Системы аэрации, которыми оснащаются промышленные и локальные очистные сооружения, предназначены для искусственного обогащения сточных вод кислородом, окисляющим соединения железа и прочие примеси. Для этого используется специальное вакуумное оборудование, отвечающее определённым нормативам и требованиям. В частности, на очистных станциях устанавливаются воздуходувки для аэрации различной производительности, делающие процесс очистки эффективным и экологически безопасным. Компания «Мегатехника МСК» на выгодных условиях готова поставить заинтересованным предприятиям оборудование с необходимыми вам параметрами.

Основные требования, влияющие на выбор воздуходувок для аэрации воды

Естественная аэрация воды - непременное условие для размножения очищающих воду аэробных бактерий, в природе она происходит непрерывно. Однако для интенсивной, форсированной системы аэрации требуются гораздо большие объёмы воздуха, для чего применяется воздуходувка для аэрации воды роторного либо турбинного типа, отвечающая таким параметрам, как:

  • способность круглосуточно подавать сухой, не содержащий микрочастиц смазки, продуктов износа или других вредных примесей воздух;
  • максимальная бесшумность работы;
  • номинальная производительность, соответствующая объёмам перерабатываемых стоков;
  • устойчивость к коррозии, перепадам температур и воздействию атмосферных осадков;
  • простота и непритязательность в обслуживании, эксплуатации, долговечность, надёжность и энергоэффективность конструкции.

Какие бывают воздуходувки для аэрации очистных сооружений

Различают воздуходувки погружного типа, не нуждающиеся в дополнительных системах охлаждения, и центробежные, с многоступенчатым сжатием. Для небольших очистных сооружений мы рекомендуем оборудование, нагнетающие воздух в пневмосистему с помощью винтового блока. Принцип работы камеры сжатия роторных воздуходувок исключает возможность контакта масел с воздухом, а сами компрессоры отличаются особо низким уровнем шумов и вибраций, экономичностью и компактностью, что важно при размещении очистных станций вблизи жилых массивов. Для очистных комплексов крупных промышленных предприятий больше подойдут компрессоры, сжимающих воздух движением поршней.

Мы подберём для вас самое эффективное решение!

Московская компания «Мегатехника МСК» в большом ассортименте предлагает воздуходувки для аэрации очистных сооружений или искусственных водоёмов, с параметрами, уточняемыми в каждом конкретном случае. Учитывается также возможность изменения производительности оборудования, что связано с возможными сезонными колебаниями объема сточных вод, и, как следствие, разницей в потреблении сжатого воздуха. По выгодным ценам мы укомплектуем ваше предприятие винтовыми (роторными) или поршневыми воздуходувками от авторитетных производителей, пользующихся популярностью на мировом и российском рынке. Достаточно сделать заявку в режиме онлайн, и наши эксперты свяжутся с вами для уточнения деталей.

В России очистные сооружения являются одними из основных потребителей электроэнергии, большая часть уходит на питание турбовоздуходувок. Обычно для подачи воздуха на очистку бытовых, ливневых и промышленных стоков используют многоступенчатые турбокомпрессоры. Но практика показывает, что более выгодно устанавливать легкоуправляемые промышленные воздуходувки, которые экономят до 50% электроэнергии, а их покупка окупается за 3 года.

Такая экономия обеспечивается благодаря тому, что регулируемые турбокомпрессоры подают воздух в тех объёмах, который необходим для биологической очистки стоков в зависимости от сезонных перепадов температуры. При этом КПД такого оборудования составляет более 80%. Отметим, что на обслуживание и ремонт турбовоздуходувок уходит не более 1% в год от общей стоимости агрегатов.

Отличительная особенность промышленных воздуходувок – наличие регулируемых направляющих аппаратов на всасывании и нагнетании. Диапазон регулировки по воздуху является максимальным (от 45 до 100%), а КПД при этом уменьшается всего на 3-4%. Существует воздуходувное оборудование с поворотно-лопастными механизмами, которые позволяют регулировать количество подаваемых воздушных масс в аэротенки, благодаря чему можно настраивать степень аэрации.

Управляемые промышленные воздуходувки имеют такие технические характеристики:

  • производительность – от 1000 до 120000 м3/ч;
  • диапазон регулировки – от 45 до 100%;
  • мощность – от 34 до 3300 кВт;
  • КПД – от 88 до 92%.

Виды воздуходувок

Существуют различные виды промышленных воздуходувок, которые установлены на крупных очистных станциях и промышленных предприятиях. Рассмотрим каждый вид в отдельности.

Ротационные воздуходувки

Такие воздуходувки используют безмасляный способ сжатия и подачи воздуха. Принцип работы такого оборудования следующий: два трёхзубчатых (трёхполосных) ротора, которые расположены параллельно мотору, вращаются в корпусе в разные стороны, выполняя функцию поршня. Так, бесконтактный ход роторов не требует смазки.

