Извещатели пожарные дымовые аспирационные (ИПДА) – это извещатели нового поколения, которые могут обеспечить противопожарную защиту объектов на максимально высоком уровне и практически при любых условиях эксплуатации.

В отличие от точечных и линейных аспирационные дымовые извещатели не имеют нормативного ограничения на максимальный уровень чувствительности, а их принцип действия и конструктивные особенности позволяют эффективно защитить самые сложные объекты. Например, зоны с высокими скоростями воздушных потоков, запотолочные и подпольные пространства с экстремально высокими или низкими температурами, пыльные и взрывоопасные зоны, помещения с ограниченным доступом, помещения с высокими потолками, куполообразной формы, с балками и т. д. Возможна скрытая установка труб в запотолочном пространстве, в строительных конструкциях или в декоративных элементах помещения с прозрачными капиллярными трубками для образования выносных воздухозаборных точек.
Аспирационные дымовые пожарные извещатели были изобретены компанией Xtralis более 30 лет назад и уже более 20 лет представлены на российском рынке. До 2009 г. аспирационные извещатели применялись по рекомендациям ВНИИПО, которые разрабатывались для аспирационных извещателей каждого конкретного типа. В 2009 г. требования по установке дымовых аспирационных извещателей были определены в «Своде правил СП 5.13130.2009 Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования». В том же году был введен в действие ГОСТ Р 53325-2009 «Техника пожарная. Технические средства пожарной автоматики. Общие технические требования. Методы испытаний», в котором были впервые определены технические требования и методика проведения испытаний ИПДА. Эти нормы и требования получили дальнейшее развитие в последующих версиях этих документов: в ГОСТ Р 53325-2012 и в СП 5.13130.2009 с Изменениями № 1.
Наибольший практический интерес представляют лазерные дымовые извещатели класса А, которые в настоящее время достигли фантастической чувствительности 0,0002%/м (0,00001 дБ/м). Лазерные аспирационные извещатели высокой чувствительности обеспечивают максимальный уровень противопожарной защиты в чистых помещениях, в гермозонах, в операционных, в кабинетах компьютерной магнито-резонансной, позитронной-эмиссионной томографии, в барокамерах, в высоких помещениях и в зонах с воздушными потоками: в атриумах, в ЦОД, в ЦУП, промышленных цехах, в высотных складах и т. д. Высокочувствительные лазерные ИПДА обеспечивают сверхраннее обнаружение пожарной опасности, что определяет минимальные материальные потери, отсутствие необходимости проведения эвакуации и прерывания работы предприятия. Для обеспечения возможности оперативного реагирования персонала формируются на различных уровнях задымления несколько сигналов предтревоги и тревоги. Более узкую область применения имеют аспирационные извещатели с повышенной чувствительностью класса В и класса С со стандартной чувствительностью, т. е. с чувствительностью точечного дымового извещателя.

Принцип действия
По ГОСТ Р 53325-2012 извещатель пожарный аспирационный – это «автоматический извещатель пожарный, обеспечивающий отбор через систему труб с воздухозаборными отверстиями и доставку проб воздуха (аспирацию) из защищаемого помещения (зоны) к устройству обнаружения признака пожара (дыма, изменения химического состава среды)» (рис. 1). Такой принцип построения извещателя, непривычный на первый взгляд, с трубами с воздухозаборными отверстиями и аспиратором, определяет массу преимуществ по сравнению с дымовыми точечными и линейными извещателями. Пробы воздуха из контролируемого помещения поступают в трубы за счет разряжения создаваемого аспиратором, который вместе с измерителем оптической плотности располагается в блоке обработки.

