Предназначенные для испытания на водопоглощение 5 образцов высушивают до постоянной массы и после охлаждения взвешивают с точностью до 1 г. После этого образцы укладывают в сосуд с водой в один ряд на подкладки так, чтобы уровень воды в сосуде был выше верха образцов не менее чем на 2 см, и не более чем на 10 см. В таком положении образцы выдерживают в течение 48 часов. После этого вынимают из сосуда, немедленно отбирают влажной тряпкой /мягкой/ и каждый образец взвешивают. Масса воды, вытекающей из пор образца во время взвешивания, должна включаться в массу насыщенного водой образца. Взвешивание насыщенных образцов должно быть закончено не позднее чем через 5 минут после того, как образцы вынуты из воды. Водопоглощение по массе вычисляют по формуле /%/:

где m 1 – масса насыщенного водой образца, г;

m – масса высушенного образца, г;

Водопоглощение определяют как среднее из 5 результатов. Водопоглощение кирпича должно быть не менее 8%.

1.4.Определение морозостойкости кирпича

Морозостойкостью кирпича называют способность материала или изделия насыщенного водой, выдерживать многократное замораживание и оттаивание в воде.

Образцы кирпича, предназначенные для испытания на морозостойкость, предварительно высушивают до постоянной массы, а затем насыщают водой и взвешивают. В морозильной камере образцы устанавливают в специальных контейнерах или укладывают на стеллажи камеры, после того как температура в ней понизится до -15 0 С. От начала до конца замораживания в течение 4 часов температура в зоне размещения должна быть не выше -15 0 С и не ниже -20 0 С.

После окончания замораживания образцы вынимают из морозильной камеры и погружают в ванну с водой при температуре 15 — 20 0 С. Продолжительность одного оттаивания должна быть не менее 2-х часов.

Замораживание и последующее оттаивание образцов составляет один цикл. По количеству циклов попеременного замораживания и оттаивания без признаков разрушения устанавливают марку кирпича по морозостойкости.

Для установления степени повреждения образцы подвергаются осмотру через каждые 5 циклов после их оттаивания.


Кирпич считают выдержавшим испытание на морозостойкость, если после установленного количества циклов попеременного замораживания и оттаивания образцы не разрушаются или на поверхности образцов не будут обнаружены виды повреждения: расслоение, шелушение, сквозные трещины, выкрашивание. При значительном выкрашивании ребер и углов проверяют потерю массы образца, которая не должна превышать 2%.

Для определения потери массы образцы после последнего цикла испытания высушивают до постоянной массы.

Потерю массы определяют по формуле/%/:

,

где m 1 – масса образца, высушенного до постоянной массы до начала испытаний на морозостойкость;

m 2 – масса образца, высушенного до постоянной массы на морозостойкость.

По морозостойкости кирпич подразделяется на четыре марки: Мрз. 15, Мрз. 25, Мрз. 35, Мрз. 50.

2.Испытание плитки керамической для внутренней облицовки

Плитки, используемые для внутренней облицовки стен, изготовляются по ГОСТ 6141-82 из глиняного теста путем формовки, обжига и глазурирования лицевой поверхности.

Плитки выпускают прямоугольной и фасонной формы различных типов /квадратная, прямоугольная, угловая и др./, для которых установлены свои размеры /например, квадратная плитка — 150


150 мм/.

Толщина всех плиток, за исключением плинтусных, должна быть не более 6,0 мм, плинтусных плиток – не более 10,0 мм. Толщина плиток одной партии должна быть одинаковой.

Допускаемое отклонение по толщине плиток одной партии не должно превышать 0,5 мм. Отклонение размеров по длине граней плитки допускается не более 1,5 мм.

Плитки должны иметь одноцветную или мраморовидную лицевую поверхность. Цвет лицевой поверхности плиток и тон их окраски должны соответствовать эталонам.

Водопоглощение плиток не должно превышать 16% от массы плиток, высушенных до постоянной массы.

Размеры плиток проверяют металлическим измерительным инструментом или шаблоном с точностью до 1 мм. Правильность прямых углов плиток определят металлическим угольником.

Искривление плиток определяют следующими способами: в случае вогнутой поверхности – измерением наибольшего зазора между поверхностью плитки и ребром металлической линейки, поставленной по диагонали плитки; в случае выпуклой поверхности – измерением зазора между поверхностью плитки и ребром металлической линейки, поставленной по диагонали плитки и опирающейся с одного конца на калибр, равный допускаемой величине искривления.


Для определения термической стойкости плиток отобранные три плитки помещают в воздушную баню и постепенно нагревают. По достижении температуры 100 0 С плитки быстро погружают в воду, имеющую температуру 18-20 0 С, и оставляют в ней до полного охлаждения; затем их вынимают и осматривают. Чтобы точнее обнаружить наличие цека /шероховатости/, на поверхность плиток наносят несколько капель жидкой краски или чернил и протирают мягкой тканью.

Плитки считают термически стойкими, если в результате испытания на их глазурованной поверхности не будет обнаружено трещин, посечек, цека.

Для анализа однотонности цвета лицевых поверхностей квадратных и прямоугольных плиток их укладывают на щит вплотную на площади в 1 м 2 , а фасонные плитки – в ряд длиной не менее 1 м. Щит устанавливают в вертикальном положении на открытом месте.

Цвет поверхности плиток на расстоянии 3 м от глаза наблюдателя должен выглядеть однотонным в соответствии с эталоном.

studfiles.net

Особенности влагоудержания как эксплуатационной характеристики

Способность материала впитывать и удерживать воду называют водопоглощением.


рпичные блоки в возведенном строении подвержены атмосферным воздействиям, поскольку имеют постоянный контакт с окружающей средой. Влагу, с которой соприкасаются, они впитывают в себя. Важно, чтобы показатель водопоглощения был оптимальным и соответствовал нормам, установленным для каждого вида кирпича. Слишком высокий уровень поглощения влаги способствует ухудшению микроклимата в доме из-за неуспевающей испаряться воды. А при минусовой температуре она превращается в лед и расширяется, вследствие чего в кирпиче образуются трещины, а это приводит его в негодность, прочность здания снижается. При слишком низком показателе кирпичные блоки слабо сцепляются с раствором, что также ухудшает прочность.

Вернуться к оглавлению

От чего зависит?

Показатель уровня водопоглощения кирпича напрямую зависит от его пористости и наличия в нем пустот. Чем их больше, тем больше влаги впитывает блок. Следовательно, у пустотелого кирпича гигроскопичность будет выше, чем у полнотелого. Кроме того, способность материала впитывать влагу зависит от его вида. Различают 3 разновидности:

  • силикатный;
  • керамический;
  • бетонный.
Материал из бетона меньше всего впитывает влагу.

В состав силикатного кирпича входит песок, немного извести со связующими примесями. Этот вид материала наиболее гигроскопичен. Керамический изготавливается из глины путем обжига при повышенной температуре, достигающей 1000 градусов. Водопоглощение керамического кирпича тоже довольно высокое, кроме того слоистая структура надолго удерживает влагу внутри, что приводит к разрушению блока при снижении температуры воздуха ниже 0 градусов. Бетонный изготавливают из цементного раствора. Таким кирпичным блокам присущ самый низкий показатель поглощения воды, но, к сожалению, это единственное его преимущество над остальными видами кирпича.

Вернуться к оглавлению

Требования к водопоглощению кирпича

Существуют определенные пределы оптимального водопоглощения кирпича. Устанавливаются эти нормы в зависимости от его вида, назначения и с учетом дальнейших условий эксплуатации возведенного сооружения. В таблице представлены показатели, обозначающие границы возможного уровня поглощения влаги строительным материалом.


Вернуться к оглавлению

Как определяют?

Перед замачиванием кирпичи высушиваются в печи.

Определяют уровень поглощения воды кирпичным блоком проведя испытания материала по методике идентичной для всех его видов, за исключением некоторых особенностей для силикатных кирпичей. Исследования проводят на неповрежденных образцах, отобранных из партии в количестве трех штук. Их предварительно высушивают в печи при температуре в пределах 110-120 градусов. Затем блок, охлажденный естественным образом при комнатной температуре не выше 25 градусов, взвешивают и на 2-е суток опускают в воду.

Перед испытанием силикатный кирпич не сушат. В противном случае погружение в жидкость происходит только по истечению 24-х часов с момента высушивания.

По прошествии этого времени, его из воды вынимают и взвешивают, принимая в расчет массу жидкости, вытекшей в чашу весов, и мокрого стройматериала. Показатель водопоглощения определяют как разность пропитанного водой и сухого блока. Параметр вычисляется в процентах для всех 3-х проб. Окончательный результат будет равен их среднему арифметическому значению.


etokirpichi.ru

Состав керамического кирпича

Самый лучший керамический кирпич изготавливается из глины мелких фракций и постоянного состава. Процесс добычи сырья в этом случае происходит с применением одноковшового экскаватора, не смешивающего слои глины. Но таких карьеров осталось довольно мало. Экскаваторы роторного типа смешивают все слои глины и измельчают их, поэтому для производства высококачественного керамического кирпича из подобного сырья следует точно соблюдать технологию обжига.

Глина представляет собой смесь легкоплавких и тугоплавких элементов. При правильном обжиге легкоплавкие компоненты связывают и растворяют свои более тугоплавкие аналоги, от соотношения этих ингредиентов зависит структурный состав кирпича. Технология правильной формовки и сушки сырья направлена на придание ему максимальной прочности при сохранении заданной формы. Форма и технические характеристики керамического кирпича регламентируются ГОСТ 530-2007.

Классификация и подвиды керамического кирпича.

Кирпич керамический различается по технологии изготовления : обожженный и необожженный.

  • Необожженный керамический кирпич (адоба) изготавливается методом сушки на открытом воздухе, при этом получается материал с низкими техническими характеристиками и в современном строительстве практически не используется.
  • Обожженный кирпич подвергается термическому воздействию в специальных печах и туннелях, что придает ему высокую прочность и низкую влагопроницаемость.

Керамический кирпич изготавливается в полнотелом и пустотелом варианте.

  • Полнотелый кирпич более тяжел и обладает повышенной теплопроводностью, поэтому постепенно вытесняется пустотелым материалом.
  • Пустотелый кирпич изготавливается с созданием внутренних полостей различной формы и размера. Объем полостей может доходить до 55% от общего объема изделия. Полости понижают теплопроводность материала, позволяя укладывать более тонкие стены.

По качеству изготовления кирпич подразделяется на обычный и лицевой .

Прочностные характеристики керамического кирпича определяются его маркой: от М100 до М300. Числовое значение марки указывает максимальное давление, которое может принять материал, измеряется в кг/см 2.

По размерам керамический кирпич подразделяется на три основные группы:

  • Одинарный кирпич — 250 х 120 х 65 мм;
  • Полуторный кирпич — 250 х 120 х 88 мм;
  • Двойной кирпич — 250 х 120 х 140 мм.