Роторные воздуходувки

Это оборудование относится к агрегатам вертикального протока воздуха. В состав воздуходувок входит нагнетательный элемент с трёхзубчатыми роторами с ременной передачей, шумовые и всасывающие глушители, предохранительные клапаны, обратные заслонки компенсатора, два манометра или индикатор засорения фильтров. Качающаяся рама мотора автоматически натягивает ремни, что обеспечивает эффективную работу привода без специального обслуживающего персонала.

Центробежные

По принципу работы данное оборудование относится к динамически радиальным компрессорам. Давление и сжатие воздуха создаётся благодаря работе ступеней импеллеров, ускоряющих среду, а затем замедляющих её высокоэффективными диффузорами с большим радиусом, при этом на выходе создаётся определённый перепад давления.










ПРис. 8. Конструкция модуля воздуходувки по схеме «два в одном»дпись

Воздуходувка — термин больше жаргонный, нежели технический. Правильнее эти машины называть нагнетателями. Однако, учитывая, что настоящая статья рассчитана на широкий круг читателей, будем пользоваться этим термином, как более распространенным. Воздуходувка, как всякая компрессорная машина, характеризуется двумя основными параметрами: производительностью и создаваемым избыточным давлением.

В процессах аэрации, как правило, используются аэротенки глубиной от 1 до 7 м, что и определяет диапазон избыточных давлений, создаваемых воздуходувками: от 10 до 80 кПа. Что же касается производительности воздуходувки, то она зависит от объема перерабатываемой установкой воды: чем больше объем, тем больше нужно воздуха. Например, возможности очистных сооружений небольшого дачного поселка и крупного города могут различаться на несколько порядков.

Соответственно, диапазон требуемых производительностей воздуходувок находится в пределах от двух-трех кубических метров воздуха в час до нескольких десятков тысяч. Разумеется, такому широкому диапазону параметров соответствует и широкий диапазон типоразмеров воздуходувок — как по мощности, так и по габаритам. Однако есть общие требования, обязательные для всех воздуходувок аэрирующих воду. Во-первых, воздуходувка должна быть «сухой», то есть подаваемый воздух не должен содержать продуктов смазки и износа.

Во-вторых, воздуходувка должна быть надежной, простой в эксплуатации и, по возможности, не энергоемкой, учитывая ее практически непрерывную круглосуточную работу. И, в-третьих, воздуходувка должна быть малошумной, т.к. зачастую работает в непосредственной близости к человеческому жилью. Последнее требование сейчас особенно актуально, т.к. строительство очистных сооружений приобрело тенденцию дифференциации. Иными словами, строительство многочисленных дачных поселков, индивидуальных коттеджей, придорожных кафе и т.д. подразумевает и строительство небольших очистных сооружений в непосредственной близости к жилью.

Экономически это обосновано, т.к. резко сокращаются коммуникации, затраты на строительство и эксплуатацию. Указанная тенденция в последнее время определила и спрос на небольшие по производительности воздуходувки. Несмотря на большое разнообразие существующих типов компрессорных машин, выбрать машину, удовлетворяющую всем перечисленным требованиям, сложно. Требование к «сухости» подаваемого воздуха, надежности и бесшумности резко сужает этот выбор. Кроме того, цена таких компрессоров, как правило, импортных, велика.

Номенклатура же предлагаемых отечественной промышленностью компрессоров такого типа крайне ограничена. Например, для малых очистных сооружений необходимы воздуходувки с давлением нагнетания от 20 до 80 кПа и производительностью от 5 до 1000 м3/ч. Требованию к «сухости» подаваемого воздуха в указанном диапазоне параметров отвечают в основном два типа воздуходувок — объемного действия (мембранные, спиральные, роторные воздуходувки) и динамического действия (турбовоздуходувки).

Мембранные воздуходувки рассчитаны на очень небольшую производительность (5-10 м3/ч). На российский рынок их поставляют в основном инофирмы, в частности японские. Машины потребляют мало электроэнергии, компактные, малошумные. Цена таких воздуходувок от 500 до 1300 у.е. Ресурс этих машин определяется качеством основной детали — мембраны. По данным автора, наработка на ресурс у этой техники — 2-3 года. Внимание к этим машинам сильно возросло, т.к. они используются в индивидуальном коттеджном строительстве очистных сооружений.

Спиральные компрессоры можно пока еще отнести к «экзотике» на рынке «сухих» компрессоров. Это сравнительно новая техника, интенсивно осваиваемая и у нас, и за рубежом. Конструкция машины подразумевает использование высоких технологий при изготовлении, поэтому компрессоры пока что очень дороги. Например, шведская фирма «Атлас Копко» предлагает спиральные компрессоры с производительностью от 10 до 24 м3/ч по цене до 6000 у.е. Уровень избыточного давления — до 10 бар (100 м вод. ст.).

