В геометрии часто бывают задачи, связанные со сторонами треугольников. Например, часто необходимо найти сторону треугольника, если две другие известны.

Треугольники бывают равнобедренными, равносторонними и неравносторонними. Из всего разнообразия, для первого примера выберем прямоугольный (в таком треугольнике один из углов равен 90°, прилегающие к нему стороны называются катетами, а третья — гипотенузой).

Быстрая навигация по статье

Длина сторон прямоугольного треугольника

Решение задачи следует из теоремы великого математика Пифагора. В ней говорится, что сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы: a²+b²=c²

  • Находим квадрат длины катета a;
  • Находим квадрат катета b;
  • Складываем их между собой;
  • Из полученного результата извлекаем корень второй степени.

Пример: a=4, b=3, c=?

  • a²=4²=16;
  • b² =3²=9;
  • 16+9=25;
  • √25=5. То есть, длина гипотенузы данного треугольника равна 5.

Если же у треугольника нет прямого угла, то длин двух сторон недостаточно. Для этого необходим третий параметр: это может быть угол, высота площадь треугольника, радиус вписанной в него окружности и т.д..

Если известен периметр

В этом случае задача ещё проще. Периметр (P) представляет собой сумму всех сторон треугольника: P=a+b+c. Таким образом, решив простое математическое уравнение получаем результат.

Пример: P=18, a=7, b=6, c=?

1) Решаем уравнение, перенося все известные параметры в одну сторону от знака равенства:

2) Подставляем вместо них значения и вычисляем третью сторону:

c=18-7-6=5, итого: третья сторона треугольника равна 5.

Если известен угол

Для вычисления третьей стороны треугольника по углу и двум другим сторонам, решение сводится к вычислению тригонометрического уравнения. Зная взаимосвязь сторон треугольника и синуса угла, несложно вычислить третью сторону. Для этого нужно возвести обе стороны в квадрат и сложить их результаты вместе. Затем вычесть из получившегося произведение сторон, умноженное на косинус угла: C=√(a²+b²-a*b*cosα)

Если известна площадь

В этом случае одной формулой не обойтись.

1) Сначала вычисляем sin γ, выразив его из формулы площади треугольника:

sin γ= 2S/(a*b)

2) По следующей формуле вычисляем косинус того же угла:

sin² α + cos² α=1

cos α=√(1 — sin² α)=√(1- (2S/(a*b))²)

3) И снова воспользуемся теоремой синусов:

C=√((a²+b²)-a*b*cosα)

C=√((a²+b²)-a*b*√(1- (S/(a*b))²))

Подставив в это уравнение значения переменных, получим ответ задачи.

Калькулятор онлайн.
Решение треугольников.

Решением треугольника называется нахождение всех его шести элементов (т.е. трех сторон и трех углов) по каким-нибудь трем данным элементам, определяющим треугольник.

Эта математическая программа находит сторону \(c \), углы \(\alpha \) и \(\beta \) по заданным пользователем сторонам \(a, b \) и углу между ними \(\gamma \)

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа можно задать не только целые, но и дробные.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Введите стороны \(a, b \) и угол между ними \(\gamma \)

\(a = \)
\(b = \)
\(\gamma = \) (в градусах)
Решить треугольник

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Теорема синусов

Теорема

Стороны треугольника пропорциональны синусам противолежащих углов:
$$ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} $$

Теорема косинусов

Теорема
Пусть в треугольнике ABC AB = c, ВС = а, СА = b. Тогда
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон, умноженное на косинус угла между ними.
$$ a^2 = b^2+c^2-2ba \cos A $$

Решение треугольников

Решением треугольника называется нахождение всех его шести элементов (т.е. трёх сторон и трёх углов) по каким-нибудь трём данным элементам, определяющим треугольник.

Рассмотрим три задачи на решение треугольника. При этом будем пользоваться такими обозначениями для сторон треугольника ABC: AB = c, BC = a, CA = b.

Решение треугольника по двум сторонам и углу между ними

Дано: \(a, b, \angle C \). Найти \(c, \angle A, \angle B \)

Решение
1. По теореме косинусов находим \(c\):

$$ c = \sqrt{ a^2+b^2-2ab \cos C } $$ 2. Пользуясь теоремой косинусов, имеем:
$$ \cos A = \frac{ b^2+c^2-a^2 }{2bc} $$

3. \(\angle B = 180^\circ -\angle A -\angle C \)

Решение треугольника по стороне и прилежащим к ней углам

Дано: \(a, \angle B, \angle C \). Найти \(\angle A, b, c \)

Решение
1. \(\angle A = 180^\circ -\angle B -\angle C \)

2. С помощью теоремы синусов вычисляем b и c:
$$ b = a \frac{\sin B}{\sin A}, \quad c = a \frac{\sin C}{\sin A} $$

Решение треугольника по трём сторонам

Дано: \(a, b, c \). Найти \(\angle A, \angle B, \angle C \)

Решение
1. По теореме косинусов получаем:
$$ \cos A = \frac{b^2+c^2-a^2}{2bc} $$

По \(\cos A \) находим \(\angle A \) с помощью микрокалькулятора или по таблице.