Также в нашей стране используется другой стандарт:

  • 0,7 НФ (Евро) — 250 х 85 х 65 мм;
  • 1,3 НФ (модульный одинарный) — 288 х 138 х 65 мм.

Размер кирпича тщательно продуман, поскольку его ширина составляет половину длины с 10 миллиметровым допуском на шов раствора. Полнотелый двойной кирпич в соответствии с ГОСТ называется керамическим камнем и является самым экономичным из вышеперечисленных материалов.

Кирпич различается по цвету : от светло-желтого, до темно-коричневого, в зависимости от применяемого сырья. В настоящее время активно используется пигментация керамического кирпича с приданием материалу различных цветовых оттенков.

Технические характеристики керамического кирпича.

  • Прочность — 100 - 300 кг/кв.см. Прочность материала регламентируется его маркой и зависит от плотности и технологии изготовления. Самыми востребованными материалами считаются М 150 и М 200.
  • Объемный вес : кирпич полнотелый — 1 600 - 1 900 кг/куб.м; кирпич пустотелый — 1 100 - 1 450 кг/куб.м. Удельный вес материала зависит от объема внутренних пустот кирпича. С увеличением объема полостей уменьшается теплопроводность материала и увеличивается экономичность.
  • Теплопроводность — 0,6 - 0,7 Вт/м Град для полнотелых кирпичей; 0,3 - 0,5 Вт/м Град для пустотелого материала. Керамический кирпич обладает довольно низкой теплопроводностью, что позволяет возводить энергоэффективные сооружения.
  • Морозостойкость — циклы 50 - 100 F . Керамический кирпич прекрасно переносит перепады температур и при правильном формировании кладки и постоянном внутреннем обогреве может прослужить 100 и более лет.
  • Усадка — 0,03 - 0,1 мм/м. Этот показатель у кирпичной кладки очень незначителен и поэтому здания, возведенные из керамического кирпича, редко трескаются.
  • Водопоглощение — 6 — 14 % . Высокое влагопоглощение отрицательно влияет на качество строительных материалов. Керамический кирпич обладает довольно низким влагопоглощением и поэтому имеет высокие прочностные характеристики во всех условиях эксплуатации.
  • Паропроницаемость - 0,14 - 0,17 Мг/(м*ч*Па). Этот показатель является достаточным для создания в помещении комфортной влажности.
  • Огнестойкость - 10 часов. Это очень высокий показатель, позволяющий кирпичной кладке долгое время сопротивляться действию высоких температур, и поэтому материал считается практически негорючим.
  • Стоимость : 6 - 8 руб./шт. — полнотелый кирпич, 7 - 9 руб./шт. — пустотелый кирпич. Стоимость материала практически не зависит от его конструктивных особенностей. Стоимость лицевого кирпича составляет 18 - 25 руб./ шт.
  • Звукоизоляция - хорошая. Звукоизоляционные характеристики керамического кирпича отвечают требованиям СНиП 23-03-2003
  • Максимальная этажность строения — не ограничена. Прочностные характеристики материала позволяют возводить сооружения большой этажности.

Достоинства и недостатки керамического кирпича

Керамический кирпич обладает рядом преимуществ, что сделало этот материал очень востребованным на рынке.

Достоинства

  • Кирпич отличается высокой прочностью, а его небольшие размеры позволяют возводить самые сложные архитектурные формы и реализовывать необычные решения.
  • Привлекательный внешний вид отделочного кирпича дает возможность не применять дополнительного декорирования при оформлении внешних поверхностей стены.
  • В отличие от бетонных плит кирпич обладает большей теплоемкостью, поэтому в помещении тепло зимой и прохладно летом.

Недостатки

Область применения материала и транспортировка

Керамический кирпич, являясь универсальным материалом, широко применяется для строительства объектов разнообразного назначения, возведения несущих конструкций и межкомнатных перегородок. При помощи этого материала можно решить самые сложные архитектурные задачи и даже реставрировать исторические объекты.

Керамический кирпич транспортируется на поддонах, соответствующих ГОСТ 25706—83. автомобильным или железнодорожным транспортом и маркируется производителями в соответствии с ГОСТ 14192.

stroynedvizhka.ru

Нормы водопоглощения

Чтобы увеличить прочность и долговечность материала, следует максимально снизить показатель его водопоглощения, но практика свидетельствует о другом.

Показатель водопоглощения влаги нельзя ограничивать по нескольким причинам:

  1. Если показатель впитываемости воды будет низким, то кладка получится менее прочной, так как нарушится сцепка с раствором.
  2. Недостаточное количество пор и пустот существенно снизит показатели его теплосохранности, делая материал непригодным для использования в регионах с затяжными зимами. Чтобы избежать таких проблем, специалистами разработаны определенные нормы, по которым показатель водопоглощения должен быть не ниже 6%. Максимальный уровень определяется в зависимости от вида стройматериала.

Разделяют 3 основных типа строительного кирпича:

  • бетонный;
  • силикатный;
  • керамический.

Производство изделий из бетонной смеси происходит методом заливки раствора в специальные формы. На практике данный вид редко используется, потому что он тяжелый, дорогой, плохо сохраняет тепло. Несмотря на эти недостатки, данное изделие обладает самым низким показателем водопоглощения в 3-5%. Кладка, выполненная из такого строительного материала, прекрасно выдерживает резкие перепады температур и характеризуется длительным сроком эксплуатации.

У силикатного кирпича в основе песок с небольшим добавлением извести и связующих материалов, возможно наличие пигментов. Водопоглощение силикатного кирпича составляет порядка 15%. Именно по этой причине его не рекомендовано использовать для строительства стен, расположенных в местах с повышенной влажностью. Керамический кирпич производят из глины, которую обжигают при максимально высокой температуре в 1000°С. Качественный керамический кирпич имеет показатель водопоглощения в 6-14%. Особенностью этого строительного материала является его слоистая структура. При низких температурах влага задерживается между слоями и не может быстро высвободиться из них. Перепады температур приводят к тому, что керамический кирпич начинает быстро разрушаться. Для того чтобы продлить эксплуатацию кладки из керамического кирпича, следует проводить качественные отделочные работы.

Как определить показатель водопоглощения?

Исследования должны проводиться только в специальных условиях:

Хорошее водопоглощение силикатным кирпичом, позволяет использовать его для строительства фундаментов.
  • температура в помещении должна быть в пределах 15-25°С;
  • исследуются только целые, неповрежденные образцы;
  • изделие должно быть высушено до неизменной массы в специальных автоклавах при температуре порядка 150°С.
  • силикатный стройматериал можно исследовать только по истечении суток после сушки.

Исследования проводятся одновременно для 3 образцов. Это необходимо для определения среднего арифметического значения. После того как каждый образец взвешен и высушен, его помещают в сосуд с водой таким образом, чтобы уровень жидкости перекрывал поверхность камня на 2-8 см. По истечении 2 суток изделия вынимают из воды и сразу же взвешивают. В расчет берется и масса кирпича, и масса вытекшей в чашу весов воды. Далее используется формула вычисления водопоглощения материала, по которой несложно определить данный показатель:

ПВ=m 0 -m 1 /m 1 *100%, где:

  • ПВ — показатель водопоглощения;
  • m 0 — масса насыщенного водой камня;
  • m 1 — масса высушенного образца.

Результат определяется в процентном соотношении, для строительного кирпича он должен составлять не более 5%, а для отделочных элементов — не выше 15%.

Данные исследования несложно осуществить своими силами. Результаты исследований будут весьма полезными для правильного выбора материала, что в итоге определит качество и долговечность возводимых построек.

Уровень водопоглощения строительного изделия — это одна из важнейших характеристик, которая позволяет определить сферу использования строительного материала. Например, у силикатного кирпича хорошая впитываемость влаги, поэтому его использование для возведения фундаментов, цокольных этажей поверхностей, расположенных в среде с повышенной влажностью, ограничено. Для постройки стен и несущих перегородок он вполне подходит.

Выбирая кирпич для строительства, всегда надо руководствоваться его характеристиками, чтобы постройка получилась крепкой и долговечной.

kubkirpich.ru

Основные понятия и определения

Взаимосвязь основных параметров

Упомянутые выше характеристики тесно связаны между собой и зависят друг от друга. Чтобы понять это, необходимо дать определение водопоглощению.

Определение. Водопоглощением называют способность материала впитывать в себя воду и удерживать её. Оно выражается в процентном отношении к собственному объему материала. Если говорить о кирпиче, то его водопоглощение показывает, какое количество воды он может вобрать в себя при полном погружении.

Понятно, что чем больше объем пустот в кирпиче (т.е. чем выше его пористость), тем больше воды он впитает. В то же время пористость влияет на прочность материала, его способность выдерживать определенную нагрузку. А также и на морозостойкость, показывающую, сколько циклов замерзания и оттаивания он способен выдержать без снижения своих эксплуатационных свойств.

Проникшая в пустоты влага при отрицательных температурах воздуха замерзает. При этом она увеличивается в объеме, разрушая кирпич изнутри, буквально разрывая его. Исходя из этого, можно понять, что чем ниже влагопоглощение, тем выше морозостойкость изделия и, соответственно, его долговечность (см.также статью Теплопроводность кирпича: сравнение материалов).

Нормы и требования

Казалось бы, что для улучшения этих показателей достаточно максимально увеличить плотность изделия, чтобы ограничить впитывание в него влаги.

Однако этого не делают по двум причинам:

  1. Если водопоглощение керамического кирпича будет очень низким, кладка из него окажется непрочной, так как не будет обеспечена нормальная связь с раствором.
  1. Отсутствие пор снижает теплоизоляционные свойства материала, делает его непригодным для тех условий эксплуатации, которые существуют в нашем холодном климате.

Поэтому существуют установленные ГОСТом нормы, согласно которым этот показатель должен быть не ниже 6%. Верхний же его предел зависит от вида кирпича и тех условий, в которых он будет работать.

  • Рядовой – 12-14%;
  • Лицевой – 8-10%;
  • Кирпич, используемый во внутренних рядах кладки и для строительства перегородок, может обладать водопоглощением до 16%.

Такой разброс объясняется тем, что внутренние ряды кладки не испытывают непосредственного воздействия осадков и низких температур, в то время как наружные полностью принимают их на себя. Поэтому водопоглощение лицевого кирпича должно быть как можно ниже. А для снижения теплопроводности в нем делаются специальные технологические пустоты.

Для справки. Наилучшими показателями отличается клинкерный лицевой кирпич. В нем практически отсутствуют посторонние включения и поры, благодаря чему его влагостойкость, морозостойкость, прочность и долговечность очень высоки. Но и цена его выше, чем у обычного.

Определение влагопоглощения

Для определения этого показателя используется методика, регламентированная ГОСТ 7025-91 «Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости».

Общие требования методики

Исследование проводится в лаборатории с соблюдением следующих требований:

  1. Температура воздуха в помещении должна быть в пределах 15-25 градусов;
  2. Испытаниям подвергаются целые изделия или половинки;
  3. Образцы должны быть высушены до постоянной массы с установленной погрешностью взвешивания. Сушка проводится при температуре 1055 градусов в электрошкафу;
  1. Силикатные изделия подвергаются испытаниям не раньше, чем через 24 часа после автоклавной обработки.