Практически, эти машины, как и поршневые компрессоры без смазки, пока не нашли применения в системах аэрации.

Роторные воздуходувки выпускает несколько фирм ближнего и дальнего зарубежья. Диапазон их производительностей — от 30 до 3000 м3/ч. В практике их называют иногда шестеренчатыми, или типа РУТс. Известной отечественной маркой являлись воздуходувки серии АФ Мелитопольского компрессорного завода (Украина). С использованием западных технологий такие воздуходувки выпускает сейчас фирма Venibe (Литва). Несколько европейских фирм поставляют на наш рынок такие воздуходувки.

Особенностью конструкции роторных воздуходувок является наличие двух синхронно вращающихся роторов. Для синхронизации вращения служат зацепляющиеся и поэтому смазываемые шестерни. Наличие узла синхронизирующих шестерен, естественно, снижает надежность машины, увеличивает риск попадания масла в полость сжатия через уплотнение вала.

Справедливости ради нужно отметить, что в силу высокого технологического уровня производства машины европейских фирм высоконадежны, однако и цена их в несколько раз выше тех же мелитопольских. Например, воздуходувка серии АФ Мелитопольского завода на самые «ходовые» параметры (давление 50 кПа и производительность 400 м3/ч) на нашем рынке стоит 3000-4000 у.е., тогда как аналогичная по параметрам воздуходувка европейской фирмы — 8000-10000 у.е. Разница в ресурсе сравниваемой техники — соответственная.

В плане надежности, конечно, более предпочтительны турбовоздуходувки . Рабочим элементом машины является простое колесо с лопатками, вращающееся в корпусе на шарикоподшипниках. За исключением подшипников в машине нет узлов трения, что и определяет ее надежность. К преимуществу турбовоздуходувок следует отнести и сравнительно низкий уровень шума.

Основным источником шума во всех типах рассматриваемых воздуходувок является газодинамический шум, то есть шум, издаваемый воздухом при прохождении через проточную часть машины. В роторных воздуходувках этот шум низкочастотный, т.к. воздух подается «порциями», а в турбовоздуходувках — высокочастотный, т.к. воздух подается непрерывно. Высокочастотный шум легче поддается глушению. Достаточно сказать, что, несмотря на установку глушителей, роторные воздуходувки, как правило, требуют для себя отдельных помещений из-за высокого уровня шума.

В то же время турбомашины, снабженные глушителями, в таковых помещениях не нуждаются, т.к. уровень их шума близок к санитарным нормам. На рис. 1 представлены сравнительные шумовые характеристики двух воздуходувок — роторного типа серии АФ (кривая 1) и турбовоздуходувки вихревого типа (кривая 2). Отдельно выделена кривая, соответствующая санитарным нормам ПС-80. Из рисунка видно, что в большинстве октавных полос превышение санитарных норм у воздуходувки роторного типа выше, нежели у воздуходувки вихревого типа.

Разумеется, этот и последующие сопоставительные анализы не ставят своей целью раскритиковать одни машины в пользу других. Цель анализа — оттенить характерные особенности каждого типа машин, а уже право выбора предоставляется читателю. В каждом конкретном случае критерии выбора могут отличаться кардинальным образом. Говоря о турбовоздуходувках, следовало бы сразу указать на диапазон их производительностей.

В области сравнительно небольших производительностей (от 10 до 3000 м3/ч) турбомашины известных традиционных типов (центробежные, осевые) получаются хотя и компактными, но очень высокооборотными. Частота вращения, например, бытового пылесоса достигает 16000-20000 мин-1. Коллекторный электродвигатель такого пылесоса не способен работать круглосуточно, как того требуют условия эксплуатации очистных сооружений.

Возможно использование мультипликатора, т.е. передачи с повышающим передаточным отношением, например, зубчатой или клиноременной. Тогда привод возможен от обычного асинхронного электродвигателя. Однако, при этом конструкция существенно усложняется, а значит, снижается надежность. Возможно использование бесконтактных высокооборотных электродвигателей.

В настоящее время отечественной промышленностью созданы и изготавливаются опытные образцы подобных агрегатов. Например, центробежный нагнетатель, используемый в отечественных озонаторных установках, снабжен мультипликатором, быстроходный вал которого с закрепленным на нем рабочим колесом нагнетателя вращается со скоростью свыше 50000 мин-1.

Зубчатый двухступенчатый мультипликатор смазывается маслом. Другой нагнетатель, разработанный и изготовленный для систем пневмотранспорта, выполнен в виде консольно закрепленного на валу высокооборотного электродвигателя рабочего колеса с лопатками. Рабочие обороты — более сотни тысяч. Специальный электродвигатель, специальные лепестковые газодинамические подшипники, прецензионная сборка и изготовление. Нет нужды говорить о стоимости такого агрегата — она достаточно велика. Нет пока данных и о наработке на ресурс.

