - с поливинилхлоридной изоляцией, 135 -с резиновой изоляцией и с изоляцией из сшитого полиэтилена);


К = 74 и 87 - для алюминиевых проводников (74 - с поливинилхлоридной изоляцией, 87 - с резиновой изоляцией и изоляцией из сшитого полиэтилена).


K = 115 - для соединений пайкой медных проводников.


Предельно допустимые значения температуры нагрева проводников приводятся в ПУЭ.


Автоматическая защита от перегрузки предназначена для отключения электросети при протекании по проводникам тока перегрузки раньше, чем такой ток мог бы вызвать повышение температуры проводников, опасное для изоляции, соединений, зажимов или среды, окружающей проводники.





Рис. 4.1.


С - кривая характеристики допустимого Ft;


D - I2t характеристика автоматического выключателя;


КЗ - максимальный ток КЗ, при котором обеспечивается защита автоматическим выключателем.


Рабочая характеристика любого защитного устройства, защищающего кабель от перегрузки, должна отвечать условиям:




где Ip - рабочий ток цепи; Iд - допустимый длительный ток кабеля; Iн - номинальный ток устройства защиты (устройства защиты с регулируемыми характеристиками номинальным током Iн является ток выбранной уставки); Iз - ток, обеспечивающий надежное срабатывание устройства защиты.


Практически Iз принимают равным:


Току срабатывания при заданном времени срабатывания для автоматических выключателей;


Току плавления плавкой вставки при заданном времени срабатывания для предохранителей.


Для выполнения защитных функций автоматические выключатели оснащаются различными расцепителями.


В общем виде расцепитель - это устройство, механически связанное с автоматическим выключателем (или встроенное в него), которое освобождает удерживающее устройство в механизме автоматического выключателя и вызывает автоматическое срабатывание выключателя.


В автоматических выключателях бытового назначения применяются: максимальный расцепитель тока, максимальный расцепитель с обратнозависимой выдержкой времени, максимальный расцепитель тока прямого действия и расцепитель перегрузки.


Максимальный расцепитель тока - расцепитель, вызывающий срабатывание автоматического выключателя с выдержкой времени или без нее, когда ток в этом расцепителе превышает заданное значение.


Максимальный расцепитель тока с обратнозависимой выдержкой времени - максимальный расцепитель тока, срабатывающий после выдержки времени, находящейся в обратной зависимости от значения сверхтока.


Максимальный расцепитель тока прямого действия - максимальный расцепитель тока, срабатывающий непосредственно от протекающего тока в главной цепи автоматического выключателя.


Расцепитель перегрузки - максимальный расцепитель тока, предназначенный для защиты от перегрузок.


В соответствии с СП31-110-2003 во внутренних сетях жилых зданий, как правило, следует применять автоматические выключатели с комбинированными расцепителями.


Номинальные токи комбинированных расцепителей автоматических выключателей для защиты групповых линий и вводов квартир, включая линии к электроплитам, должны выбираться в соответствии с расчетными нагрузками.


Уставки аппаратов защиты для взаиморезервируемых линий должны выбираться с учетом их послеаварийной нагрузки.


Автоматические выключатели характеризуются также включающей и отключающей способностью, предельной наибольшей отключающей способностью, рабочей наибольшей отключающей способностью и током отключения.


Так как наибольшие значения сверхтоков определяются токами короткого замыкания защищаемой цепи, при выборе выключателей в процессе проектирования необходимо учитывать указанные параметры.


В случаях последовательного соединения двух автоматических выключателей возникает проблема селективности их срабатывания, которая заключается в обеспечении отключения защищаемой цепи выключателем со стороны нагрузки до того, как отключение начнет второй выключатель со стороны питания.


Селективность характеризуется предельным током. Предельный ток селективности - это предельное значение тока:


Ниже которого при наличии двух последовательно соединенных аппаратов защиты от сверхтоков аппарат со стороны нагрузки успевает завершить процесс отключения до того, как его начнет второй аппарат (т.е. обеспечивается селективность);


Выше которого при наличии двух последовательно соединенных аппаратов защиты от сверхтоков аппарат со стороны нагрузки может не успеть завершить процесс отключения до того, как его начнет второй аппарат (т.е. селективность не обеспечивается).


Величина предельного тока селективности определяется координатой точки пересечения времятоковой характеристики в зоне наибольшей отключающей способности защитного аппарата на стороне нагрузки и время-токовой характеристикой расцепителя другого аппарата.


В бытовых электроустановках в целях защиты от сверхтоков используются, как правило, автоматические выключатели, выпускаемые по ГОСТ Р 50345-99, который аутентичен международному стандарту МЭК 60898-95.


В табл. 4.1 приведены предпочтительные значения номинального напряжения автоматических выключателей, выпускаемых в соответствии с указанным ГОСТом.