Проведение испытания

Для исследования берется не менее трех образцов из одной партии. Этого требует инструкция для определения среднего арифметического значения влагопоглощения.

После высушивания их взвешивают и погружают в сосуд с водой с температурой 15-25 градусов, поместив на решетки с зазорами не менее 2 см. Уровень воды должен быть выше верхнего образца на 2-10 см.

Обратите внимание. Силикатный кирпич перед испытанием не высушивается.

По истечении 48 часов изделия вынимают из воды и сразу же снова взвешивают, включая в массу кирпича и массу вытекшей на чашку весов воды.

Полученные результаты обрабатывают, вычисляя водопоглощение по следующей формуле:

m1 – масса насыщенного водой изделия;

m – масса высушенного изделия.

То есть, относят массу впитавшейся воды к массе самого образца и выражают получившееся значение в процентах.

Пример. Если высушенный кирпич весил 4000 г, а после проведенного испытания стал весить 4360 г, то его водопоглощение равно (4360 – 4000)/4000 * 100 = 9%.

Несмотря на то, что для испытаний требуется специальное оборудование, его можно провести и своими руками, но результаты будут весьма приближенными к действительным. Однако в случае применения кирпича, характеристики которого вам неизвестны, они будут очень информативны.

Заключение

Степень водопоглощения материала – важнейшая характеристика, позволяющая определить сферу его применения. Например, силикатный кирпич обладает высокой способностью впитывать в себя воду, и именно поэтому он не используется при возведении фундаментов, цокольных этажей и стен влажных помещений (читайте также статью Силикатный кирпич: плюсы и минусы, а также виды и особенности использования). В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

klademkirpich.ru

Состав, производство и виды керамического кирпича

Производство кирпича, несмотря на кажущуюся свою простоту, считается сложным технологическим процессом, проходящим в несколько этапов. На сегодняшний день распространенными можно считать две технологии изготовления керамического кирпича.

  1. Пластинчатый метод. Отдельные кирпичи формируются из приготовленной глиняной массы, содержание воды в которой составляет примерно 17-30%. Далее сформированные отдельные кирпичи подвергают сушке в специальной камере или в затененном месте. В завершение кирпич обжигается в печах, после чего отправляется для хранения на склад или отгружается покупателям.
  2. Технология полусухого прессования. Содержание воды в глиняной массе в этом случае не превышает 8-10 %. Кирпичный блок формируется методом прессования под высоким давлением (около 15 МПа). В отличие от первого способа сырье — глина — сперва измельчается до порошкообразного состояния, из которого затем путем прессования формируются отдельные кирпичи. Преимуществом этого способа является сокращенное время сушки или полное отсутствие этого этапа в технологическом процессе производства кирпича таким способом.

Производство керамического кирпича должно осуществляться при полном соответствии со стандартами ГОСТ 7484-78 и ГОСТ 530-95. Для замешивания глиняной массы применяются специальные механизмы: глиномялки, вальцы и бегуны. Формирование отдельных кирпичных блоков осуществляется на высокопроизводительных ленточных прессах. А применение вибростендов позволяет исключить образование нежелательных полостей и обеспечить однородную структуру готовых кирпичных блоков.

Необходимо учитывать, что произведенный в разных регионах кирпич даже одного вида будет иметь несколько различные характеристики. Это объясняется тем, что исходное сырье — глина — в разных местах имеет разный химический состав.

Для сушки сырого кирпича могут использоваться либо камерный, либо туннельный метод. При камерном способе сырые кирпичи помещаются в специальное помещение, в котором температура и влажность меняются по определенной заранее программе. При камерной сушке сырой кирпич пропускается через определенные зоны, в которых поддерживаются различные микроклиматические параметры.

Обжиг керамического кирпича осуществляется в специальных печах при неукоснительном соблюдении определенных условий. Температура обжига выбирается в зависимости от используемого глиняного состава. Обычно она находится в пределах 950-1050 градусов Цельсия. Продолжительность обжига кирпича выбирается таким образом, чтобы в результате стекловидная фаза во всей структуре изделия составляла не менее 8-10%. В этом случае можно будет гарантировать высокую механическую прочность керамического кирпича, которая считается его наиболее важной характеристикой. Как результат, все здания, построенные из кирпича, могут простоять не один век.

Кирпич изготавливается из мелкофракционной глины, добываемой в карьерах открытым способом посредством роторной или одноковшовой экскаваторной техники. Добиться нужного качества кирпичей можно лишь при использовании материалов с однородным минеральным составом. Заводы, изготавливающие и реализующие кирпичную продукцию, зачастую возводятся в непосредственной близости от глиняных месторождений. Это позволяет минимизировать транспортные издержки и гарантировать бесперебойную поставку на завод качественного сырья.

Керамический кирпич разделяют на виды в зависимости от назначения на рядовой, лицевой(облицовочный) и специальный (огнеупорный, шамотный). Можно также упомянуть так называемый реставрационный кирпич. Он, как понятно из его наименования, применяется при выполнении реставрационных работ на старинных объектах архитектуры. Его изготавливают на заказ, поскольку в те времена использовались иные технологии производства кирпичей, а также не было общепринятых стандартов на размеры.

В свою очередь лицевой кирпич также бывает нескольких типов:

  • фасадный;
  • фасонный;
  • фигурный;
  • ангобированный;
  • глазурованный.

Помимо этого, керамический кирпич может быть полнотелым или пустотелым, а его боковые поверхности — гладкими или рифлеными. Нередко кирпич одного вида сочетает в себе сразу несколько различных признаков. Например, рядовой кирпич бывает как полнотелым, так и иметь полости. Для кладки каминов или печей используется огнестойкий (шамотный) кирпич, а его разновидность — клинкерный кирпич — используется для мощения пешеходных дорожек и дворовых территорий.

Плотность керамического кирпича

Внутренняя структура кирпича оказывает непосредственное влияние на его технические характеристики и физико-химические свойства. Например, важным параметром является плотность таких изделий.
В зависимости от плотности керамических кирпичей их принято делить на классы, обозначаемые числовым значением в диапазоне от 0,8 до 2,4. Данные показатели характеризуют вес 1 куб. метра стройматериала в тоннах. Такое деление на классы, а всего их шесть, значительно упрощает делопроизводство с строительном бизнесе.

Помимо этого, знание класса используемых кирпичных изделий имеет важное значение для проектных расчетов, определения максимальных нагрузок на фундамент и несущие конструкции возводимых строений. Высокая механическая прочность кирпичей достигается благодаря их однородной структуре. Но по этой же причине они обладают неудовлетворительными теплоизоляционными свойствами, поэтому при использовании монолитного кирпича необходимо предпринимать меры по дополнительному утеплению стен.

Уменьшению массы кирпича и повышению его теплоизоляционных свойств способствует наличие в нем пустот различной формы в зависимости от предусмотренной технологии (круглые, прямоугольные и щелеобразные). При этом пустоты в изделии могут быть расположены вертикально или горизонтально, а также быть сквозными или глухими. Полости могут иметь как рядовой, так и облицовочный кирпич.

Направление полостей в теле кирпича относительно плоскости нагрузки в значительной степени влияет на механическую прочность изделия. Кирпич, в котором пустоты имеют горизонтальное направление, недопустимо использовать для кладки несущих стен, поскольку высока вероятность их разрушения под весом самих строительных конструкций. Достоинством пустотелых кирпичей является существенная экономия сырья (до 13%), что позволяет удешевить их производство. К тому же, их использование, например, для сооружения межкомнатных перегородок позволяет снизить нагрузку на межэтажные перекрытия и на весь фундамент в целом.

Повысить теплоизоляционные характеристики кирпичей можно за счет придания им пористой структуры. С этой целью в глиняную смесь добавляют шихту: опилки, торф, мелконарезанную солому. В процессе обжига эти добавки выгорают и в теле кирпича остаются заполненные воздухом поры. Их присутствие положительно сказывается на теплопроводных свойствах готового изделия. Стены, сложенные из пористого кирпича, при одинаковых требованиях к теплоизоляции заметно тоньше такой же стены из монолитного кирпича.

Теплопроводные свойства керамического кирпича

Внутренняя структура кирпичных изделий непосредственным образом влияет на их физические свойства. При этом теплосберегающие характеристики кирпича определяются коэффициентом теплопроводности. Он обозначает, сколько тепла потребуется для изменения температуры воздуха на 1 градус Цельсия при толщине кирпичных стен в 1 метр. Этот коэффициент обязательно используется при проектировании зданий для расчета толщины наружных стен с целью обеспечения желаемых показателей теплосбережения.

Плотность керамических изделий и их теплозащитные свойства имеют непосредственную зависимость между собой.

Принято делить керамические кирпичи на пять групп согласно их коэффициенту теплопроводности.

Полнотелый кирпич, обладающий высокой теплопроводностью, традиционно применяется для сооружения несущих стен зданий и прочих несущих конструкций. Стены, выложенные таким кирпичом, в обязательном порядке требуют дополнительного утепления, чтобы снизить присущие им значительные теплопотери. В то же время изделия, имеющие пустоты и щели, позволяют значительно уменьшить толщину стен малоэтажных зданий, а также межкомнатных перегородок. Присутствие воздушных пор в значительной степени уменьшает теплопотери через стены.

Поглощение влаги кирпичом

Поры, присутствующие в теле кирпича, содействуют проникновению влаги и водяных паров в керамические изделия. На коэффициент поглощения существенное влияние оказывает плотность керамического кирпича, а также многие другие факторы. У полнотелого кирпича этот показатель составляет максимум 14%, что положительным образом отражается на прочности и теплозащитных свойствах таких изделий.

Степень проникновения влаги в структуру керамического изделия также значительно зависит от стабильности отопления. В случае снижения внутренней температуры до уровня наружного воздуха происходит активное проникновение влаги в пористую структуру кирпичей. А при замерзании она кристаллизуется, в результате чего в кирпичных изделиях появляются микротрещины. Со временем это приводит к разрушению кирпичной кладки.

Паропроницаемость кирпича

В жилых помещениях всегда наблюдается повышенная влажность воздуха, что непосредственным образом связанно с жизнедеятельностью человека. Кирпичная кладка стен способна активно впитывать и отдавать водяные пары во внешнюю среду, способствуя формированию и поддержанию необходимого микроклимата во внутренних помещениях. Для керамического кирпича этот параметр примерно равен 0,14 — 0,17 Мг/(м*ч*Па), чего оказывается вполне достаточно для обеспечения комфортных условий в жилых помещениях.

Для оценки паропроницаемости любого материала используют специальный коэффициент, который характеризует плотность проникающего пара сквозь поверхность в 1 кв. метр за 1 час.

Морозостойкость

Кирпич повсеместно применяется для сооружения различных зданий в самых разнообразных климатических зонах. В том числе в тех регионах, где регулярно наблюдаются отрицательные температуры воздуха. Устойчивость любого материала к действию низких температур принято называть морозостойкостью. По существующему стандарту этот показатель выражается в циклах, то есть имеется в виду количестве лет, в течение которых кирпичная стена может простоять, сохраняя все необходимые эксплуатационные характеристики.

Морозостойкость керамических кирпичей принято указывать в следующем виде: от 50F до 100F. Соответственно, речь идет о количестве лет (50 — 100) эксплуатации здания при условии качественно выполненной кладки и стабильного отопления в зимние месяцы. Керамический кирпич заслуженно считается материалом, отличающимся высокой стойкостью к внешним воздействиям и сильным изменениям температуры окружающей среды. Кирпичные здания способны простоять много десятилетий даже в крайне суровых условиях северных широт, на которые приходится значительная часть нашей страны.

Огнестойкость

Весьма важной характеристикой любого строительного материала считается его пожаробезопасность. Под этой характеристикой понимают свойство материалов сопротивляться воздействию очень высоких температур, а также открытого огня. Керамический кирпич справедливо считается абсолютно негорючим строительным материалом, а вот его огнестойкость определяется видом изделия. То есть имеется в виду время, в течение которого материал будет способен сохранять свои характеристики и целостность при воздействии открытого пламени.

По сравнению с другими материалами, широко используемыми в строительстве зданий, керамический кирпич выгодно отличается высшей степенью огнестойкости. Он в состоянии выдержать прямое воздействие огня в течение целых пяти часов. Если привести для сравнения огнестойкость других материалов, то, например, сегодня также широко распространенные железобетонные конструкции в состоянии выдержать действие пламени всего лишь не более двух часов, а металлические конструкции — и вовсе менее получаса. Также очень важным показателем является максимальная температура, которой способен противостоять тот или иной строительный материал без ощутимых последствий для себя. Так, рядовой кирпич выдерживает до 1400 градусов Цельсия, а шамотный и клинкерный — более 1600 градусов.

Звукоизоляционные свойства

Керамический кирпич в состоянии хорошо поглощать звуковые волны в широком частотном диапазоне. Способность кирпича поглощать звуки отвечает требованиям СНиП 23-03-2003, а помимо этого ГОСТ 12.1.023-80, ГОСТ 27296-87, ГОСТ 30691-2001, ГОСТ 31295.2-2005 и ГОСТ Р 53187-2008. Поэтому стены из керамического кирпича отлично справляются с поглощением уличного шума, обеспечивая комфорт во внутренних помещениях.

Благодаря этому керамический кирпич рекомендуется использовать при возведении жилых, офисных и промышленных зданий. Также кирпичи можно использовать для сооружения звукоизолирующих перегородок, акустических экранов и шумоизолированных кабин для мониторинга и дистанционного управления различными технологическими процессами на производственных предприятиях.

Звукоизоляционные свойства керамического кирпича необходимо учитывать при выполнении акустических расчетов строений и отдельных помещений. Также при этом необходимо принимать во внимание уровень звуковой мощности и положение источников звука. Лучшими звукоизоляционными характеристиками обладают стены из пустотелого кирпича, чем сооружения, выполненные из монолитных по структуре изделий.

Тем не менее, только увеличивать толщину кирпичных для достижения необходимых показателей звукоизоляции малоэффективно, поскольку удвоение толщины стен позволит улучшить степень звукоизоляции лишь на несколько децибел. Поэтому для решения проблем со звукоизоляцией рекомендуется использовать другие, более эффективные с этой точки зрения материалы.

Экологичность керамического кирпича

В последние годы теме экологичности используемых в строительной отрасли материалов уделяется очень большое внимание, поскольку это оказывает непосредственное воздействие на здоровье и самочувствие людей, а также на окружающую среду. При производстве керамических кирпичей применяется исключительно лишь природное сырье: глина и вода. Используемые при производстве пористого кирпича материалы (опилки, солома, торф) также являются абсолютно безопасными для человека. В процессе эксплуатации жилых и производственных зданий кирпич не выделяет каких-либо опасных для человека веществ, что является еще одним положительным качеством этого строительного материала, благодаря которому остается по-прежнему востребованным сегодня.

  • жилых домов любой этажности;
  • помещений предприятий общественного питания;
  • детских садов, школ, больниц;
  • производственных помещений.

По показателям экологичности керамический кирпич стоит в одном ряду с такими востребованными строительными материалами как природный камень и натуральная древесина. Использование керамического кирпича и этих двух материалов позволяет создать оптимально подходящую жилую среду для безопасного обитания взрослых и детей.

Размеры и точность геометрических форм

Сегодня производителями предлагается широкий ассортимент кирпича самых различных видов и форм. По типоразмеру принято выделять 5 стандартных видов керамического кирпича:

  • одинарный или нормальный;
  • утолщенный;
  • одинарный модульный;
  • «Евро»;
  • утолщенный с горизонтальными сквозными полостями.

Размеры керамических кирпичей должны строго отвечать требованиям национального стандарта ГОСТ 530-2007, соответствующему, в свою очередь, европейскому ЕН 771-1:2003.

Согласно этим стандартам определяются максимально допустимые отклонения от номинальных размеров керамических кирпичей, которые могут себе позволить производители. Точнее говоря, длина кирпича не должна разниться с эталонным показателем более чем на 4 мм, ширина — на 3 мм, а толщина кирпичного блока — на 2 мм. В отношении угла между перпендикулярными плоскостями готового изделия допустимое отклонение не может превышать 3 мм. Столь высокие требования к точности керамических кирпичей значительно упрощают проектирование зданий, а также делают возможным строительство крупных объектов с минимальными отклонениями.

Возможно изготовление керамических кирпичей с нестандартными номинальными размерами. Как правило, это происходит при поступлении специального заказа после обсуждения всех параметров таких изделий между производителем и заказчиком. Но и в этом случае все отмеченные выше требования к точности линейных размеров и геометрической формы должны соблюдаться производителем керамических кирпичей неукоснительно.

Специальные разновидности керамического кирпича

Керамический кирпич может использоваться при строительстве сооружений и конструкций различного предназначения. Но для кладки печных топок, каминов и камер сгорания любой кирпич не подойдет, поскольку для этих целей необходимо применять специальные огнеупорные виды кирпичей. Также особый вид керамических изделий находит применение при мощении пешеходных дорожек в парках и дворовых территорий загородных домов. В каждом случае специальные виды кирпичей должны соответствовать определенным требованиям. Использование же обычного кирпича в этих целях приведет к довольно скорому разрушению таких конструкций.

Огнеупорный кирпич

Огнеупорный (он же шамотный) кирпич способен стойко переносить продолжительное воздействие высоких температур (до 800 градусов Цельсия) и открытого огня без потери своих рабочих характеристик, не разрушаясь от этого. Для этого при его производстве в состав формовочного раствора добавляется до 70% особой тугоплавкой глины, благодаря которой при эксплуатации изделие не разрушается в процессе многих циклов нагревания и остывания.

Существует несколько сортов огнеупорных керамических кирпичей, отличающихся своей рабочей температурой и стойкостью к различным внешним факторам:

  • кварцевый кирпич, используемый при кладке сводов печей, которые выполняют отражающую функцию;
  • шамотный кирпич, самый востребованный вид огнеупорного кирпича, повсеместно применяемый при кладке печей и каминов;
  • углеродистый кирпич, содержащий прессованный графит и применяемый в промышленности при сооружении домен;
  • основной, для изготовления которого используются магнезиально-известковые составы, применяется при сооружении плавильных печей.

Для облицовки цокольных этажей и фасадов зданий, мощения пешеходных дорожек и полов во внутренних производственных помещениях применяется клинкерный кирпич. Этот вид керамического кирпича характеризуется высокими показателями механической прочности, морозоустойчивости и износостойкости. Такие изделия с легкостью могут выдерживать до 50 циклов охлаждения до очень низких температур и последующего нагрева. Высокая плотность и предъявляемые к этому виду керамических кирпичей повышенные требования позволяют гарантировать марку прочности не менее М400.

Транспортировка и хранение керамического кирпича

Для перевозки керамического кирпича при соблюдении необходимых правил можно задействовать любые виды транспорта: наземный, водный, воздушный. С целью удобства транспортировки и сохранения целостности керамические кирпичи перевозят на стандартных поддонах, которые имеют строго определенные размеры. Для доставки кирпичей на поддонах к месту строительства необходимо использовать бортовые грузовые машины. Как правило, в кузов устанавливается не более одного ряда поддонов по высоте, но при условии надежного крепления можно грузить два поддона по высоте. Необходимо только следить, чтобы погруженные поддоны при транспортировке не смещались, рискуя выпасть из кузова.

В ходе перевозки необходимо выбирать скорость передвижения с учетом качества дорожного покрытия. Понятное дело, на дороге, изобилующей ямами и ухабами, скорость движения автотранспорта должна быть минимальной, чтобы не допустить срыва креплений и смещения кирпичей в поддонах.

Перевозить керамические кирпичи навалом, а затем сбрасывать их на грунт не рекомендуется, поскольку в результате этого возможно повреждение до 20% от всего количества изделий. Погрузку и разгрузку кирпичей на поддонах осуществляют с помощью грузоподъемных кранов, которые прошли испытания и соответствуют массе поднимаемых грузов. При отсутствии такой возможности приходится выполнять эти работы ручным способом, на что может уходить довольно много времени. Для безопасности людей они должны быть обеспеченны перчатками или рукавицами.

При необходимости длительного хранения керамического кирпича его помещают под навес на площадку с твердым ровным покрытием, очищенную от посторонних предметов или мусора, а зимой — от снежных заносов. Чтобы при складировании исключить вероятность повреждения кирпичей, поддоны нужно устанавливать с небольшим расстоянием между ними (10-15 см). Кирпичи в поддонах могут размещаться в один ряд или даже в несколько ярусов. Также их можно хранить в штабелях, складывая непосредственно на твердое покрытие. Погрузку и разгрузку керамического кирпича можно выполнять как механизированным способом, так и вручную. В любом случае важно соблюдать все положенные правила и меры безопасности.

www.allremont59.ru

Немного о нормах водопоглощения

Для повышения прочности и долговечности важно свести уровень водопоглощения материала до минимума. На практике сделать это не так просто, чему виной объективные причины:

Если уменьшить объем впитываемой воды, это может сказаться на прочности кирпичной кладки, из-за снижения адгезии с кладочным раствором.
Внутренние пустоты дают изделиям дополнительные утепляющие и звукоизоляционные свойства, что очень ценится в местностях с суровыми климатическими условиями или повышенным шумом. Соответственно, при снижении пористости происходит утеря указанных качеств. По этой причине специальные нормы устанавливают нижнюю границу для водопоглощения керамического кирпича на уровне 6% . Верхняя черта определяется предназначением каждой конкретной разновидности материала.

Виды кирпича по водопоглащению

ГОСТ определяет для разных типов кирпича различные пределы максимального водопоглощения. Также этот показатель зависит от условий эксплуатации.

  • Для рядового кирпича данный показатель устанавливается на уровне 12-14%
  • Водопоглощение керамического кирпича для лицевой кладки – от 8 до 10% .
  • Для внутренних работ (отделка, перегородки) кирпич имеет граничную норму водопоглащения 16% .

Такая существенная разница для разных видов объясняется различными условиями, в которых они используются. К примеру, на внутреннюю кладку не воздействуют атмосферные осадки, а температура обычно находится в комфортных пределах.

Материал, применяемый в условиях улицы, ощущает на себе все разрушительные погодные воздействия. Особенно это касается регионов с суровыми климатическими условиями, для которых разрабатывается лицевой керамический кирпич с максимально низким коэффициентом поглощения влаги. Для того, чтобы при этом не пострадали его теплоизоляционные характеристики, внутри предусматриваются специальные технологические пустоты.

По способности впитывать влагу можно определить примерное назначение данного строительного материала. Приобретая керамический кирпич для личных нужд, рекомендуется уделить внимание коэффициенту водопоглощения: подобная информация обычно содержится в сопроводительной документации.

kvartirnyj-remont.com

На что может повлиять таое высокое водопоглощение?

1. Если кирпич имеет такое водопоглощение, то он неизбежно будет менять цвет: благодаря косым дождям. капиллярному подсосу, не говоря о прямых протечках. Кроме того, при использовании подобного кирпича на относе (в системе, где используется вентилируемый воздушный зазор) при небольшой тощине такого зазора типа 25 мм, можно получить пятна на кирпиче и локальные намокания. Подобную беду можно получить и на стене с нормальным зазором, но без продухов.
Если кирпич будет использован с теплой керамикой и положен без зазора, то получим проблему намокания, связанную с возможной конденсацией в зоне кирпича.
2. Кирпич с высоким водопоглощением может пачкаться после намокания, притягивая грязь как из атмосферы, так и из кладки. В мокй практике были случаи, когда кирпич затягивал в себя черный пигмент из кладочного раствора.
3. Если кирпич намокает системно, то он начинает работать на морозостойкость. Чем выше водопоглощение — тем больше риск.

Скорее всего ваш кирпич — один из перечисленных:

Брянский кирпичный завод
Керма (Афонино, НН)
Алексеевская керамика (РТ)
Норский кирпич (Ярославль)
На закаменной (Пермь)
Белебей (Башкирия)
Кощаково (РТ)
Ключищинская керамика (РТ)

Все приведенные производители объединены одним: они используют мел для получения светлого оттенка. Мел — природный отощитель глины, и если исходная глина не айс, м получаем закономерный результат. Плюсом такой технологии является цена в сравнении с кирпичом, выпущенным из натоящей глины.
Боьших и нетребоватеьных строек у нас в стране — полным- полно. Пусть эти кирпич живут там!

Считаю, что стоит воздержаться от приобретения подобного кирпича. На рынке достаточно приличных производителей, а дом мы строим один раз.
При наличии выбора имеет смысл приобрести тот кирпи, у которого водопоглощение меньше. На рынке есть несколко производителей, не декларируюющих свою продукцию в качестве лицевой, но по факту её производящие

В этом году я проводил масовое испытание водопоглощения кирпичей разных производителей — вот что у меня получилось — ТЫНЦ

www.forumhouse.ru


Качество кирпича - определяющий параметр при выборе этого материала. От качества выбранного кирпича напрямую зависит долговечность, тепло, экологичность, внешний вид будущего дома. Документом, подтверждающим качество изделия является сертификат соответствия. Для подтверждения соответствия партии кирпича стандартам качества, прописанным в ГОСТ 530-2012, на каждом заводе-изготовителе проводятся испытания качества готовой продукции.
Методы испытаний при входном контроле качества сырья и материалов указывают в технологической документации на изготовление изделий с учетом требований нормативных документов на это сырье и материалы.
Методы испытаний при проведении производственного операционного контроля устанавливают в технологической документации на изготовление изделий.

Определение геометрических размеров

Размеры изделий, толщину наружных стенок, диаметр цилиндрических пустот, размеры квадратных и ширину щелевидных пустот, длину посечек, длину отбитостей ребер, радиус закругления смежных граней и глубину фаски на ребрах измеряют металлической линейкой по ГОСТ 427 или штангенциркулем по ГОСТ 166. Погрешность измерения - ±1 мм:

  • Длину, ширину и толщину каждого изделия измеряют по краям (на расстоянии 15 мм от угла) и в середине ребер противоположных граней. За результат измерения принимают среднеарифметическое значение трех измерений.
  • Толщину наружных стенок измеряют минимум в трех местах - посередине каждой грани изделия. За результат измерения принимают наименьшее значение.
  • Размеры пустот измеряют внутри пустот не менее чем на трех пустотах. За результат измерения принимают наибольшее значение.
  • Ширину раскрытия трещин измеряют при помощи измерительной лупы по ГОСТ 25706, после чего изделие проверяют на соответствие требованиям. Точность измерения 0,1 мм.
  • Глубину отбитости углов и ребер измеряют при помощи угольника по ГОСТ 3749 и линейки по ГОСТ 427 по перпендикуляру от вершины угла или ребра, образованного угольником, до поврежденной поверхности. Погрешность измерения - ±1 мм.

Определение правильности формы

  • Отклонение от перпендикулярности граней определяют, прикладывая угольник к смежным граням изделия и измеряя металлической линейкой по ГОСТ 427 наибольший зазор между угольником и гранью. Погрешность измерения - ±1 мм.
    За результат измерений принимают наибольший из всех полученных результатов измерений.
  • Отклонение от плоскостности изделия определяют, прикладывая одну сторону металлического угольника к ребру изделия, а другую - вдоль каждой диагонали грани и измеряя щупом, калиброванным в установленном порядке, или металлической линейкой по ГОСТ 427 наибольший зазор между поверхностью и ребром угольника. Погрешность измерения - ±1 мм.
    За результат измерения принимают наибольший из всех полученных результатов измерений.

Определение наличия известковых включений

Наличие известковых включений определяют после пропаривания изделий в сосуде.

Образцы, не подвергавшиеся ранее воздействию влаги, укладывают на решетку, помещенную в сосуд с крышкой. Налитую под решетку воду нагревают до кипения. Пропаривание продолжают в течение 1 ч. Затем образцы охлаждают в закрытом сосуде в течение 4 ч, после чего их проверяют на соответствие требованиям.

Определение пустотности изделий

Пустотность изделий определяют как отношение объема песка, заполняющего пустоты изделия, к объему изделия.

Пустоты изделия, лежащего на листе бумаги на ровной поверхности отверстиями вверх, заполняют сухим кварцевым песком фракции 0,5-1,0 мм. Изделие убирают, песок пересыпают в стеклянный мерный цилиндр и фиксируют его объем. Пустотность изделия Р, %, вычисляют по формуле:

где V пес - объем песка, мм 3 ;

l - длина изделия, мм;

d - ширина изделия, мм;

h - толщина изделия, мм.

За результат измерения принимают среднеарифметическое значение трех параллельных определений и округляют до 1 %.

Определение скорости начальной абсорбции воды

Подготовка образцов

Образцом является целое изделие, с поверхности которого удалены пыль и излишки материала. Образцы высушивают до постоянной массы при температуре (105±5)°С и охлаждают до комнатной температуры.

Оборудование

  • Емкость для воды площадью основания большей, чем постель изделия, и высотой не менее 20 мм, с решеткой или ребрами на дне для создания расстояния между дном и поверхностью изделия. Уровень воды в емкости должен поддерживаться постоянным.
  • Секундомер с ценой деления 1 сек.
  • Сушильный шкаф с автоматическим поддержанием температуры (105±5)°С.
  • Весы, обеспечивающие точность измерения не менее 0,1% массы сухого образца.

Проведение испытания

Образец взвешивают, измеряют длину и ширину погружаемой в емкость с водой опорной поверхности образца и вычисляют ее площадь. Изделие погружают опорной поверхностью в емкость с водой с температурой (20±5) °С на глубину (5±1) мм и выдерживают в течение (60±2) с. Затем испытуемый образец извлекают из воды, удаляют лишнюю воду и взвешивают.

Обработка результатов

Скорость начальной абсорбции рассчитывают для каждого образца с точностью до 0,1 кг/(м 2 ·мин) по формуле:

где С абс - скорость начальной абсорбции воды, кг/(м 2 ·мин.);

m 1 - масса сухого образца, г;

m 2 - масса образца после погружения, г;

S - площадь погружаемой поверхности, мм 2 ;

t - время выдерживания образца в воде (постоянная величина t = 1 мин).

Скорость начальной абсорбции воды вычисляют как среднеарифметическое результатов пяти параллельных определений.

Определение наличия высолов

Для определения наличия высолов половинку изделия погружают отбитым торцом в емкость, заполненную дистиллированной водой, на глубину 1 - 2 см и выдерживают в течение 7 сут (уровень воды в сосуде должен поддерживаться постоянным). По истечении 7 сут образцы высушивают в сушильном шкафу при температуре (105±5) ºС до постоянной массы, а затем сравнивают со второй частью образца, не подвергавшейся испытанию, и проверяют на соответствие.

Предел прочности при изгибе и сжатии

  • Предел прочности при изгибе кирпича определяют в соответствии с ГОСТ 8462.
  • Предел прочности при сжатии изделий определяют по ГОСТ 8462 со следующими дополнениями.

Подготовка образцов

Образцы испытывают в воздушно-сухом состоянии. Испытываемый образец состоит: из двух целых кирпичей , уложенных постелями друг на друга, или из одного камня.

Подготовку опорных поверхностей изделий для приемосдаточных испытаний производят шлифованием, для образцов из клинкерного кирпича - применяют выравнивание цементным раствором; при арбитражных испытаниях кирпича и камня применяют шлифование, клинкерного кирпича - выравнивание цементным раствором, приготовленным по 2.6 ГОСТ 8462. Допускается при проведении приемосдаточных испытаний применять иные способы выравнивания опорных поверхностей образцов при условии наличия корреляционной связи между результатами, полученными разными способами, а также доступности проверки информации, являющейся основанием для такой связи.

Отклонение от плоскостности опорных поверхностей испытываемых образцов не должно превышать 0,1 мм на каждые 100 мм длины. Непараллельность опорных поверхностей испытуемых образцов (разность значений высоты, измеренная по четырем вертикальным ребрам) должна быть не более 2 мм.

Испытуемый образец измеряют по средним линиям опорных поверхностей с погрешностью до ±1 мм.

На боковые поверхности образца наносят осевые линии.

Проведение испытания

Образец устанавливают в центре машины для испытаний на сжатие, совмещая геометрические оси образца и плиты, и прижимают верхней плитой машины. При испытаниях нагрузка на образец должна возрастать следующим образом: до достижения примерно половины ожидаемого значения разрушающей нагрузки - произвольно, затем поддерживают такую скорость нагружения, чтобы разрушение образца произошло не ранее чем через 1 мин. Значение разрушающей нагрузки регистрируют.