2. Аналогично находим угол B.
3. \(\angle C = 180^\circ -\angle A -\angle B \)

Решение треугольника по двум сторонам и углу напротив известной стороны

Дано: \(a, b, \angle A \). Найти \(c, \angle B, \angle C \)

Решение
1. По теореме синусов находим \(\sin B \) получаем:
$$ \frac{a}{\sin A} = \frac{b}{\sin B} \Rightarrow \sin B = \frac{b}{a} \cdot \sin A $$

Введём обозначение: \(D = \frac{b}{a} \cdot \sin A \). В зависимости от числа D возможны случаи:
Если D > 1, такого треугольника не существует, т.к. \(\sin B \) больше 1 быть не может
Если D = 1, существует единственный \(\angle B: \quad \sin B = 1 \Rightarrow \angle B = 90^\circ \)
Если D Если D 2. \(\angle C = 180^\circ -\angle A -\angle B \)

3. С помощью теоремы синусов вычисляем сторону c:
$$ c = a \frac{\sin C}{\sin A} $$

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Вписанной в него окружности (r). Для этого увеличьте ее в шесть раз и разделите на квадратный корень из тройки: А = r*6/√3.

Зная радиус (R), тоже можно вычислить длину стороны (А) правильного треугольника . Этот радиус вдвое больше использованного в предыдущей формуле, поэтому утройте его и тоже поделите на квадратный корень из тройки: А = R*3/√3.

По (Р) равностороннего треугольника вычислить длину его стороны (А) еще проще, так как длины сторон в этой фигуре одинаковы. Просто разделите периметр натрое: А = Р/3.

В равнобедренном треугольнике вычисление длины стороны по известному периметру немного сложнее - нужно знать еще и длину хотя бы одной из сторон. Если известна длина стороны А, лежащей в основании фигуры, длину любой из боковых (В) находите пополам разности между периметром (Р) и размером основания: В = (Р-А)/2. А если известна боковая сторона, то длину основания определяйте вычитанием из периметра удвоенной длины боковой: А = Р-2*В.

Знания площади (S), занимаемой на плоскости правильным треугольником, тоже достаточно для нахождения длины его стороны (А). Извлеките квадратный корень из соотношения площади и корня из тройки, а полученный результат удвойте: А = 2*√(S/√3).

В , в от любого другого, для вычисления длины одной из сторон достаточно знать длины двух других. Если искомая сторона - (С), для этого находите квадратный корень длин известных сторон (А и В), возведенных в квадрат: С = √(А²+В²). А если вычислить требуется длину одного из катетов, то квадратный корень следует извлекать из длин гипотенузы и другого катета: А = √(С²-В²).

Источники:

  • как вычислить сторону равностороннего треугольника

В общем случае, т.е. когда нет данных о том, является ли треугольник равносторонним, равнобедренным, прямоугольным, приходится использовать тригонометрические функции для вычисления длин его сторон. Правила их применения определяются теоремами, которые так и названы - теорема синусов, косинусов и тангенсов.

Инструкция

Один из способов вычисления длин сторон произвольного треугольника предполагает теоремы синусов. Согласно ей соотношения длин сторон противолежащих им углов треугольника равны. Это позволяет вывести формулу длины стороны для тех случаев, из условий задачи известна хотя бы одна сторона и два угла в вершинах фигуры. Если ни один из этих двух углов (α и β) не лежит между известной стороной А и вычисляемой В, то умножьте длину известной стороны на синус прилегающего к ней известного угла β и разделите на синус другого известного угла а: В = А*sin(β)/sin(α).

Если один (γ) из двух (α и γ) известных углов образован , длина одной из которых (А) дана в , а вторую (В) требуется вычислить, то примените ту же теорему. Решение можно свести к формуле, полученной в предыдущем шаге, если вспомнить еще и теорему о сумме углов в треугольнике - эта величина всегда 180°. В формуле неизвестен угол β, который по этой теореме можно вычислить, если отнять от 180° величины двух известных углов. Подставьте это значение в равенство, и вы получите формулу В = А*sin(180°-α-γ)/sin(α).

Треугольник – это примитивный многоугольник, ограниченный на плоскости тремя точками и тремя отрезками попарно соединяющими эти точки. Углы в треугольнике бывают острыми, тупыми и прямыми. Сумма углов в треугольнике величина непрерывная и равна 180 градусам.