И.Г. Неплохое
Начальник отдела технической поддержки компании "Систем Сенсор Фаир Детекторс", к.т.н

На долю аспирационных систем в настоящее время приходится 7% европейского рынка пожарных детекторов, и имеется тенденция роста этого сегмента. Повышает-ся интерес к аспирационным пожарным извещателям и в России, поскольку неред-ко это единственный тип извещателей, обеспечивающих высокий уровень пожарной защиты в сложных условиях размещения и эксплуатации. В 2006 г. ФГУ ВНИИПО МЧС России разработало и утвердило "Рекомендации по проектированию систем пожарной сигнализации с использованием аспирационных дымовых пожарных извещателей серий LASD и ASD" с учетом положений европейского стандарта EN 54-20

Общие положения

Пожарный дымовой аспирационный извещатель - это извещатель, в котором пробы воздуха и дыма через устройство для отбора проб транспортируются (обычно по трубам с отверстиями) к чувствительному к дыму элементу (точечному дымовому извещателю), расположенному в одном блоке с аспиратором, например, турбиной, вентилятором или насосом (рис. 1).

Основная характеристика аспирационного извещателя, как и любого дымового извещателя, - чувствительность (то есть минимальное значение удельной оптической плотности в одной из проб, при которой извещатель формирует сигнал "Пожар"). Она зависит от чувствительности используемого точечного дымового извещателя, а также от конструкции устройства для отбора проб, от числа, размеров и расположения отверстий и т.д. Важно обеспечить примерно одинаковую чувствительность по различным пробам, то есть баланс по чувствительности. Другая важная характеристика аспирационного извещателя, не учитываемая у точечного дымового извещателя, - время транспортировки, максимальный промежуток времени, необходимый для доставки пробы воздуха из точки забора в защищаемом помещении к чувствительному элементу.

Тестовое помещение

Для определения чувствительности аспирационного извещателя по стандарту EN 54-20 проводятся испытания по тестовым очагам в помещении размером (9-11)х(6-8) м и высотой 3,8-4,2 м (рис. 2), как и при испытаниях точечных дымовых извещателей по стандарту EN 54-7. На полу в центре помещения устанавливается тестовый очаг пожара, а на потолке в трех метрах от его центра в секторе 60° располагается труба аспирационного извещателя с одним воз-духозаборным отверстием, а также измеритель удельной оптической плотности среды m (дБ/м) и радиоизотопный измеритель концентрации продуктов горения Y (безразмерная величина).

Допускается проведение испытаний не более двух образцов аспирационных извещателей одновременно, при этом их воздухозаборные отверстия должны располагаться на расстоянии не менее 100 мм друг от друга, а также от элементов измерительной аппаратуры. Центр светового луча измерителя оптической плотности среды m должен находиться на расстоянии не менее 35 мм от потолка.

Тестовые очаги для точечных дымовых извещателей

Точечные пожарные дымовые извещатели по стандарту EN54-12 испытываются по дымам от четырех тестовых очагов: TF-2 - тление древесины, TF-3 - тление хлопка, TF-4 - горение полиуретана и TF-5 - горение n-гептана.

Очаг TF-2 состоит из 10 сухих буковых брусков (влажность ~5%) размерами 75х25х20 мм, расположенных на поверхности электрической плиты диаметром 220 мм, имеющей 8 концентрических пазов глубиной 2 мм и шириной 5 мм (рис. 3). Причем внешний паз должен располагаться на расстоянии 4 мм от края плиты, расстояние между смежными пазами должно составлять 3 мм. Мощность плиты 2 кВт, температура 600 °С достигается примерно за 11 мин. Все тестируемые извещатели должны активизироваться при удельной оптической плотности m менее 2 дБ/м.