Значение предела прочности при сжатии изделий R сж, МПа (кгс/см 2) вычисляют по формуле:

R сж = P / F , (3)

где Р - наибольшая нагрузка, установленная при испытании образца, Н (кгс);

F - площадь поперечного сечения образца (без вычета площади пустот); вычисляют как среднеарифметическое значение площадей верхней и нижней поверхностей, мм 2 (см 2).

Значение предела прочности при сжатии образцов вычисляют с точностью до 0,1 МПа (1 кгс) как среднеарифметическое значение результатов испытаний установленного числа образцов.

Плотность, водопоглощение, морозо- и кислотостойкость кирпича

Среднюю плотность, водопоглощение и морозостойкость (метод объемного замораживания) изделий определяют в соответствии с ГОСТ 7025.

Результат определения средней плотности изделий округляют до 10 кг/м 3 .

  • Водопоглощение определяют при насыщении образцов водой температурой (20±5) ºС при атмосферном давлении.
  • Морозостойкость определяют методом объемного замораживания. Оценку степени повреждений всех образцов проводят через каждые пять циклов замораживания и оттаивания.
  • Кислотостойкость клинкерного кирпича определяют в соответствии с ГОСТ 473.1.
  • Удельную эффективную активность естественных радионуклидов Аэфф определяют по ГОСТ 30108.

Коэффициент теплопроводности кладок

Коэффициент теплопроводности кладок определяют по ГОСТ 26254 со следующими дополнениями.

Коэффициент теплопроводности определяют экспериментально на фрагменте кладки, который с учетом растворных швов выполняют толщиной из одного тычкового и одного ложкового рядов кирпичей или камней. Кладку из укрупненных камней выполняют толщиной в один камень. Длина и высота кладки должны быть не менее 1,5 м (см. рисунок 2). Кладку выполняют на сложном растворе марки 50, средней плотностью 1800 кг/м 3 , состава 1,0:0,9:8,0 (цемент:известь:песок) по объему, на портландцементе марки 400 с осадкой конуса для полнотелых изделий 12-13 см, для пустотелых - 9 см. Допускается выполнение фрагмента кладки, отличной от указанной выше, с применением других растворов, состав которых указывают в протоколе испытаний.

δ - толщина кладки; 1 - кладка из одинарного кирпича; 2 -; кладка из утолщенного кирпича; 3 - кладка из камня

Рисунок 2 - Фрагмент кладки для определения коэффициента теплопроводности

Фрагмент кладки из изделий со сквозными пустотами следует выполнять по технологии, исключающей заполнение пустот кладочным раствором или с заполнением пустот раствором, о чем делается запись в протоколе испытаний. Кладку выполняют в проеме климатической камеры с устройством по контуру теплоизоляции из плитного утеплителя; термическое сопротивление теплоизоляции должно быть не менее 1,0 м 2 ·°С/Вт. После изготовления фрагмента кладки его наружную и внутреннюю поверхности затирают штукатурным раствором толщиной не более 5 мм и плотностью, соответствующей плотности испытуемых изделий, но не более 1400 кг/м 3 и не менее 800 кг/м 3 .

Фрагмент кладки испытывают в два этапа:

  • этап 1 - кладку выдерживают и подсушивают в течение не менее двух недель до влажности не более 6 %;
  • этап 2 - проводят дополнительную сушку кладки до влажности 1 % - 3 %.

Влажность изделий в кладке определяют приборами неразрушающего контроля. Испытания в камере проводят при перепаде температур между внутренней и наружной поверхностями кладки Δt = (tв - tн)≥ 40 °С, температуре в теплой зоне камеры tв = 18 °С - 20 °С, относительной влажности воздуха (40±5) %. Допускается сокращение времени выдержки кладки при условии обдува наружной поверхности и обогрева внутренней поверхности фрагмента трубчатыми электронагревателями (ТЭНами), софитами и др. до температуры 35 °С - 40 °С.

Перед испытанием на наружной и внутренней поверхностях кладки в центральной зоне устанавливают не менее пяти термопар по действующему нормативному документу. Дополнительно на внутренней поверхности кладки устанавливают тепломеры по действующему нормативному документу. Термопары и тепломеры устанавливают так, чтобы они охватывали зоны поверхности ложкового и тычкового рядов кладки, а также горизонтального и вертикального растворных швов. Теплотехнические параметры фиксируют после наступления стационарного теплового состояния кладки не ранее чем через 72 ч после включения климатической камеры. Измерение параметров проводят не менее трех раз с интервалом 2-3 ч.

Для каждого тепломера и термопары определяют среднеарифметическое значение показаний за период наблюдений q i и t i . По результатам испытаний вычисляют средневзвешенные значения температуры наружной и внутренней поверхностей кладки t н ср, t в ср, с учетом площади ложкового и тычкового измеряемых участков, а также вертикального и горизонтального участков растворных швов по формуле

t н(в) ср = (Σt i F i)/(Σt i F i), (4)

где t i - температура поверхности в точке i , °С;

F i - площадь i -го участка, м 2 .

По результатам испытаний определяют термическое сопротивление кладки R к пр, м 2 ·°С/Вт, с учетом фактической влажности во время испытаний по формуле

R к пр = Δt /q ср, (5)

где Δt = t в ср - t н ср, °С;

q ср - среднее значение плотности теплового потока через испытываемый фрагмент кладки, Вт/м 2 .

По значению R к пр вычисляют эквивалентный коэффициент теплопроводности кладки λ экв (ω), Вт/(м·°С), по формуле

λ экв (ω) = δ/R к пр, (6)

где δ - толщина кладки, м.

Строят график зависимости эквивалентного коэффициента теплопроводности от влажности кладки (см. рисунок 3) и определяют изменение значения λ экв на один процент влажности Δλ экв, Вт/(м·°С), по формуле

Δλ экв = (λ экв1 - λ экв2)/(ω 1 - ω 2). (7)

Рисунок 3 - График зависимости эквивалентного коэффициента теплопроводности от влажности кладки

Коэффициент теплопроводности кладки в сухом состоянии λ 0 , Вт/(м·°С), вычисляют по формулам:

λ 0 II = λ экв2 - ω 2 · Δλ экв (8)

или λ 0 I = λ экв1 - ω 1 · Δλ экв. (9)

За результат испытания принимают среднеарифметическое значение коэффициента теплопроводности кладки в сухом состоянии λ 0 , Вт/(м·°С), вычисленное по формуле

λ 0 = (λ 0 I + λ 0 II)/2. (10)

Водопоглощение кирпича – является одной из важнейших показателей на гигроскопичность в процентном соотношении.

Чем выше гидроскопичность кирпича, тем ниже его прочность.

Этот показатель демонстрирует пористость изделия, которая зависит от его состава.

Ведь гигроскопичность кирпича достаточно внушительно сказывается на морозостойкости материала. По этой причине при насыщении влагой материала прочность его значительно уменьшится в сравнении с сухим материалом. Для этого необходимо учитывать этот важный показатель при выборе кирпича для возведения загородной усадьбы.

Для того чтобы узнать гигроскопичность кирпича, материал кладут в печь на несколько часов при температуре 110-120 ºС. После нагревания кирпич охлаждают при естественной температуре, далее производят взвешивание. Потом его погружают в воду на 2 суток и снова взвешивают. По разнице в весе определяется какое количество впиталось в материал в процентном соотношении. Для строительного кирпича увеличение массы не должно быть превышено более 5%, а для отделочного блока не выше 14%.

Строительный кирпич подразделяют 3 основных вида

Строительный кирпич делится на три разновидности: бетонный блок, силикатный и керамический кирпич.

  • бетонный блок;
  • силикатный;
  • керамический кирпич.

Изготовление бетонного кирпича происходит путем залива в специально подготовленные формы цементным раствором. При этом в строительстве не пользуется большим спросом из-за большого веса, слабой звукоизоляции, высокой теплопроводностью и дороговизной. Из положительных черт бетонного кирпича можно отметить низкое водопоглощение около 5%, в некоторых видах 3%, отличную прочность для кладки несущих стен и устойчивость к быстро меняющимся атмосферным условиям.

Силикатный кирпич на 89,2% состоит из песка, остальной процент составляет известь и связующие добавки.

В состав силикатного блока входит 89,2% песка, остальной процент составляет известь и связующие добавки. В некоторых случаях в состав заготовки добавляют красящий пигмент для придания блоку необходимого оттенка. Водопоглощение у силикатов иногда достигает 15%. По этой причине не рекомендуется применение в местах с повышенной влажностью. Таких как цокольные помещения, кладка фундаментов, бань и т.д. Силикатный блок имеет хорошую звукоизоляцию, приемлемую цену и достаточно прочен для кладки несущих стен. Недостатком является высокая теплопроводность в сравнении с керамическим кирпичом.

Тускло-горчичный цвет керамического кирпича свидетельствует о недообжиге, а местами черный наоборот – о переобжиге.

Керамический блок изготавливается из смеси глин и путем обжига в туннельной печи при температуре 1000ºС. Обожженная по требуемым стандартам керамическая заготовка имеет красно-коричневый цвет и при незначительном ударе издает звонкий звук. Также брак можно отличить и по цвету керамической заготовки. Тускло-горчичный цвет показывает о недообжиге, а местами черный о переобжиге. По стандарту красного керамического блока минимальное водопоглощение должно составлять 6%, но может достигнуть и 14%. Оптимальное же водопоглощение составляет 8%. У керамического блока структура слоистая. Водопоглощение находится на среднем показателе. Из-за впитанной влаги керамического кирпича между слоями и не возможном быстром высвобождении воды в период значительных перепадов температуры и неблагоприятных погодных условий керамический кирпич начинает разрушаться. В начале появляются мелкие трещинки, которые в последствии перерастают в сквозные трещины. Вследствие чего керамический кирпич утрачивает свои свойства.

Самым распространенным кирпичом является общеизвестный красный или керамический кирпич, который получают путем обжига глин и их смесей. Еще порядка 10% рынка принадлежит силикатному кирпичу, полученному из застывшего в автоклаве известкового раствора.

Вне зависимости от материала, основные характеристики кирпичей едины. Это:

  • Прочность - основная характеристика кирпича - способность материала сопротивляться внутренним напряжениям и деформациям, не разрушаясь. Она обозначается М (марка) с соответствующим цифровым значением. Цифры показывают, какую нагрузку на 1 кв.см. может выдержать кирпич. В продаже чаще всего встречается кирпич марок М100, 125, 150, 175. Например, для строительства многоэтажных домов используют кирпич не ниже М150, а для дома в 2-3 этажа достаточно и кирпичей М100.
  • Морозостойкость - способность материала выдерживать попеременное замораживание и оттаивание в водонасыщенном состоянии, обозначается Мрз и измеряется в циклах. Во время стандартных испытаний кирпичи опускают в воду на 8 часов, потом помещают на 8 часов в морозильную камеру (это один цикл). И так до тех пор, пока кирпич не начнет менять свои характеристики (массу, прочность и т.п.). Тогда испытания останавливают и делают заключение о морозостойкости кирпича. Кирпич с более низким циклом обычно дешевле, но и эксплуатационные свойства его обычно ниже и годятся разве для южных широт. В нашем климате, рекомендуется использовать кирпич не менее Мрз 35.

По плотности тела кирпич делят на пустотелый и полнотелый . Чем больше пустот в кирпиче, тем он теплее и легче. Тепловые свойства кирпичу может также придать пористость самого материала, а внутренние поры способствуют лучшей изоляции звука. Развитие современной технологии направлено на создание поризированного (насыщенного порами) кирпича.

Классический размер кирпича 250х120х65 мм, его называют одинарным . Этот размер удобен для каменщика и кратен метру. Есть кирпич и большего размера - полуторный (его высота 88 мм), керамические камни двойного и многократно большего размера.

Цвет кирпича в основном зависит от состава глины. Большинство глин после обжига становятся «кирпичного» цвета, но есть глины, после обжига приобретают желтый, абрикосовый или белый цвет. Если в такую глину добавить пигментные добавки, то получится коричневый кирпич. Силикатный кирпич , исходно белый, окрасить путем внесения пигментов еще проще.

Рассмотрим виды, характеристики и назначение кирпичей подробнее.

Силикатный кирпич

По сути, силикатный кирпич представляет собой бруски из силикатного автоклавного бетона , имеющие форму и размеры кирпича. Он состоит примерно из 90% извести, 10% песка и небольшой доли добавок. Его достоинство в сравнении с керамическим - дешевизна, возможность обеспечить разнообразные оттенки. Недостатки: силикатный кирпич тяжел, не очень прочен, не водостоек, легко проводит тепло. Поэтому он уступает керамическому кирпичу в универсальности применения и используется только в кладке стен и перегородок, но не может применяться в фундаментах, цоколях, печах, каминах, трубах и других ответственных конструкциях.

Свойства силикатного кирпича регламентируются ГОСТ 379-79 «Кирпич и камни силикатные. Технические условия». Его основные характеристики:

  1. марка по прочности - М125, М150;
  2. марка по морозостойкости - F15, F25, F35;
  3. теплопроводность - 0,38-0,70 Вт/м°С.

Требования по размерам, качеству, геометрии и внешнему виду силикатного кирпича аналогичны требованиям, предъявляемым к керамическому кирпичу.

Соотношение силикатного и керамического кирпича составляет, соответственно, 15 и 85%. Единственным в нашем регионе производителем силикатного кирпича является ЗАО «Павловский завод Строительных Материалов» . Современный ассортимент предприятия состоит как из традиционного белого полнотелого силикатного кирпича, так и из новых видов продукции (силикатный пустотелый кирпич, силикатные стеновые пустотелые блоки). С 1998 года предприятие выпускает фактурный кирпич «Антик » ® (с эффектом каменной стены старого замка). С 1999 года - объемно окрашенный кирпич и кирпич с наполнителями, улучшающими его теплоизолирующие свойства. В июле 2003 года ЗАО «Павловский завод СМ» выпустил первую партию силикатного пустотелого кирпича. Среди главных достоинств нового продукта - вес изделия (благодаря 11 несквозным отверстиям кирпич весит всего 2,5 кг) и низкая теплопроводность.

Примеры современного силикатного кирпича производства «Павловского завода СМ»:

Полнотелый кирпич

Он же строительный , обычный , рядовой - материал с малым объемом пустот (меньше 13%). Применяется полнотелый кирпич для кладки внутренних и внешних стен, возведения колонн, столбов и других конструкций, несущих помимо собственного веса дополнительную нагрузку. Поэтому он должен обладать высокой прочностью (при необходимости используют кирпич марки М250 и даже М300), быть морозостойким. По ГОСТУ максимальная марка по морозостойкости такого кирпича - F50, но можно встретить и кирпич марки F75. Прочность достигается не даром - полнотелый кирпич имеет среднюю плотность 1600-1900 кг/м³, пористость 8%, марку морозостойкости 15-50 циклов, коэффициент теплопроводности 0,6-0,7 Вт/м°С, марку прочности 75-300. Поэтому наружные стены, полностью выложенные полнотелого кирпича, требуют дополнительного утепления. Полнотелый красный кирпич классического размера весит от 3,5 до 3,8 кг. В одном кубометре содержится 480 кирпичей.

Больше всех строительного и полнотелого кирпича производит ОАО «Ленстройкерамика» . Это предприятие является единственным в регионе производителем высокопрочного кирпича марок М250, М300, предназначенного для строительства высотных зданий.

Примеры полнотелого кирпича производства завода «Ленстройкерамика»:

Пустотелый кирпич

В соответствии со своим названием главным отличием этого кирпича является наличие внутренних пустот - отверстий или щелей, которые могут иметь разную форму (круглые, квадратные, прямоугольные и овальные), объем (13-50% внутреннего объема) и ориентацию (вертикальные и горизонтальные). Наличие пустот делает этот кирпич менее прочным, более легким и теплым, на его изготовление идет меньше сырья. Пустотелый кирпич применяют для кладки облегченных наружных стен, перегородок, заполнения каркасов высотных и многоэтажных зданий и иных ненагруженных конструкций.

Второй, новейший, способ обеспечения легкости и теплоты кирпича - поризация . Наличия большего числа мелких пор в кирпиче достигают, добавляя в глиняную массу при его формовке сгораемые включения - торф, мелко нарезанную солому, опилки или уголь, от которых после обжига остаются лишь маленькие пустоты в массиве. Зачастую полученный таким образом кирпич называют легким или сверхэффективным. Поризованный кирпич обеспечивает лучшую тепло- и звукоизоляцию, по сравнению с щелевым.

Технические характеристики обычного пустотелого кирпича: плотность 1000-1450 кг/м³, пористость 6-8%, морозостойкость 6-8%, морозостойкость 15-50 циклов, коэффициент теплопроводности 0,3-0,5 Вт/м°С, марка прочности 75-250, цвет от светло-коричневого до тёмно-красного.

Технические характеристики пустотелого сверхэффективного кирпича (НПО «Керамика » ): плотность 1100-1150 кг/м³, пористость 6-10%, морозостойкость 15-50 циклов, коэффициент теплопроводности 0,25-0,26 Вт/м°С, марка прочности 50-150, цвет оттенков красного.

Примеры пустотелого и поризованного кирпича производства заводов «Ленстройкерамика» и завода «Керамика »:

Кирпич пустотелый строительный, пустотность 42-45%.

Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1100-1150
Марка
Морозостойкость : F35
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:

Применяется для возведения наружных и внутренних стен зданий и сооружений. Отличается пятью рядами пустот, что позволяет снизить расход кладочного раствора на 20%.
Камень строительный поризованный 2НФ

Размер (мм) : 250х120х138
Масса (кг) : 3,7-3,9
Плотность (кг/м³) : 890-940
Марка : М 125, М 150 (М 175 на заказ)
Морозостойкость : F35
Водопоглощение (%) : 6,5-9
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,16(на легком растворе)/0,18

Достоинства: великолепные теплоизоляционные свойства, звуконепроницаемость, меньший вес. Используется в строительстве наружных и внутренних стен, значительно повышая теплозащитные свойства дома. Наружные стены из поризованного камня возводятся быстрее, чем стены из обычного пустотелого кирпича, сокращается количество растворных швов. Плотность его на 30% меньше, он легче, что ведёт к снижению нагрузок на конструкцию фундамента. При меньшей толщине стены в 640 мм из поризованной керамики даёт такой же эффект теплоизоляции, что и обычная кирпичная стена в 770 мм.

Облицовочный кирпич

Он же лицевой и фасадный . Главное назначение облицовочного кирпича - кладка внешних и внутренних стен с высокими требованиями к поверхности стены. Соответственно облицовочный кирпич имеет строго правильную форму и ровную, глянцевую поверхность внешних стенок. Не допускается наличие трещин и расслоения поверхности. Как правило, фасадный кирпич - пустотелый, а, следовательно, его теплотехнические характеристики достаточно высоки. Подбирая составы глиняных масс и регулируя сроки и температуру обжига, производители получают самые разнообразные цвета. Эти колебания цвета могут быть и не предумышленными, так что все необходимое количество лицевого кирпича целесообразнее покупать сразу же, одной партией, так чтобы вся облицовка была однородной по цвету.

Затраты на кирпичную облицовку больше, чем на оштукатуривание, но такой фасад существенно долговечнее, чем штукатурка. При использовании декоративного кирпича для внутренних стен особое внимание уделяется разделке швов. Стандартные размеры лицевого кирпича такие же, как у рядового, - 250х120х65 мм.

Технические характеристики облицовочного кирпича: плотность 1300-1450 кг/м³, пористость 6-14%, морозостойкость 25-75 циклов, коэффициент теплопроводности 0,3-0,5 Вт/м°С, марку прочности 75-250, цвет от белого до коричневого.

Примеры лицевого кирпича:

Кирпич лицевой красный (завод «Победа»)

Размер (мм) : 250х120х65
Масса (кг) : 2,4-2,5
Плотность (кг/м³) : 1200-1300
Марка : М150
Морозостойкость : F35, F50
Водопоглощение (%) : 6-7
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,37

Предназначен для кладки и одновременной облицовки наружных и внутренних стен зданий и сооружений любой этажности. Прочностные свойства лицевого кирпича позволяют применять его не только в качестве декоративного материала, но и как несущий материал наряду с рядовым кирпичом.

Кирпич керамический лицевой пустотелый Евроформат

Размер (мм) : 250х85х65
Масса (кг) : 1,8-2,0
Плотность (кг/м³) : 1260-1400
Марка : М175
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20 (на легком растворе)/ 0,26

Евроформат - это современный стандарт размера кирпича, который позволяет воплотить в российской реальности европейский эталон экономичности, эстетики и современности. Используется для наружных и интерьерных работ. Евроформат легче, чем обычный кирпич, что позволяет экономить на возведении фундаментов, облегчает и ускоряет работу каменщиков

Цветной и фигурный кирпич

Это особый вид лицевого кирпича , которому для повышения декоративного эффекта придана особая форма, рельеф поверхности или особый цвет. Рельеф может быть просто повторяющимся, а может быть и обработка под «мрамор», «дерево», «антик» (фактурный с потертыми или нарочито неровными гранями). Фасонный кирпич по-другому называютфигурным , что говорит само за себя. Отличительные признаки фигурного кирпича - скругленные углы и ребра, скошенные или криволинейные грани. Именно из таких элементов без особых сложностей возводят арки, круглые колонны, выполняют декор фасадов.

Среди предприятий нашего региона в области цветного и фигурного кирпича пальму первенства вновь делят НПО «Керамика » и «Победа Кнауф» . Последнее в прошлом году начало выпуск ангобированного кирпича (кирпич объемного окрашивания, устойчивый к различного рода воздействиям) расширенной цветовой гаммы.