С учетом сказанного, большой интерес представляет сравнительно новый тип турбомашин — вихревые . В силу специфичности механизма сжатия воздуха в проточной части этих машин диапазон их производительностей и давления схож с диапазоном роторных машин. В то же время, вихревые машины избавлены от недостатков роторных: имеют гораздо более высокую надежность и меньше шумят.

Частота вращения вихревых турбомашин — 3000-5000 мин-1, что упрощает их привод. В МГТУ им. Баумана разработана и в настоящее время серийно выпускается промышленностью целая гамма отечественных турбовоздуходувок вихревого типа. Конструкции оригинальны и защищены патентами России, США и ряда стран Европы .

По своим характеристикам машины не уступают лучшим зарубежным аналогам. Уже накоплен достаточно богатый опыт эксплуатации таких машин, в том числе и на очистных сооружениях. Это в первую очередь машины марки ЭФ-100. Диапазон их производительностей — от 200 до 800 м3/ч и давлений — до 80 кПа. На рис. 2 представлена вихревая воздуходувка из серии ЭФ-100. Машина установлена на одной раме с электродвигателем и связана с ним клиноременной передачей.

Подбором шкивов и мощности электродвигателя практически на одной машине получают целую сеть различных характеристик. На рис. 3 представлены рабочие характеристики турбовоздуходувок марки ЭФ-100, шестнадцати типоразмеров. Заметим, что характеристики представляют собой практически обратно пропорциональную зависимость давления от производительности, что весьма удобно для автоматизации и регулирования.

Также важно, что в отличие от характеристик турбомашин центробежного типа, эти характеристики не имеют помпажных зон, т.е. практически машина устойчиво работает выше номинального давления, потребляя при этом лишь дополнительную мощность. При этом потребляемая мощность падает с ростом производительности. У центробежных турбомашин все наоборот.

Вот почему вихревым турбомашинам не страшны пусковые режимы. Подбор шкивов и электродвигателей, такой как в серии ЭФ-100, — самый простой и дешевый способ получения сети рабочих характеристик на одной вихревой машине. Однако это неудобно с точки зрения регулирования как процесса автоматического изменения параметров. В системах аэрации потребность в воздухе может существенно изменяться, как в течение суток (дневное и ночное время), так и в зависимости от сезона (лето, зима).

В целях экономии электроэнергии, а эта экономия может достигать до 40 %, в последнее время все большее применение находят системы автоматического регулирования подачи воздуха путем изменения частоты вращения турбовоздуходувки. Благодаря появившимся на рынке устройствам преобразования частоты тока, система автоматического регулирования стала простой и доступной.

В вихревой турбовоздуходувке изменение частоты вращения смещает характеристику в ту или иную сторону практически эквидистантно первоначальной. Иными словами, поле характеристик, изображенное на рис. 3, может быть получено практически на одной машине путем изменения частоты вращения с помощью преобразователя частоты. Такая машина была разработана. Вихревой вакуумкомпрессор ВВК-3 (рис. 4) выполнен в виде моноблока, т.е. рабочее колесо установлено непосредственно на валу двигателя.

Номинальные параметры машины: производительность — 700 м3/ч, давление нагнетания — 40 кПа, частота вращения — 3000 мин-1. Понижая частоту вращения с помощью преобразователя частоты, включенного в цепь питания электродвигателя, можно получить практически любую рабочую точку на поле характеристик, изображенном на рис. 3. ВВК-3 — самая крупная машина из серии вихревых воздуходувок ВВК.

Все машины этой серии имеют общую особенность — это моноблоки. Первая машина из этой серии — ВВК-1 (рис. 5) была разработана в МГТУ им. Н.Э. Баумана и серийно выпускалась на НПО «Энергия» с 1991 г. Машина предназначалась для систем пневмотранспорта муки в пекарнях. Ее рабочие параметры:

  • производительность — 120 м3/ч;
  • давление — 28-30 кПа;
  • мощность электродвигателя — 5,5 кВт;
  • масса — 80 кг;
  • габариты — 500.500.500 мм.

В 1999 г. эти машины начали применяться в системах аэрации. В настоящее время создана и выпускается серийно отечественным предприятием ООО «ЭНГА» новая версия — ВВК-2 (рис. 6). В отличие от предшественника (ВВК-1) в ВВК-2 внесено много конструктивных изменений, повышающих надежность при круглосуточной эксплуатации. ВВК-2 — машина универсальная, т.к. позволяет с помощью несложной трансформации получить два исполнения и, соответственно, две разных характеристики со следующими рабочими точками (табл. 1).

С учетом тенденции расширения строительства небольших очистных сооружений, о которой говорилось в начале статьи, в МГТУ им. Н.Э. Баумана в настоящее время разработаны и созданы опытные образцы микровоздуходувок вихревого типа производительностью 5 и 20 м3/ч с мощностью электродвигателей соответственно 0,5 и 1,5 кВт.