Очаг TF-3 состоит примерно из 90 хлопковых фитилей длиной 800 мм и массой примерно 3 г каждый, подвешенных на проволочном кольце диаметром 100 мм, закрепленном на штативе на высоте 1 м над основанием из негорючего мате-риала (рис. 4). Хлопковые фитили не должны иметь защитного покрытия, при необходимости они могут быть выстираны и высушены. Нижние концы фитилей поджигают так, чтобы появилось тление со свечением. Все тестируемые извещатели должны активизироваться при удельной оптической плотности m менее 2 дБ/м. Очаг TF-4 состоит из трех уложенных один на другой матов из пенополиуретана, не содержащего добавок, повышающих огнестойкость, плотностью 20 кг/м3 и размерами 500х500х20 мм каждый. Воспламенение очага производится от пламени 5 см3 спирта в емкости диаметром 50 мм, установленной под одним из углов нижнего мата. Все тестируемые извещатели должны ак-тивизироваться при концентрации продуктов горения Y менее 6. Очаг TF-5 представляет собой 650 г n-гептана (чистотой не менее 99%) с добавлением 3% по объему толуола (чистотой не менее 99%) в квадратном поддоне из стали размером 330х330х50 мм. Активизация производится пламенем, искрой и т.д. Все тестируемые изве-щатели должны активизироваться при концентрации продуктов горения Y менее 6.

Классификация аспирационных извещателей

Аспирационные извещатели, в отличие от точечных дымовых, согласно стандарту EN54-20 разделяются по чувствительности на три класса:

  • класс А - ультрачувствительные;
  • класс В - высокой чувствительности;
  • класс С - стандартной чувствительности.

Границы чувствительности для извещателей разных классов по различным типам тестовых очагов приведены в табл. 1. Аспирационные извещатели класса С эквивалентны по чувствительности точечным извещателям, и для их испытаний используются те же тестовые очаги. Единственное отличие - окончание испытания определяется через 60 секунд после достижения граничных условий. Очевидно, это время теребуется для учета времени транспортировки пробы по трубе. Аспирационные извещатели классов А и В имеют значительно более высокую чувствительность по сравнению с извещателем класса С. Например, по тестовым пожарам TF2 и TF3 показатели чувствительности аспирационного извещателя класса В выше в 13,33 раза, а класса А - в 40 раз выше, чем у извещателей класса С и точечных дымовых извещателей. Такие высокие характеристики достигаются за счет использования в качестве чувствительного к дыму элемента лазерных точечных дымовых извещателей с чувствительностью 0,02%/Ft (0,0028 дБ/м) и выше. Кроме того, отбор проб воздуха из контролируемого помещения и создание постоянного потока воздуха в одном направлении через дымовую камеру аспиратором ставят даже обычный оптический извещатель в более выгодное положение, чем при его установке на перекрытии, где эффективность значительно снижается из-за существенного аэродинамического сопротивления защитной сетки и дымовой камеры при низких скоростях движения воздуха. В условиях постоянного воздушного потока чувствительность дымового извещателя более стабильна, и ее величина практически не отличается от результатов измерений в аэродинамической трубе по НПБ 65-97, что упрощает проектирование систем пожарной сигнализации с использованием аспирационных пожарных извещателей. Адресно-аналоговые аспирационные извещатели с программируемой чувствительностью могут относиться к нескольким классам (А/В/С). В соответствии с их диапазоном изме-рения удельной оптической плотности среды они могут формировать кроме сигнала "Пожар" один или несколько предварительных сигналов, например "Внимание" и "Предупреждение", на более ранних стадиях развития пожароопасной ситуации. Лазерный аспирационный извещатель, по сути, является высокоточным измерителем оптической плотности среды, поступающей в центральный блок, в широком диапазоне. Для адаптации к различным условиям эксплуатации и для программирования нескольких порогов обычно достаточно порядка 10 дискретов (табл. 2).

Тестовые очаги для аспирационных извещателей классов А и В

Для измерения чувствительности аспирационных извещателей классов А и В используются тестовые очаги в несколько раз меньшего размера. В тестовых очагах TF2А и TF2В вместо 10 буковых брусков используются только 4 или 5 брусков (рис. 5), в очагах TF3А и TF3В вместо 90 фитилей - примерно 30-40.