Таблица 4.1 Предпочтительные значения номинального напряжения


Предпочтительные значения номинального напряжения

Выключатели

Цепь питания выключателя

Номинальное напряжение, В

Однополюсные

Однофазная (фаза с нейтралью)

Однофазная (фаза с нулевым заземленным проводом или фаза с нейтралью)

Однофазная (фаза с нейтралью) или трехфазная (три однополюсных автоматических выключателя) (трех- или четырехпроводная)

Двухполюсные

Однофазная (фаза с нейтралью)

Однофазная (фаза с фазой)

Однофазная (фаза с фазой, трехпроводная)

Трехполюсные

Трехфазная (трех- или четырехпроводная)

Четырехполюсные

К предпочтительным значениям номинального тока, установленного ГОСТом, относятся: 6, 8, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100 и 125 А.


Стандартные значения номинальной частоты 50 и 60 Гц.


Стандартные значения номинальной отключающей способности: 1500, 3000, 4500, 6000, 10 000 А. Стандарт определяет три типа характеристик мгновенного расцепления: В, С и D. Ниже приведены диапазоны мгновенного расцепления выключателя в зависимости от кратности сверхтока по отношению к номинальному Iн:



В электроустановках жилых зданий в основном используются автоматические выключатели с характеристиками типов В и С. Расцепление типа В рационально применять для защиты розеточных линий, типа С - для линий, питающих светильники, теплые полы и стены, сауны и т.п. При выборе автоматического выключателя необходимо учитывать предполагаемую температуру окружающей среды в месте его установки.


В каталогах приводится номинальный ток выключателя для температуры окружающей среды 30 0С. Повышение температуры сверх 30 0С приводит к преждевременному срабатыванию теплового расцепителя, так как его температура достигает уровня срабатывания при меньших значениях тока. Поэтому при установке автоматических выключателей в местах, где температура окружающей среды превышает номинальную, равную 30 0С, номинальное значение тока выключателя уменьшается:




где Iн - допустимый ток при температуре окружающей среды 1°С, отличной от номинальной tо.с.н = 30 C;


Iн.а - номинальный ток автоматического выключателя при номинальной (расчетной) температуре окружающей среды;


Oн - превышение температуры срабатывания теплового расцепителя над номинальной расчетной температурой окружающей среды tосн = 30 оС, Оt = tср - tо.с.н;




Температурный коэффициент, учитывающий уменьшение (увеличение) допустимого тока автоматического выключателя в зависимости от температуры окружающей среды в месте его установки.


Здесь Ot- превышение температуры срабатывания tcp теплового расцепителя над температурой окружающей среды, Оt = tср - tо.с;


Для выключателей бытового назначения ориентировочные значения величины Kt в зависимости от температуры окружающей среды в месте установки приведены ниже:


toc....20 30 35 40 45 50 55 60


Kt ....1,05 1 0,97 0,95 0,92 0,89 0,87 0,84


Кроме того, для модульных автоматических выключателей бытового назначения устанавливаемых в шкафах рядом друг с другом на рейках, следует использовать величину 0,8Kt.


Выбор автоматических выключателей в тех случаях, когда температура окружающей среды больше или меньше стандартной контрольной, при которой определялись его номинальные данные, производится с использованием температурного коэффициента Kt по формуле




где Iн.р - номинальный ток расцепителя.




1. Максимальный расчетный ток нагрузки Iрас.mах = 20 А.


2. Температура окружающей среды в месте установки toc = +55 0С при этом Iрас.mах=Iнt Номинальный ток автоматического выключателя при нормальных условиях должен быть:




По приведенным выше данным Kt для 55 0С равен 0,87.




Принимаем автоматический выключатель с номинальным током 25 А.


Если выключатель установлен в ряд с другими автоматами, в металлическом шкафу, то его номинальный ток определяется по формуле




Принимаем к установке автоматический выключатель с номинальным током Iн.а = 32 А.

4.2. Принципы выбора коммутационной аппаратуры

К коммутационным аппаратам относится достаточно широкий спектр электрооборудования, с помощью которого осуществляется включение-отключение как основных токовых цепей, так и цепей управления.


Для коммутации основных токовых цепей наряду с рассмотренными выше автоматическими выключателями используются рубильники, переключатели, контакторы, магнитные пускатели и т.п.


Для коммутации цепей управления используются различные реле, как мгновенного действия, так и реле с выдержкой времени на замыкание и размыкание контактов, кнопки и ключи (переключатели) управления и пр.


Аппаратура для коммутации цепи управления может содержать аппарат для цепи управления и связанные с ним устройства, например световые индикаторы.


Аппарат для цепей управления может содержать один или несколько коммутационных элементов и механизм передачи усилия переключения. Коммутационный элемент может быть контактным или полупроводниковым.


Выбор при проектировании аппаратов из рассматриваемой группы определяется следующими основными параметрами:


Номинальным напряжением и потребляемым током катушек;


Коммутационной способностью контактов или выходных полупроводниковых цепей


(номинальное напряжение, номинальный ток коммутируемый цепи);


Для реле с выдержкой времени - диапазоном выдержки времени.


Не менее важными факторами являются способ установки аппарата (под винт, на DIN-рейку) и присоединение проводов (переднее, заднее).