Говоря о турбовоздуходувках вихревого типа, было бы несправедливо умолчать об их основном недостатке — сравнительно низком КПД. Его величина не превышает обычно 35-40 %. Фактически, энергоемкость вихревых турбовоздуходувок в 1,5-2 раза выше, чем у роторных. Поэтому, выбирая тип машины, особенно в случае ее круглосуточной работы, необходимо учитывать и этот факт.

Однако когда речь идет о микромашинах небольшой мощности, энергопотребление не самый главный параметр. Куда важнее надежность, простота обслуживания, низкий уровень шума, учитывая, что очистное сооружение загородного коттеджа должно работать практически без обслуживания и рядом с жильем. Для более мощных машин, как, например, ВВК-3, экономия возможна с помощью регулирования, о чем говорилось выше.

Несколько слов о зарубежных аналогах. Одним из основных производителей воздуходувок вихревого типа в Европе является фирма Siemens . Фирма выпускает целую гамму машин серии ELMO-G (рис. 7). Отечественные вихревые воздуходувки уступают им разве только в дизайне. По техническим же параметрам не уступают ни в чем. Что касается цен, естественно, разница велика.

Например, отечественная воздуходувка ВВК-2 стоит около 1900 у.е., аналогичный по параметрам агрегат фирмы Siemens 92Н стоит около 4800 у.е. Если говорить о диапазоне производительностей от трех до нескольких десятков тысяч кубических метров в час, то тут вне конкуренции турбовоздуходувки традиционных типов, в частности, центробежные.

Специалистам давно известны центробежные воздуходувки серии ТВ, выпускавшиеся Чирчиским заводом (Узбекистан). Мощные стационарные агрегаты с хорошим КПД и высокой надежностью. В настоящее время их производство освоило украинское предприятие— Луганский машиностроительный завод (воздуходувки серии ВЦ).

Как и всякий стационарный агрегат с большой массой (вес воздуходувок достигает несколько тонн), воздуходувка ВЦ нуждается в хорошем фундаменте. Однако опыт эксплуатации показывает, что обеспечить такой фундамент не всегда возможно. Грунты, на которых располагаются очистные сооружения, иногда весьма нестабильны в зависимости от сезона.

В МГТУ им. Н.Э. Баумана была предпринята попытка создания альтернативы воздуходувкам серии ТВ и ВЦ. Разработчики пошли по пути создания целого спектра машин с использованием таких методов унификации, как секционирование и компаундирование, когда производные агрегаты получают набором одинаковых секций (модулей).

Соединение этих модули последовательно или параллельно определяет либо суммарное давление, либо суммарную производительность. Этот прием позволил при минимуме технологических затрат получить широкий спектр агрегатов с различными техническими параметрами. Каждая секция (модуль) может быть выполнена в двух вариантах: либо это ступень центробежной машины, установленная на одной раме с электродвигателем и кинематически связанная с ним ременной передачей, либо это две ступени центробежной машины, рабочие колеса которых соответственно закреплены на двух концах вала электродвигателя (схема «два в одном»).

Конструкция модуля по схеме «два в одном» изображена на рис. 8. Рабочие колеса и корпуса машин выполнены сварными, из тонколистовой стали по оригинальной технологии. Диффузоры осевого типа сокращают габариты модуля и обладают хорошими антипомпажными характеристиками. Компонуя модули можно получать широкий спектр машин.

В табл. 2 и 3 приведены основные параметры модулей и их возможные комбинации. Указанные варианты являются лишь примером и не ограничивают количество возможных комбинаций модулей. Кроме унификации модульная конструкция имеет ряд преимуществ. Во-первых, небольшая масса модуля (350-600 кг) не требует мощных фундаментов.

Во-вторых, по той же причине модули можно размещать произвольно на имеющихся площадях, соединив их лишь трубопроводом, что дает больше вариантов компоновок агрегата. В-третьих, в модуле в качестве опор вала использованы обычные шарикоподшипники с консистентной смазкой, что упрощает эксплуатацию (нет маслостанций, применяемых в опорах скольжения, используемых, например, в некоторых модификациях воздуходувок ТВ).

В-четвертых, при равном с агрегатами ТВ энергопотреблении модульный агрегат не создает таких мощных пусковых нагрузок на электросеть, т.к. модули-ступени могут включаться последовательно и не иметь обычного для агрегатов ТВ запаса по установленной мощности. Для иллюстрации приведем пример. В воздуходувке ВЦ 1-50/1,6 при параметрах: V = 3000 м3/ч; .р = 60 кПа использован электродвигатель с номинальной мощностью 160 кВт .

В то же время, те же параметры можно получить тремя последовательно соединенными модулями I (табл. 2) с суммарной мощностью электродвигателей: 30 . 3 = 90 кВт. И, наконец, в-пятых, это цена. Она также в пользу модульного варианта. Например, та же воздуходувка ВЦ 1-50/1,6 стоит около 17000 у.е. , тогда как стоимость трех модулей I— около 11 000 у.е.

В настоящее время в МГТУ им. Н.Э. Баумана продолжаются разработки новой техники. Ее заказчиками являются ряд отечественных фирм, в частности, занимающихся устройством компактных очистных сооружений. Быстро развивающаяся отрасль охраны окружающей среды и обеспечения жизнедеятельности человека стимулирует и новые технические разработки в компрессоростроении.

Компрессор низкого давления или воздуходувка - оборудование, предназначенное для подачи воздуха под давлением в систему биологической очистки воды. Очистные сооружения с помощью кислорода, нагнетаемого воздуходувными станциями, ускоряют разложение органики аэробными бактериями. Аэрация воздухом способствует разложению биологических загрязнений активным илом. Аэротенк служитреактором биологической очистки воды.

Подача сжатого воздуха в биологическую очистку

Аэробные бактерии в форме активного ила используются в биологической ступени очистки. Процесс разложения органических соединений основан на окислительно-восстановительных реакциях. Под воздействием активного ила органика распадается на метан и двуокись углерода.. При этом бактерии размножаются. Чем больше в воде кислорода, тем быстрее усваиваются биоматериалы.

Воздух подаётся в преаэратор, где барботирует с активным илом и поступает в аэротенк. Часть ила из вторичных отстойников в регенераторе после обработки воздухом восстанавливает активность и поступает в аэратор. Основной поток сжатого воздуха направляется в аэротенк или на биофильтры с аэрацией, в зависимости от выбранной схемы. Итак,воздуходувка работает на биологической ступени, активируя аэробные бактерии. Только в условиях водной среды с избытком кислорода происходит биологическая очистка на 98%.

Эффективность работы аэротенка зависит от правильного подбора воздуходувки по типу и производительности.

Классификация воздуходувного оборудования

Воздуходувные станции должны обеспечить поступление кислорода для биологической очистки воды. Требования к воздуходувкам:

  • нагнетаемый воздух не должен содержать примеси;
  • малая энергоёмкость и лёгкое обслуживание;
  • механизмы должны работать бесшумно;
  • соответствовать производительности линии;
  • иметь регулируемую подачу воздуха, повышая энергоэффективность.

Исходя из критериев, ведется расчёт и подбор агрегатов. Существует два типа установок - погружные и центробежные.

Погружные компрессоры устанавливаются в теле аэротенка на глубине, с обвязкой для контроля и управления всасывающими фильтрами. В толще воды происходит интенсивный отвод тепла от корпуса, подшипниковый узел не нагревается. Компрессор работает надёжнее, межремонтный период в несколько раз увеличивается.

Центробежные системы имеют большую производительность и несколько ступеней сжатия. Они используют принудительную смазку и водяное охлаждение.

По принципу работы установки бывают:

  • поршневые;
  • винтовые;
  • вихревые.

Поршневые установки, сжимают газ в камере, создавая давление. Винтовые или роторные модели компактны, подают в систему чистый воздух без следов масла, работают не шумно и круглосуточно. Роторные модели имеют подшипники вне зоны сжатия, ротор смонтирован на валу.

По сжатию воздуха аппараты бывают низконапорные, но с большей производительностью, или рассчитанные на высокие параметры сжатия с меньшим расходом. Градация необходима при выборе оборудования для аэротенков разной глубины.

Основные энергозатраты очистного оборудования связаны с подачей воздуха в аэротенки. Снижение энергетической составляющей возможно, если использовать установки с регулируемым расходом и компрессией.

Производители компрессоров достоинство и недостатки оборудования

Управляемые промышленные воздуходувки подтвердили эффективность быстрой окупаемостью. Основным поставщиком оборудования является компания Siemens. В России до 80% нерегулируемых установок энергозатратны. Окупаемость новых управляемых установок за 2-4 года с ежегодной экономией до 35% электроэнергии. Компания отдаёт их на лизинговых условиях. Регулируемые воздуходувки предлагает российская компания «Эканит» по более низким ценам.

Давний разработчик и производитель компрессоров, литовская компания Vienybe предлагает большой выбор ротационных, вихревых компрессоров. Выбор моделей обширный, и отвечает современным запросам.

Для доочистки питьевой воды в системе водоподготовки подача воздуха ускорит процесс барботирование воздухом. Оборудование поставляет компания «ЭкоТехАвангард». Воздуходувки на давление 1 бар называются низкобарными, и выпускаются как оборудование для ВОС.

Зарубежные представители предлагают компрессорное оборудование:

  • EPU Systems специализируется на погружных моделях EVW;
  • итальянские компрессоры марки Robuschi характеризуются большой производительностью и качеством рабочих поверхностей;
  • японские модели Hiblow компактны, экономичны и надёжны, используются новые технологии;
  • немецкое оборудование компании Becker создает компактные надёжные модели, отвечающие современным требованиям.