Обеспечить более медленное развитие очага из пенополиуретана по сравнению тестовым очагом TF4 физически сложно, поэтому очаги TF4А, TF4В в стандарте EN54-20 отсутствуют. Значительно проще формируются тестовые очаги TF5А, TF5В с n-гептаном: уменьшаются размеры лотка и объем используемого n-гептана. По сравнению с площадью тестового очага TF5, площадь очага TF5В в 3,56 раза меньше, а площадь очага TF5А - в 10,89 раз меньше (табл. 3). Одного уменьшения величины тестовых очагов для испытаний высокочувствительных класса В и ультравысокочувствительных класса А аспирационных извещателей оказалось недостаточно. Для создания минимальных концентраций дыма под перекрытием в тестовом помещении устанавливается вентиляционная система (рис. 6) на уровне половины высоты помещения и на расстоянии 1 м от очага в горизонтальной проекции. При работе вентиляционной системы дым от тестового очага не скапливается под потолком, а равномерно распределяется по всему объему помещения. Таким образом, уменьшение величины тестового очага и распределение дыма по всему помещению позволили обеспечить медленное нарастание оптической плотности среды, что дало возможность измерять с высокой точностью чувствительность аспирационного извещателя на уровне менее 0,01 дБ/м. В качестве примера на рис. 7 приведены зависимости удельной оптической плотности для тестового очага TF3А. Необходимо отметить, что оптическая плотность при использовании тестовых очагов при измерении в дБ/м нарастает линейно, что позволяет оценить выигрыш во времени определения пожароопасной ситуации при увеличении чувствительности дымового извещателя.

Уменьшение концентрации (разбавление) дыма

При наличии нескольких отверстий для забора проб концентрация дыма в пробе воздуха сни-жается пропорционально объему чистого воздуха, поступающего в трубу через остальные отверстия (рис. 8). Рассмотрим случай с 10 воздухозаборными отверстиями. Для упрощения расчета предположим, что через каждое отверстие проходит одинаковый объем воздуха. Допустим, что дым с удельной оптической плотностью 2%/м поступает в трубу через одно воздухозаборное отверстие, а через остальные 9 отверстий посту-пает чистый воздух. Дым в трубе разбавляется чистым воздухом в 10 раз, и его плотность при поступлении в центральный блок уже составляет 0,2%/м. Таким образом, если порог срабатывания дымового извещателя в центральном блоке установлен на уровне 0,2%/м, то сигнал от из-вещателя появится при превышении оптической плотности дыма 2%/м по одному из отверстий. В табл. 4 приведены данные для оценки влияния разбавления дыма для различного числа воздухозаборных отверстий в трубе. Чем больше число воздухозаборных отверстий в трубе, тем сильнее проявляется эффект снижения чувствительности аспирационного извещателя. В действительности расчет разбавления дыма чистым воздухом сложнее, чем это описано выше. Необходимо учитывать размер, число и расположение воздухозаборных отверстий, наличие угловых соединений, тройников и капилляров в системе труб, диаметр и т.д. Кроме того, для выравнивания воздушных потоков по отверстиям, а соответственно и чувствительности, в конце трубы устанавливается заглушка с отверстием, площадь которого в несколько раз больше воздухозаборных отверстий, что также должно учитываться при расчете. При проектировании системы пожарной сигнализации с использованием аспирационных пожарных извещателей необходимо использовать компьютерную программу расчета для конкретного типа оборудования. На практике обычно дым поступает одновременно через несколько соседних отверстий. Это так называемый кумулятивный эффект, который наиболее сильно проявляется в высоких помещениях. Следовательно, при увеличении высоты помещения не требуется уменьшать расстояние между трубами и между отверстиями в трубах. По британскому стандарту BS 5839-1:2001 аспирационные извещатели стандартной чувствительности класса С допускаются для защиты помещений высотой до 1 5 м, извещатели высокой чувствительности класса В - до 17 м, ультравысокой чувствительности класса А -до 21 м. Одно воздухозаборное отверстие защищает площадь в горизонтальной проекции в виде круга радиусом 7,5 м.

Контроль воздушного потока

Крайне важно обеспечить контроль воздушного потока, проходящего через дымовой датчик, в блоке аспирационного извещателя. Снижение воздушного потока говорит о засорении отверстий в трубах, повышение - о появлении утечки в соединении труб или о механическом пов-реждении трубопровода. В этих случаях происходит нарушение работоспособности - снижение чувствительности.