Анализ отказов и неноминальных режимов работы электрических машин позволяет выделить следующие типы аварий, часто встречающиеся на практике:

Короткое замыкание (КЗ) на зажимах машины либо в обмотке статора;

Заторможенный ротор при пуске двигателя (режим КЗ двигателя, особенно часто встречается при его прямом пуске);

Обрыв фазы обмотки статора (часто встречается при защите обмоток плавкими предохранителями);

Технологические перегрузки, возникающие при набросе нагрузки в процессе работы двигателя;

Нарушение охлаждения, вызванное неисправностью системы принудительной вентиляции двигателя;

Уменьшение сопротивления изоляции, происходящее в результате старения изоляции из-за циклических температурных перегрузок.

Аварийные режимы в цепи асинхронного двигателя могут вызвать либо кратковременное увеличение тока в 12... 17 раз по сравнению с номинальным, либо длительное протекание тока, в 5... 7 раз превышающего его номинальное значение.

Для защиты электрических цепей от режима КЗ широко применяются автоматические выключатели, токовые реле и предохранители. При перегрузке по току требуется другое защитное оборудование. Так, при обрыве одной из фаз асинхронного двигателя наиболее эффективными являются минимальная токовая и температурная защиты; менее эффективной, но работоспособной - тепловая защита (тепловые реле). При заторможенном роторе весьма эффективны максимальные токовые реле и температурная защита, менее эффективна - тепловая защита. При перегрузке лучшие результаты дает температурная защита. Эффективны также тепловые реле. При нарушении охлаждения двигателя только температурная защита может предотвратить аварию.

Уменьшение сопротивления изоляции статорной обмотки двигателя может спровоцировать как перегрузку в цепи, так и КЗ.

Защита при такой аварии осуществляется специальными устройствами контроля сопротивления изоляции обмотки двигателя.

Основным аварийным режимом в осветительных установках является КЗ. Защита от перегрузки требуется только для осветительных установок, эксплуатируемых внутри помещений и во взрыво- и пожароопасной среде. Наиболее распространенным аппаратом защиты осветительных установок является автоматический выключатель. При включении ламп накаливания появляется кратковременный бросок тока, в 10...20 раз превышающий номинальный ток. Примерно за 0,06 с ток снижается до номинального. Значение броска тока определяется мощностью ламп. При выборе типа защиты ламп накаливания необходимо учитывать особенности их пусковых характеристик.

В связи с широким распространением силовой полупроводниковой техники для ее защиты требуется применение эффективных устройств. Одним из главных недостатков силовых полупроводниковых приборов является их низкая перегрузочная способность по току, что накладывает жесткие условия на аппаратуру защиты (по быстродействию, селективности и надежности срабатывания). В настоящее время для защиты силовых полупроводниковых приборов от КЗ (как внешних, так и внутренних) применяются быстродействующие автоматические выключатели, полупроводниковые выключатели, вакуумные выключатели, импульсные дуговые коммутаторы, быстродействующие плавкие предохранители и др. Целесообразность применения той или иной защиты силовых полупроводниковых приборов определяется конкретными условиями их эксплуатации.

Особое место занимает защита электрических цепей. В настоящее время широко используются сети напряжением от 0,4 до 750 кВ. Основными, наиболее опасными и частыми видами повреждений в сетях являются КЗ между фазами и замыкание фазы на землю.

Основная масса потребителей получает питание от распределительных сетей напряжением 0,4; 6 и 10 кВ (в последнее время нашли широкое применение сети напряжением 0,66 кВ). Для питания стационарных силовых потребителей и осветительных установок общего назначения применяются трехфазные четырехпроводные сети напряжением 380/220 В с глухозаземленной нейтралью. Силовые потребители подключены к линейным напряжениям сети, а осветительные приборы - к фазным. Мощные силовые потребители, например электродвигатели мощностью 160 кВт и выше, имеют напряжения 0,66; 6 и 10 кВ.

Основными аварийными режимами в таких сетях являются: однофазное КЗ (до 60% аварий), трехфазное КЗ (до 10%), двухфазное КЗ на землю (до 20%), двухфазное КЗ (до 10%).

Защита электрических сетей напряжением до 1000 В осуществляется, как правило, аппаратами зашиты, а сети напряжением свыше 1000 В имеют релейную защиту.

Самыми распространенными аппаратами защиты сетей являются автоматические выключатели и предохранители. Если требуется иметь защиту с высоким быстродействием, чувствительностью или селективностью, то применяют релейную защиту, выполненную на базе реле и автоматических выключателей.

Электрические сети напряжением до 1000 В внутри помещений должны иметь также защиту от перегрузки, выполненную, как правило, на базе автоматических выключателей с тепловым или комбинированным расцепителями.

Основной задачей, стоящей при выборе аппаратуры защиты потребителей и электрических сетей, является согласование характеристик устройств защиты с предельными нагрузочными характеристиками (зависимостями допустимого тока от длительности его протекания) различных потребителей и сетей (проводов и кабелей). Для каждого конкретного типа потребителей наиболее полное согласование может быть достигнуто при использовании определенного типа аппаратов защиты. В случае полного согласования вольтамперные и временные характеристики аппарата защиты на графике проходят выше и как можно ближе к нагрузочной характеристике потребителя.