Подбор воздуходувки при реконструкции очистных сооружений

Задачей реконструкции производства является замена отработавших агрегатов современным, экономически выгодным. Воздуходувка должна отвечать запросам:

  • повышение производительности аэротенка без увеличения объёмов;
  • встроить управление регулируемой воздуходувкой в автоматизированный процесс;
  • уменьшить расход энергии на подачу воздуха.

Оборудование подбирается с учетом новых разработок производителей.

  • использование мелкопузырчатого барботирования;
  • замена воздуходувок на погружные автоматизированные системы;
  • установка компрессоров низкого давления.

В процессе модернизации может быть применена схема поэтапной замены компрессоров без остановки производства.

Выбор воздуходувок при новом строительстве

Проектируя биологическую ступень очистных сооружений, исходят из эффективности разложения органических загрязнений. Особенностью процесса является среда, насыщенная кислородом и достаточное количество активного ила. Подача воздуха является неотъёмлемой частью очистки, но самой энергоёмкой. Снизить потребление энергии можно за счёт установки новейших моделей мировых и отечественных разработчиков. Среди предлагаемого оборудования нужно подобрать лучшее по эффективности, цене и качеству.

Подбор воздуходувки осуществляют исходя из расчётного расхода воздуха подаваемого в систему и рабочего давления. Технико-экономическими обоснованиями для выбора служат критерии:

  • снижение энергетической нагрузки;
  • автоматизация процесса;
  • уменьшение затрат на капитальное строительство здания под компрессорное оборудование.

Проект должен отвечать оптимизации процесса и снижению трудозатрат. Именно этот путь предлагается ведущими мировыми производителями. Их модели компактны, экономичны и безопасны в эксплуатации. Новейшие разработки экономят до35% энергии в год, уменьшают эксплуатационные расходы.

Стоимость воздуходувок зависит от использования новых узлов, повышающих функциональность и экономичность модели. Надёжность устройства, материал изготовления рабочих механизмов, тип компрессора - всё имеет цену. Дорогостоящие агрегаты высокого качества имеют длительный срок службы и окупаются в течение 2-4 лет. В долгосрочной перспективе их устанавливать выгодно.

Сопутствующее оборудование при установке воздуходувок

При монтаже воздуходувки в систему биологической очистки потребуются дополнительные элементы управления процессом. В этом случае датчики процесса и исполнительные механизмы заказывают согласно схеме. Разводка воздуха по бассейну выполняется с применением дисковых и тарельчатых аэраторов, устанавливаемых на воздуховоде. Сенсорная панель управления агрегатом с контроллером позволяет регулировать режим работы в ручном и автоматическом режиме.

Регулирование подачи воздуха в аэротеках на очистных сооружениях – это возможность эффективно экономить электрическую энергию.

Объектом управления является технологический процесс очистки сточных вод с использованием бактерий, содержащихся в активном иле. Сточные воды подаются в секции аэротек, где находится активный ил с бактериями. Для активации бактерий и перемешивания иловой смеси в секции подается воздух от турбовоздуходувок. Контроль за содержанием растворенного кислорода в аэротеках производится лабораторным анализом, на основании которого осуществляется регулирование подачи воздуха в аэротеки системой запорной арматуры в ручном режиме.

Данная система является сложной с точки зрения требований к алгоритмам управления по причине влияния большого числа факторов:

Количество подаваемого кислорода;

Неоднозначности поведения биологической системы активного ила;

Температуры окружающей среды;

Степени концентрации в сточной воде загрязняющих веществ и других сооружениях.

В общем, описание подобных систем не укладывается в традиционные модели теории автоматического регулирования из-за факторов, учет влияния которых прогнозировать почти невозможно. Например, плотность воздуха и сжимаемость воздуха существенно зависят от температуры, а поэтому и контуры регулирования подачи воздуха необходимо перестраивать в зависимости от условий окружающей среды.


Непрерывный контроль концентрации растворенного кислорода в аэротеках – залог качественной очистки и снижения расхода электроэнергии на воздуходувках. Имевшееся оборудование на предприятии (турбовоздуходувки ТВ-175) и метод лабораторного измерения концентрации растворенного кислорода морально устарели и создают проблему высокой нестабильности и перерасхода электрической энергии

На сегодняшний день наиболее совершенным является автоматический регулятор в комплексе с аэроционным нагнетателем для биологической обработки стоков и системой непрерывного измерения кислорода. Регулирование производительности таких установок осуществляется по средствам диффузорного направляющего аппарата с регулируемыми лопатками или входного направляющего аппарата с предварительной закруткой потока, а возможна также комбинация двух названных систем. Система непрерывного измерения кислорода, включающая в себя первичный преобразователь с датчиком, погружающимся в воду, а также вторичного преобразователя, использующего современную технологию микропроцессорной обработки сигнала, формирует сигнал в соответствие с концентрацией растворенного кислорода, который поступает в установку по нагнетанию воздуха и далее автоматически происходит изменение количества воздуха, поступающего в аэротеки.

В соответствие с методикой расчета удельного расхода воздуха на объем поступающих стоков, определено количество воздуха, подаваемого в аэротеки – 18030 м 3 /ч.


Произведем расчет удельного расхода воздуха на объем поступающих стоков 28000 м 3 /сут.

Удельный расход воздуха

где: q 0 – удельный расход кислорода воздуха, на 1мг снятой БПК- полной.

Для полной очистки БПК20 принимается 1,1.

К 1 – коэффициент, учитывающий тип аэротека, принимаем 2,0 для первой очереди, 1,95 – второй очереди;

К 2 – коэффициент зависящий от глубины погружения аэратора:

2,08 = первая очередь;

2,92 – вторая очередь

К т - коэффициент, учитывающий температуру сточных вод

К т = 1+0,02·(T w -20), где: T w средняя температура воды за летний период;

К 3 – коэффициент качества воды, принимается для городских сточных вод 0,85.

С а – растворимость кислорода воздуха в воде, мг/л;

Таблицам растворенности кислорода воздуха в воде Lex – БПК 20 очищенной сточной воде с учетом снижения БПК при первичном отстаивании. Данные по БПК 20получены из информации о качественном составе нормативно-очищенных сточных вод, испытательной лабораторией КЖУП «Уником»: БПК пол.пост. 53,9 мг/л, БПКпол.очищ. 5,1 мг/л.

К т = 1+0,02 · (22,1-20)=1,042

С а = 1+· С т, где: Н – глубина погружения аэраторов, м;

С т – растворимость кислорода в воде. (Принимаем по таблице 27, Василенко. Водоотведение. Курсовое проектирование).

Саl = 1+· 8,83 = 10,12

q airl = 1,1· = 18,75

q airll = 1,1· = 12,16

Суточный расход воздуха по удельному расходу,определим по формуле:

Q = q air + q ср.сут. , м 3 /сут,

где: q air -удельный расход воздуха;

q ср.сут - среднесуточный расход сточных вод, поступающих на очистку, м 3 /сут (28000 м 3 /сут).

Q I = 18,75·14000 = 262500 м 3 /сут

Q II = 12,16 · 14000 = 170240 м 3 /сут

Определим часовой расход воздуха

Q 4 I = =10938 м 3 /ч

Q 4 II = =7093 м 3 /ч

Общий расход равен

О р = Q 4 I + Q 4 II = 10938 + 7093 = 18031 м 3 /ч

Таким образом, необходимое количество воздуха, подаваемое на аэротеки составит 18031 м 3 /ч.

В настоящий момент установлено следующее нагнетательное оборудование:

1. турбовоздуходувка ТВ-175 производительностью 10000 м 3 /ч – 2 шт.

2. турбовоздуходувка ТВ-80 производительностью 6000 м 3 /ч – 2 шт.

3. турбовоздуходувка ТВ-80 производительностью 4000 м 3 /ч – 2 шт.

Для получения расчетного удельного расхода воздуха необходимо включать минимум две воздуходувки: одну воздуходувку ТВ-175 с установленной электрической мощностью 250 кВт и одну воздуходувку ТВ-80 с установленной электрической мощностью 160 кВт при номинальной нагрузке.

Учитывая физический и моральный износ нагнетательного оборудования, работающего с 1983 года, предлагается установить одноступенчатый центробежный компрессор с многолопастным открытым рабочим колесом турбинного типа в комплексе с системой регулирования подачи воздуха при помощи линейных сервомоторов с ниже перечисленными требованиями и показателями технологического оборудования:


Исходные данные

Для обеспечения подачи воздуха в количестве 12000 м 3 /ч необходимо включать две воздуходувки ТВ-80 суммарной мощностью 320 кВт.

Установленная электрическая мощность действующего технологического оборудования – 320 кВт - при 12000 м 3 /ч

Установленная электрическая мощность нового технологического оборудования – 315 кВт - при 16000 м 3 /ч, а при 12000 м 3 /ч - 249 кВт.

Определяем годовую экономию электрической энергии при установке новогооборудования:

Э э = (320 - 249) ·0,75 · 24 · 365 · 10 -3 = 466 тыс.кВт·ч или 130,5 т у.т

Стоимость сэкономленного топлива при цене 1 т у.т.=210$ (по данным департамента по энергоэффективности):

С = 130,5 · 210 = 27405 $ = 232942,5 тыс. р.

Срок окупаемости мероприятия:

где К – капиталовложения в мероприятие, 2000000 тыс. р.;

C – экономия от внедрения мероприятия, тыс. р.;

Т = == 8,6 года.

Примечание: Уточнение всех сумм капиталовложений по внедрению предложенных мероприятий и сроков окупаемости производится после разработки проектно сметной документации