Контроль изменения уровня воздушного потока в аспирационном извещателе равносилен контролю состояния шлейфа (на обрыв и короткое замыка-ние) при использовании точечных пожарных из-вещателей. Кроме того, есть необходимость хра-нения значения "нормального" воздушного потока в энергонезависимой памяти на случай отключения питания. Для возможности измерения отклонения воздушного потока от нормы следует обеспечить высокую стабильность производительности аспиратора в течение всего срока службы аспи-рационного извещателя, т.е. не менее 10 лет. Таким образом, несмотря на кажущуюся простоту построения аспирационного извещателя, его практическая реализация невозможна без знаний законов аэродинамики, использования высоких технологий и специальных компьютерных программ.

По требованиям стандарта EN54-20 аспира-ционный извещатель должен сигнал "Неисправность" при изменении воздушного потока на ±20%. В ходе испытаний первоначально при помощи анемометра измеряется величина воздушного потока в трубе, когда подача воздуха осуществляется по трубе в штатном режиме. После этого перед блоком устанавливаются только анемометр и два вентиля (рис. 9). Вентиль 2 устанавливается в среднее положение, а при помощи вентиля 1 устанавливается первоначальный воздушный поток с точностью ±10%. После этого вентилем 2 увеличивают воздушный поток на 20%, а затем уменьшают его на 20%. В обоих случаях контролируется формирование сигнала "Неисправность".

Требования к установке аспирационных извещателей

Требования, предъявляемые к установке аспи-рационных извещателей, приведены в Рекомендациях ФГУ ВНИИПО МЧС России. Одна зона, защищаемая одним каналом аспирационного пожарного извещателя, может включать до десяти изолированных и смежных помещений суммарной площадью не более 1600 м2, расположенных на одном этаже здания, при этом, в соответствии с требованиями НПБ 88-2001*, изолированные помещения должны иметь выход в общий коридор, холл, вестибюль и т.п.

Максимальная высота защищаемого помещения, а также максимальные расстояния в горизонтальной проекции между воздухозаборным отверстием, стеной и между соседними отверстиями приведеннны в табл. 5. При защите помещений произвольной формы максимальные расстояния между воздухозаборными отверстиями и стенами определяются исходя из того, что площадь, защищаемая каждым воздухозаборным отверстием, имеет форму круга 6, 36. (рис. 10)

Выводы

Аспирационные извещатели класса В обеспечивают повышение чувствительности системы более чем в 10 раз, а класса А - в 40 раз по сравнению с точечными дымовыми извещателями. Рекомендации по проектированию систем пожарной сигнализации с использованием аспирационных дымовых пожарных извещателей, разработанные ФГУВНИИПО МЧС России, определяют широкие возможности по защите аспирационными извещателями объектов различного типа.

И бывает трудно разобраться, какие виды приборов необходимо устанавливать в том или ином помещении. Рассмотрим вопрос, о том, что такое аспирационные пожарные извещатели, их устройство, принцип работы и области применения.

Устройство

Аспирационный пожарный извещатель – прибор, который улавливает продукты горения (жидкие или твердые частицы), возникающие при возгорании, и передает сигнал о пожаре на пульт управления.

Датчик представляет собой системный блок, с отходящими от него воздухозаборными трубками, в которых, на определенном расстоянии, просверлено несколько отверстий для всасывания воздуха. Внутри центрального блока располагается электронный приемник, анализирующий поступающие пробы воздуха.

В зависимости от размера контролируемого помещения, воздухозаборные трубки могут быть различной длины, от нескольких метров, до нескольких десятков метров. Но в таком случае требуется дополнительная регулировка вентилятора, способствующая достижению оптимальной скорости забора воздуха.

Заборные трубки могут быть изготовлены из разных материалов. Так, в заводских цехах, где температура воздуха способна нагреваться до 100 градусов, используются трубы из сплава металлов, устойчивых к высоким температурам. Трубы на пластмассовой основе незаменимы на объектах с нестандартными потолками, где много изгибов.

Аспирационные извещатели в большинстве своем, конструируются дымовыми, но в некоторых моделях одновременно совмещены дымовые и газовые составляющие.

По уровню чувствительности приборов аспирационные дымовые пожарные извещатели подразделяются на три вида: А – высокой точности, где оптическая среда не плотнее 0,035 дБ/м; В – повышенной точности от 0, 035 дБ/м и выше; С – стандартной от 0, 088 дБ/м и более.

Принцип работы

Через специальный аспиратор, воздух всасывается в систему заборных труб. Далее, он проходит двухступенчатый фильтр. На первом этапе воздушная проба очищается от пылинок.

Во втором фильтре добавляется чистый воздух, для того, чтобы оптические элементы прибора, в случае наличия дыма в воздушной пробе, не загрязнялись, и не нарушалась установленная калибровка.

После прохождения фильтров, заборный воздух попадает в измерительную камеру с лазерным излучателем, который просвечивает его и анализирует.

Если проба «чистая», то свет лазера будет прямолинейным и точным. В случае наличия дымовых частиц, лазерный свет рассеивается и регистрируется специальным приемным элементом. Приемник выдает сигнал о пожаре на пульт слежения или управления.

Аспирационные приборы очень точны в работе, так как могут выявить пожар на начальной стадии, посредством непрерывного забора и анализа воздуха.

Установка

Основным преимуществом подобных извещателей является их эксплуатация в помещениях с большой высотой потолочных перекрытий. Извещатели типа А (высокоточные) применяются в зонах с высотой потолка до 21 метра. Тип приборов В – до 15 метров, С – 8 метров. Это обусловлено оптимальной работой приборов в определенном пространстве. Несоблюдение данных рекомендаций, может привести к некорректной работе датчиков.

Как было сказано выше, длина воздухозаборных труб может быть разной, вплоть до нескольких десятков метров. Следовательно, в них находятся несколько отверстий для всасывания воздуха. Располагаются они на расстоянии 9 метров, а от стен – 4,5 метра.

Воздухозаборные трубы не обязательно устанавливать на потолке. В отдельных специальных помещениях его просто нет, поэтому трубы можно прикреплять к металлоконструкциям или прятать под элементы отделки, оставляя небольшие отверстия для дополнительных капиллярных трубок.

Трубопровод может иметь несколько изгибов, тем самым расширяя контролируемую область и сокращая вероятность ложных срабатываний. Также, для дополнительной защиты возможна вертикальная установка труб на стенах, подведенная непосредственно к предполагаемому месту возможного возгорания. Такой способ размещения труб является неоспоримым преимуществом аспирационных извещателей.

Если при монтаже труб возникает необходимость поворота, то радиус изгиба должен быть не менее 90 мм. По возможности, следует избегать поворотов, так как они замедляют поток воздуха. На один поворот должно приходиться не менее 2 прямых метров трубы.

В месте подключения трубопровода с электронным блоком прямая длина трубки должна составлять около 500 мм, а выхлопной трубы – 200 мм.

Центральный блок прибора устанавливается либо в самой контролируемой зоне, либо за ее пределами, например, в помещениях с экстремальными условиями, где высокая температура воздуха, влажность, загрязненность.

Если эксплуатация прибора происходит в сильно запыленном или загрязненном помещении (деревообрабатывающий цех, строительный склад), то в систему трубопровода монтируются внешние фильтры. Также, дополнительно возможна установка системы обратного продува труб, для устранения загрязнений.

В помещениях, где возможны перепады температур и образование конденсата в трубопроводе, целесообразна установка дополнительного устройства внутри труб, для сбора влаги.

Использование аспирационных пожарных дымовых извещателей возможно во взрывоопасных помещениях. В таком случае блок выносится за пределы контролируемой зоны, а в воздухозаборных трубах устанавливается специальные приборы – взрывобезопасные барьеры. Они предотвращают поступление в трубопровод опасных газовых смесей.

Применение

Большой диапазон чувствительности аспирационных пожарных извещателей делает возможным использование приборов в различных помещениях:

Извещатель ИПА

Извещатель пожарный аспирационный ИПА ТУ4371-086-00226827-2006 представляет собой единый блок, внутри которого располагаются пять рабочих зон: разряжение, нагнетание и грубая очистка, тонкая фильтрация, измерение воздушных проб, клеммные соединения. Также на корпусе имеется электронный отсек анализа возгорания:

  • «температура» – реагирует на повышение температуры внутри помещения;
  • «дым» — чувствителен к оптическому изменению воздушной среды;
  • «газ» — измеряет и анализирует отклонение от установленной нормы газов в воздухе;
  • «поток» — улавливает изменения газовоздушного потока.

С одной стороны к прибору подсоединяется входящий воздухозаборный трубопровод, с другой – выхлопная труба. В отсеке разряжения располагается вентилятор – аспиратор. Максимальная длина трубопровода – 80 метров. Расстояние между заборными отверстиями – 9 метров.

ИПА предназначен для защиты помещений жилого и производственного типа, а также тоннелей, шахт, кабельных каналов и прочее. Прибор забирает из воздушной среды пробы, анализирует их и передает на пульт управления сигналы: «Норма», «Тревога 1», «Тревога 2», «Пуск», «Пуск 30с», «Авария».

Датчик эксплуатируется при температуре окружающей среды от -22 до + 55С. Не терпит попадания на электронный блок прямых солнечных лучей, а также наличия в воздухе парок кислот и щелочей, способных вызвать коррозию. Устойчив к вибрациям с частотой от 50 до 150 Гц.

Помогите разобраться с аспирационным извещателем ИПА?
Сетрификат соотвествия С-Ru.ПБ01.В.00242
Извещатель пожарный аспирационный ИПА ТУ 4371-086-00226827-2006
Руководство по эксплуатации ДАЭ 100.359.100-01 РЭ пукт 2.9 Извещатель обнаруживает возникновение пожара с формированием извещений и ранжированием по степеням опасности согласно п.п.2.12.2, 2.12.3 (на входе подключения к извещателю всасывающей трубы) со стандартной чувствительностью класса А согласно ГОСТ Р 53325-2012.
Примечание – При обнаружении пожара и выдачи сигналов опасности «Трево-
га 1», «Тревога 2», «Пуск» одновременно учитываются данные всех каналов измере-
ний факторов пожара и взаимосвязано корректируется их чувствительность.
пункт 4.1 Извещатель выполнен в герметизированном корпусе, состоящий из пяти раз-
дельных отсеков (разряжения, нагнетания и грубой очистки, тонкой очистки, изме-
рений и клеммных соединений). Внутри корпуса под верхней панелью располагается
отсек электронного модуля, имеющий каналы измерения факторов пожара:
- «Температура» - реагирует на изменение температуры контролируемой среды;
- «Дым» - реагирует на изменение оптической плотности газовоздушной среды;
- «Газ» - реагирует на изменение концентрации установленных газов;
- «Поток» - реагирует на изменение газовоздушного потока и загрязнение фильтра.

Привожу выдержку из СП5 п14.2 ….при срабатывании одного пожарного извещателя, удовлетворяющего рекомендациям, изложенным в приложении Р. В этом случае в помещении (части помещения) устанавливается не менее двух извещателей, включенных по логической схеме "ИЛИ". Расстановка извещателей осуществляется на расстоянии не более нормативного.
ПРИЛОЖЕНИЕ Р:
Р.1 Применение оборудования, производящего анализ физических характеристик факторов пожара и (или) динамики их изменения и выдающего информацию о своем техническом состоянии (например, запыленности).
Р.2 Применение оборудования и режимов его работы, исключающих воздействие на извещатели или шлейфы кратковременных факторов, не связанных с пожаром.

Из этого следует, что аспирационный извещатель отвечает приложению Р, и следовательно расстояние между извещателями не сокращаем и в каждом помещении делаем по два воздухозаборного отверстия, но в руководстве есть еще один пукт:

Руководство по эксплуатации ДАЭ 100.359.100-01 РЭ пукт 6.10 Расположение заборных отверстий в защищаемом помещении должно быть выполнено согласно требованиям п.13.3 СП 5.13130.2009

Читаем СП:

13.3.2 В каждом защищаемом помещении следует устанавливать не менее двух пожарных извещателей, включенных по логической схеме "ИЛИ".

Примечание - В случае применения аспирационного извещателя, если специально не уточняется, необходимо исходить из следующего положения: в качестве одного точечного (безадресного) пожарного извещателя следует рассматривать одно воздухозаборное отверстие. При этом извещатель должен формировать сигнал неисправности в случае отклонения расхода воздушного потока в воздухозаборной трубе на величину 20% от его исходного значения, установленного в качестве рабочего параметра.

1.То есть подключив прибор к С2000-КДЛ мы прописываем адрес прибора, и извещатель ИПА становится адресным и пункт 13.3.2 уже действует?
2.Но возникает вопрос тогда зачем пункт 6.10 руководства по эксплуатации, значит что можно ИПА подключить допустим к Сигналу 20, но при этом мы сокращаем расстояние и ставим по три извещателя на помещение?
3.В руководстве прописано, что в качестве воздухопровода можно использовать пластиковые трубы, а металопластик подойдет?
4.Все формируемые команды высвечиваются на табло пульт С2000?
5.Например есть склад деревянных досок, высота 12,8м, длинна 60м, ширина 25, штабели досок не превышают высоты 4м,доски грузят прямо внутри, то есть транспорт заезжает прямо на склад. Естественно не отапливается, пыль, ветер гуляет, но считай улица, как вы считаете целесообразно использовать этот тип пожарных извещателей?

Принцип принудительного забора воздуха (аспирации) из различных частей помещения для постоянного мониторинга стал базой для создания целой линейки высокочувствительных дымовых извещателей серии LASD (Laser Aspirating Smoke Detector). Эффективно в помещении площадью до 2 тысяч квадратов, с высотой потолков до 21м, при протяженности воздуховодов - от 50 до 120м.

Каждая модель оснащена системой обнаружения неисправностей функционирования аппаратной части и системы воздухозаборных труб. Благодаря простому подключению к ПК или ППК доступно изменение стандартных настроек средствами ПО PipeIQ®, в котором также выполняется проектирование разводки труб воздуховодов и монтажа основного оборудования.

Функциональные особенности извещателей LASD

Поток воздуха из защищаемого помещения проходит через камеру с лазерным излучателем, способным фиксировать наличие частиц дыма. Луч лазера не отражается от стенок камеры, что исключает фоновые шумы и ошибочное срабатывание, а наличие программируемых состояний «ВНИМАНИЕ», «ПРЕДУПРЕЖДЕНИЕ», «ПОЖАР» гарантирует сверхраннее информирование об изменениях в составе воздушных масс, что в свою очередь предотвращает развитие критических ситуаций (остановки производства, эвакуации, материального ущерба).

Наиболее высокого уровня защиты объектов, особенно не допускающих установки классических точечных извещателей, удается достичь за счет конструкции и принципа действия извещателей серии LASD:

Чувствительность - максимум 0,03%/м;

Журнал фиксации критических ситуаций - до 18000 событий;

Влияние движения воздушных потоков на достоверность данных сведено к минимуму;

Два уровня фильтрации, FLU2;

Интуитивно понятная индикация на лицевой панели;

Техническое обслуживание и монтаж - просто, комфортно и быстро;

Минимальные затраты при модернизации систем ПС.

Серия LASD System Sensor представлена 4-мя базовыми моделями с конструкционными отличиями.

Один лазерный извещатель в одном канале, до 1000 кв.м. контролируемой площади;

Два лазерных извещателя в одном канале, до 1000 кв.м. контролируемой площади;

По одному лазерному извещателю в каждом из двух каналов, до 2000 кв.м. контролируемой площади;