Кирпич керамический лицевой пустотелый цветной и коричневый

Кирпич лицевой кремовый, окрашенный в массе (завод «Победа»)

Размер (мм) : 250х120х65
Масса (кг) : 2,4-2,5
Плотность (кг/м³) : 1200-1300
Марка : М150
Морозостойкость : F50
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,37
Водопоглощение (%) : 6-7

Кремовый - это оригинальный цвет и теплота мягких кремовых красок. Кремовый кирпич предназначен для облицовки наружных и внутренних стен.
Кирпич лицевой соломенный, с офактуренной поверхностью (завод «Керамика »)

Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1130-1280
Марка : М125, М150 (М175 на заказ)
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Предназначен для облицовки наружных стен зданий и сооружений любой этажности. Технология производства позволяет достигнуть равномерности цвета.
Кирпич лицевой цветной с офактуренной поверхностью (завод «Керамика »)

Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1130-1280
Марка : М125, М150 (М175 на заказ)
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,26(на легком растворе)/0,20

Предназначен для облицовки наружных стен зданий и сооружений любой этажности. Технология производства позволяет достигнуть равномерности цвета. Цвет розовый, серый, светло-зеленый, зеленый, желтый, голубой, синий

Кирпич лицевой с рельефной поверхностью «Тростник», красный (завод «Керамика »)

Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1130-1280
Марка : М125, М150 (М175 на заказ)
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Используется для фасадных и интерьерных работ. Лицевая поверхность кирпича напоминает по фактуре стебли тростника и позволяет обогатить керамическую кладку декоративными штрихами, придать ей живописную выразительность.

Кирпич лицевой с рельефной поверхностью «Кора дуба», красный (завод «Керамика »)


Размер (мм) : 250х120х65
Масса (кг) : 2,2-2,5
Плотность (кг/м³) : 1130-1280
Марка : М125, М150 (М175 на заказ)
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Используется для наружных и интерьерных работ. Поверхность кирпича по фактуре напоминает кору дерева, что определяет выразительность и привлекательность этого материала.
Кирпич лицевой пустотелый фигурный красный, коричневый

Размер (мм) : 250х120х65
Масса (кг) : 2-2,2
Плотность (кг/м³) : 1130-1280
Марка : М125, М150
Морозостойкость : F35, F50
Водопоглощение (%) : 6-8
Теплопроводность (Вт/м°С)
при влажности 0%
:
0,20(на легком растворе)/0,26

Фигурный кирпич - это оригинальный материал для украшения дома, позволяющий сделать индивидуальным любое строение. Применение фигурного кирпича позволяет избежать трудоемких операций по резке обычного лицевого кирпича и предоставляет архитекторам широчайшие возможности для создания отдельных архитектурных элементов фасадов: закругления и обрамления оконных и дверных проемов, возведения арок и колонн

Кирпич больших размеров

ГОСТ определяет его как камень керамический . Стандартный камень керамический, или двойной кирпич (как часто называют его продавцы) - имеет размеры 250х120х138 мм. Достоинство керамических камней в их технологичности и экономичности. Кирпич больших размеров позволяет существенно ускорить и упростить процесс кладки. Высшим достижением в производстве подобного кирпича в нашей стране стала продукция завода «Победа ЛСР» , освоившего выпуск легких и очень крупных блоков под торговой маркой RAUF.

Подобные изделия очень далеко ушли от простейшего кирпича, который когда-то лепили руками. Блоки завода «Победа ЛСР» даже на глаз имеют вид весьма высокотехнологичных изделий.

Примеры керамических блоков производства объединения «Победа ЛСР»

Камень строительный поризованный 2,1НФ RAUF

Размер (мм) : 250х120х138
Масса (кг) : 3,8; 4,3*
Плотность (кг/м³) : 900; 1000*
Марка : М150, М175
Морозостойкость : F50
Водопоглощение (%) : 11; 9*
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,17; 0,26*

* в зависимости от марки камня

Используется в строительстве наружных и внутренних стен, значительно повышая теплозащитные свойства дома. Достоинства: великолепные теплоизоляционные свойства, звуконепроницаемость. Наружные стены из поризованного камня возводятся быстрее, чем стены из обычного пустотелого кирпича, сокращается количество растворных швов. Плотность его на 30% меньше, он легче, что ведёт к снижению нагрузок на конструкцию фундамента. При толщине стены в 640 мм из поризованной керамики даёт такой же эффект теплоизоляции, что и обычная кирпичная стена в 770 мм.
Камень строительный поризованный 4,5НФ RAUF

Размер (мм) : 250х250х138
Масса (кг) : 6,9
Плотность (кг/м³) : 780
Марка : М150
Морозостойкость : F50
Водопоглощение (%) : 10
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,22

Используется при возведении наружных стен. Применение этого камня позволяет снизить нагрузку на фундамент, увеличить скорость ведения кладки, сократить расход раствора. Поризованный кирпич легче обычного, обладает низкой плотностью, низкой теплопроводностью. Обладает великолепными теплоизоляционными свойствами. Смягчая перепады температур, создает в доме комфортный микроклимат. Использование его в кладке повышает производительность труда и способствует уменьшению теплопотерь.
Камень крупноформатный сверхпоризованный 10,8НФ RAUF

Размер (мм) : 380х253х219
Масса (кг) : 14
Плотность (кг/м³) : 650-670
Марка : М35, М50
Морозостойкость : F50
Водопоглощение (%) : 17
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,154

Используется при возведении наружных стен в малоэтажном домостроении. Сверхпоризованный блок является суперсовременным строительным материалом и обладает всеми преимуществами Теплой (поризованной) керамики.
Камень крупноформатный поризованный 10,8НФ, доборный RAUF

Размер (мм) : 380х253х219

Масса (кг) : 17

Плотность (кг/м³) : 800

Марка : М75, М100

Морозостойкость : F50

Водопоглощение (%) : 11

Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Выступает доборным элементом при возведении наружных и внутренних стен из Теплой керамики. Поризованный блок легче обычного, он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчаются перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2-2,5 раза.
Камень крупноформатный поризованный 11,3НФ, доборный RAUF

Размер (мм) : 398х253х219

Масса (кг) : 17,7

Плотность (кг/м³) : 800

Марка : М75, М100

Морозостойкость : F50

Водопоглощение (%) : 11

Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Выступает доборным элементом при возведении стен из Теплой керамики. Поризованный блок легче обычного, что позволяет снизить нагрузки на фундамент. Он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчает перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2-2,5 раза.
Камень крупноформатный поризованный 14,5НФ RAUF

Размер (мм) : 510х253х219
Масса (кг) : 23
Плотность (кг/м³) : 800
Марка : М75, М100
Морозостойкость : F50
Водопоглощение (%) : 11
Теплопроводность (Вт/м°С)
при влажности 0%
: 0,18

Является основным материалом при возведении стен домов из Теплой керамики в малоэтажном домостроении. Поризованный блок легче обычного, что позволяет снизить нагрузки на фундамент, он обладает низкой плотностью, низкой теплопроводностью. За счет великолепных теплоизоляционных свойств смягчает перепады температур в доме. Существенно снижаются транспортные, производственные и технологические издержки, сокращаются временные затраты кладки в 2-2,5 раза.

Клинкерный кирпич

Клинкерный кирпич применяют для облицовки цоколей, мощения дорог, улиц, дворов, облицовки фасадов. Последнее можно отметить особо - такая отделка долгое время не нуждается в ремонте, грязь и пыль практически не проникают в структуру поверхности, да и вариаций цветов и форм более чем достаточно. Среди недостатков клинкера - повышенная теплопроводность и высокая стоимость. Плотность клинкера 1900-2100 кг/м³, пористость до 5%, марка морозостойкости 50-100, коэффициент теплопроводности 1,16, марка прочности 400-1000, цвет - от желтого до тёмно-красного.

Клинкерный кирпич прессуется из сухой красной глины и обжигается до спекания при значительно более высоких температурах, чем принято для изготовления обычного строительного кирпича. Это обеспечивает высокую плотность и износостойкость клинкера.

Шамотный кирпич

Чтобы избежать быстрого разрушения кладки, контактирующей с открытым огнем, необходим кирпич, способный выдерживать высокие температуры. Его называют печным , огнеупорным и шамотным . Шамотный кирпич выдерживает температуры свыше 1600°C. Его плотность 1700-1900 кг/м³, пористость 8%, марка морозостойкости 15-50, коэффициент теплопроводности 0,6 Вт/м°С, марка прочности 75-250, цвет от светло-жёлтого до тёмно-красного. Изготавливают шамотный кирпич классической, а также трапециидальной, клиновидной и арочной формы. Делают такой кирпич из шамота - огнеупорной глины.

Водопоглощение кирпича является одним из важнейших показателей, определяющих пригодность использования материала в конкретной области строительства. Чтобы понимать, почему данная характеристика так важна при выборе, следует разобраться в основных свойствах строительного материала. Водопоглощение — это способность впитывать и сохранять влагу. Показатель водопоглощения определяется в процентах к объему материала.

Пористость кирпича напрямую влияет на его водопоглощение.

Чем выше пористость материала (чем больше количество пустот), тем больший объем влаги он впитает. Пористость напрямую связана с прочностью и способностью выдерживать нагрузки. Проникшая в полость вода при минусовых температурах замерзнет, увеличится в размерах и разрушит строительный материал. Чем выше показатель водопоглощения, тем ниже будет уровень прочности конструкции и устойчивости к низким температурам. Это негативно скажется и на долговечности строительного материала.

Нормы водопоглощения

Чтобы увеличить прочность и долговечность материала, следует максимально снизить показатель его водопоглощения, но практика свидетельствует о другом.

Показатель водопоглощения влаги нельзя ограничивать по нескольким причинам:

  1. Если показатель впитываемости воды будет низким, то кладка получится менее прочной, так как нарушится сцепка с раствором.
  2. Недостаточное количество пор и пустот существенно снизит показатели его теплосохранности, делая материал непригодным для использования в регионах с затяжными зимами. Чтобы избежать таких проблем, специалистами разработаны определенные нормы, по которым показатель водопоглощения должен быть не ниже 6%. Максимальный уровень определяется в зависимости от вида стройматериала.

Разделяют 3 основных типа строительного кирпича:

  • силикатный;
  • керамический.

Производство изделий из бетонной смеси происходит методом заливки раствора в специальные формы. На практике данный вид редко используется, потому что он тяжелый, дорогой, плохо сохраняет тепло. Несмотря на эти недостатки, данное изделие обладает самым низким показателем водопоглощения в 3-5%. Кладка, выполненная из такого строительного материала, прекрасно выдерживает резкие перепады температур и характеризуется длительным сроком эксплуатации.

Уровень водопоглощения строительного изделия — это одна из важнейших характеристик, которая позволяет определить сферу использования строительного материала. Например, у силикатного кирпича хорошая впитываемость влаги, поэтому его использование для возведения фундаментов, цокольных этажей поверхностей, расположенных в среде с повышенной влажностью, ограничено. Для постройки стен и несущих перегородок он вполне подходит.

//www.youtube.com/watch?v=PpA20brkNXw

Выбирая кирпич для строительства , всегда надо руководствоваться его характеристиками, чтобы постройка получилась крепкой и долговечной.