Вам понадобится

  • Базовые познания в геометрии и тригонометрии.

Инструкция

1. Обозначим длины сторон треугольника a=2, b=3, c=4, а его углы u, v, w, всякий из которых лежит наоборот одной сторон. По теореме косинусов квадрат длины стороны треугольника равен сумме квадратов длин 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними. То есть a^2 = b^2 + c^2 – 2bc*cos(u). Подставим в это выражение длины сторон и получим: 4 = 9 + 16 – 24cos(u).

2. Выразим из полученного равенства cos(u). Получим следующее: cos(u) = 7/8. Дальше найдём собственно угол u. Для этого посчитаем arccos(7/8). То есть угол u = arccos(7/8).

3. Аналогичным образом, выражая другие стороны через остальные, найдём оставшиеся углы.

Обратите внимание!
Значение одного угла не может превышать 180 градусов. Под знаком arccos() не может стоять число огромнее 1 и поменьше -1.

Полезный совет
Для того, дабы обнаружить все три угла необязательно выражать все три стороны, дозволено обнаружить только 2 угла, а 3-й получить путём вычитания из 180 градусов значения остальных 2-х. Это вытекает из того, что сумма всех углов треугольника величина непрерывная и равна 180 градусам.

Первые - это отрезки, которые прилегают к прямому углу, а гипотенуза является самой длинной частью фигуры и находится напротив угла в 90 о. Пифагоровым треугольником называется тот, стороны которого равны натуральным числам; их длины в таком случае имеют название «пифагорова тройка».

Египетский треугольник

Для того чтобы нынешнее поколение узнало геометрию в том виде, в котором ее преподают в школе сейчас, она развивалась несколько веков. Основополагающим моментом считается теорема Пифагора. Стороны прямоугольного известна на весь мир) составляют 3, 4, 5.

Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Однако на самом деле теорема звучит так: c 2 (квадрат гипотенузы) = a 2 +b 2 (сумма квадратов катетов).

Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется "египетским". Интересно то, что которая вписана в фигуру, равняется единице. Название возникло примерно в V столетии до н.э., когда философы Греции ездили в Египет.

При построении пирамид архитекторы и землемеры пользовались соотношением 3:4:5. Такие сооружения получались пропорциональными, приятными на вид и просторными, а также редко рушились.

Для того чтобы построить прямой угол, строители использовали веревку, на которой было завязано 12 узлов. В таком случае вероятность построения именно прямоугольного треугольника повышалась до 95%.

Признаки равенства фигур

  • Острый угол в прямоугольном треугольнике и большая сторона, которые равны тем же элементам во втором треугольнике, - бесспорный признак равенства фигур. Беря во внимание сумму углов, легко доказать, что вторые острые углы также равны. Таким образом, треугольники одинаковы по второму признаку.
  • При наложении двух фигур друг на друга повернем их таким образом, чтобы они, совместившись, стали одним равнобедренным треугольником. По его свойству стороны, а точнее, гипотенузы, равны, так же как и углы при основании, а значит, эти фигуры одинаковые.

По первому признаку очень просто доказать то, что треугольники действительно равны, главное, чтобы две меньшие стороны (т. е. катеты) были равными между собой.

Треугольники будут одинаковыми по II признаку, суть которого заключается в равенстве катета и острого угла.

Свойства треугольника с прямым углом

Высота, которую опустили из прямого угла, разбивает фигуру на две равные части.

Стороны прямоугольного треугольника и его медианы легко узнать по правилу: медиана, которая опущена на гипотенузу, равна ее половине. можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов.

В прямоугольном треугольнике действуют свойства углов в 30 о, 45 о и 60 о.

  • При угле, который равен 30 о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
  • Если угол 45 о, значит, второй острый угол также 45 о. Это говорит о том, что треугольник равнобедренный, и его катеты одинаковы.
  • Свойство угла в 60 о заключается в том, что третий угол имеет градусную меру в 30 о.

Площадь легко узнать по одной из трех формул:

  1. через высоту и сторону, на которую она опускается;
  2. по формуле Герона;
  3. по сторонам и углу между ними.

Стороны прямоугольного треугольника, а точнее катеты, сходятся с двумя высотами. Для того чтобы найти третью, необходимо рассматривать образовавшийся треугольник, и тогда по теореме Пифагора вычислить необходимую длину. Помимо этой формулы существует также соотношение удвоенной площади и длины гипотенузы. Наиболее распространенным выражением среди учеников является первое, так как требует меньше расчетов.

Теоремы, применяемые к прямоугольному треугольнику

Геометрия прямоугольного треугольника включает в себя использование таких теорем, как: