Для учащихся 9–11 классов на 16.03.2013

Пространственное движение звезд

Задачи для самостоятельного решения

1..gif" width="45" height="21">; возможная неточность (вероятная ошибка) его измерения составляет . Что можно сказать о расстоянии до звезды?

3. Вычислить абсолютную звездную величину Сириуса, зная, что его параллакс равен видимая звездная величина равна .

4. Во сколько раз слабее Солнца звезда Проксима Центавра, для которой .

5. Звездная величина Веги равна 9 сентября" href="/text/category/9_sentyabrya/" rel="bookmark">9 сентября 1949 г. и 7 марта следующего года?

10. Вывести формулу, дающую поправку наблюденной лучевой скорости звезды за влияние годичного движения Земли для случая, когда звезда находится в полюсе эклиптики.

11. Вывести формулу, дающую поправку наблюденной лучевой скорости звезды за влияние годичного движения Земли для случая, когда звезда находится в плоскости эклиптики. Звезду считать находящейся в точке весеннего равноденствия, а орбиту Земли считать круговой.

12. Звезда с координатами ..gif" width="16" height="17">.gif" width="63" height="21"> по направлению, позиционный угол которого . Определить компонент собственного движения .

14..gif" width="61" height="21"> по направлению, позиционный угол которого . Определить компоненты собственного движения по обеим координатам и .

15..gif" width="45" height="21"> . Какова ее тангенциальная скорость?

16. Лучевая скорость Альдебарана равна +54 км/с , а тангенциальная скорость 18 км/с. Найти полную пространственную скорость его относительно Солнца.

17. Собственное движение Сириуса по прямому восхождению равно , а по склонению в год, лучевая скорость равна км/с, а параллакс Определить полную пространственную скорость Сириуса относительно Солнца и угол, образуемый ею с лучом зрения.

18. Полная пространственная скорость звезды Канопус 23 км/с образует угол в с лучом зрения. Определить лучевую и тангенциальную составляющие скорости.

19..gif" width="45" height="21 src=">.

Предмет: Астрономия.
Класс: 10 ­11
Учитель: Елакова Галина Владимировна.
Место работы: Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа №7» г Канаш Чувашской Республики
Контрольная работа по теме «Галактика».
Проверка и оценка знаний – обязательное условие результативности учебного процесса.
Тестовый тематический контроль может проводиться письменно или по группам с разным
уровнем подготовки. Подобная проверка достаточно объективна, экономна по времени,
обеспечивает индивидуальный подход. Кроме того, учащиеся могут использовать тесты
для подготовки к зачетам и ВПР. Использование предлагаемой работы не исключает
применения и других форм и методов проверки знаний и умений учащихся, как устный
опрос, подготовка проектных работ, рефератов, эссе и т.д. Контрольная работа дается на
весь урок.
Итоговая проверка проводится по теме, разделу, за полугодие. Основная функция
контролирующая. Любая проверка носит обязательно и обучающую функцию, так как
помогает повторить, закрепить, привести знания в систему. При проверке контрольного
теста выявляют типичные ошибки и затруднения. Достоинства: может охватывать
большой объем материала. Недостаток: дают проверку окончательного результата, но не
показывают ход решения.
Ориентирующая функция проверки ориентирует учителя на слабые и сильные стороны
усвоения материала. Сам процесс проверки помогает учащимся выделить главное в
изучаемом, а учителю определить степень усвоения этого главного.
Обучающая функция. Самая главная функция проверки. Проверка помогает уточнить и
закрепить знания выполнения проверочных заданий. Способствует формированию знаний
до более высокого уровня. Формирует умение самостоятельности и работы с книгами.
Контролирующая. Для контрольных работ и самостоятельных работ она является
главной.
Диагностирующая. Устанавливает причины успехов и неудач учащихся. Проводятся
специальные диагностирующие работы, которые определяют уровень усвоения знаний (их 4
уровня).
Развивающая функция. Проверка определяет способности у обучающегося
распоряжаться объемом своих знаний и умением строить собственный алгоритм решения
задач.
Воспитательная функция. Приучает учащихся к отчетности, дисциплинирует их,
прививает чувство ответственности, необходимости систематических занятий.
Оценка письменных контрольных работ.
Оценка 5 ставится за работу, выполненную полностью без ошибок и недочетов.
Оценка 4 ставится за работу, выполненную полностью, но при наличии не более одной
ошибки и одного недочета, не более трех недочетов.
Оценка 3 ставится за работу, выполненную на 2/3 всей работы правильно или при
допущении не более одной грубой ошибки, не более трех негрубых ошибок, одной
негрубой ошибки и трех недочетов, при наличии четырех­пяти недочетов.
Оценка 2 ставится за работу, в которой число ошибок и недочетов превысило норму для
оценки 3 или правильно выполнено менее 2/3 работы.
Вариант I:




75 км/с
47 км/с
14 км/с
200 км/с. Оцените массу галактики.
1. Определите пространственную скорость движения звезды, если модули лучевой
и тангенциальной составляющих этой скорости соответственно равны +30 и
29км/с. Под каким углом к лучу зрения наблюдателя движется эта звезда?
α
υ
= 44,5˚
А.
= 42 км/с,
α
υ
= 56,75˚
= 200 км/с,
Б.
υ
α
В.
= 896 км/с,
= 78˚
2. Определите модуль тангенциальной составляющей скорости звезды, если ее
годичный параллакс равен 0,05", а собственное движение 0,15".
А.
Б.
В.
3. Галактика, находящаяся на расстоянии 150 Мпк, имеет видимый угловой
диаметр 20". Сравните ее линейные размеры с размерами нашей Галактики.
А. 3 ∙ 104 пк, что примерно в 4 раза меньше размеров нашей Галактики.
Б. 1,5 ∙ 104 пк, что примерно в 2 раза меньше размеров нашей Галактики.
В. 6 ∙ 105 пк, что примерно в 6 раза меньше размеров нашей Галактики.
4. Измеренная скорость вращения звезд вокруг центра галактики на расстоянии r
υ ≈
= 50 кпк от него

А. Мгал. = 9 ∙ 1041кг
Б. Мгал. = 78 ∙ 1044кг
В. Мгал. = 68 ∙ 1051кг
5. Какими методами изучают распределение в Галактике звезд и межзвездного
вещества?
А. Исследованием собственного излучения межзвездного вещества.
Б. Подсчетом числа звезд в малых участках неба, исследованием собственного излучения
межзвездного вещества и поглощения им излучения звезд.
В. Подсчетом числа звезд в малых участках неба.
Вариант II:
1. Звезда движется в пространстве со скоростью 50 км/с в сторону наблюдателя
под углом 30˚ к лучу зрения. Чему равны модули лучевой и тангенциальной
составляющих скорости звезды?
А. υт = 50 км/с; υr = 30 км/с.
Б. υт = 75 км/с; υr = 96 км/с.
В. υт = 25 км/с; υr = 43 км/с.
2. Вычислите модуль и направление лучевой скорости звезды, если в ее спектре
линия, соответствующая длине волны 5,5 ∙ 10 – 4мм, смещена к фиолетовому
концу на расстояние 5,5 ∙ 10 – 8мм.
А. 30 км/с, звезда удаляется от нас.
Б. 30 км/с, звезда приближается к нам.
В. 10 км/с, звезда приближается к нам.
3. Солнце вращается вокруг центра Галактики на расстоянии 8 кпк со скоростью
220 км/с. Чему равна масса Галактики внутри орбиты Солнца?
А. 91,4 ∙ 1047кг
Б. 18,67 ∙ 1044кг
В. 1,7 ∙ 1041кг
4. Какого углового размера будет видеть нашу Галактику (диаметр которой
составляет

3 ∙104 пк) наблюдатель, находящийся в галактике М 31 (туманность Андромеды)
на расстоянии 6 ∙105 пк?
А. 10000"
Б. 50"
В. 100"
5. Почему Млечный Путь проходит не точно по большому кругу небесной сферы?
А. Так как наша Галактика движется в пространстве в направлении созвездия Гидры со
скоростью более 1 500 000 км/ч.
Б. Потому что гигантское скопление звезд, газа и пыли, удерживаемое в пространстве
силами тяготения, вытесняют Солнце из плоскости Галактики.
В. Потому что Солнце расположено не точно в плоскости Галактики, а в близи нее.
Ответы:
Вариант I: 1 – А; 2 – В; 3 – Б; 4 – А; 5 ­ Б.
Вариант II: 1 – В; 2 – Б; 3 – В; 4 – А; 5 – В.
Решение:
Вариант I:
Задача №1: υ2 = υ2
cos
Задача №2: Тангенциальная скорость выражается в км/с и равна υт = 4,74 µ/
π
; где
µ ­ угловое перемещение звезды на небесной сфере за год или собственное движение;
π
Задача №3: Обозначим расстояние до галактики через r, линейный диаметр через
D,
σ
–σ
D = r ∙
угловой диаметр, выражается в секундах дуги.
Тогда r = (20"∙ 1,5 ∙108 пк) / (2 ∙ 105)" = 1,5 ∙ 104 пк, что примерно в 2 раза меньше
размеров нашей Галактики.
Задача №4: Центростремительное ускорение равно ускорению силы тяжести,
поэтому
а = υ2
1 пк = 3,086 7 ∙ 1016м.
Мгал. = ((2 ∙105м/с)2 ∙ 5 ∙104 ∙ 3,086 7 ∙ 1016м) / 6,67 ∙ 10 – 11Н∙м2/кг2
Мгал. = 9 ∙ 1041кг = 4,5 ∙ 1011Мсолнца
υ
– годичный параллакс звезды.
= 4,74 км/с ∙ (0,15"/0,05")
/ r; а = GMгал/ r2; поэтому Мгал = υ2
r ; υ2 = (30 км/с) 2 + (29 км/с) 2;
c ∙ r c / G; G = 6,67 ∙ 10 – 11Н∙м2/кг2;
D и r выражены в парсеках, а
т + υ2
α
= 44,5˚
/ 206265". Отсюда
r = D ∙
υ
= 42 км/с;
α
= 30/ 42;

9 ∙ 10
41кг

14 км/с.
σ
σ
/ 206265", где
r ; υ2
υ sin
т + υ2
т; υт =
; α υт = 50 км/с ∙ ½ = 25 км/с;
Вариант II:
Задача №1: υ2 = υ2
r = υ2 ­ = υ2
r = (50 км/с) 2 ­ (25 км/с) 2; υr = 43 км/с
υ2
Задача №2: Из формулы для вычисления лучевой скорости υr = Δ ∙ с/λ λ0 определим
υr.Для определения υr нужно измерить сдвиг спектральной линии, т.е. сравнить
положение данной линии в спектре звезды с положением этой линии в спектре
неподвижного источника света. Лучевая скорость удаляющегося источника
получается со знаком плюс, а приближающегося ­ со знаком минус.
Модуль υr = (5,5 ∙ 10 – 8мм / 5,5 ∙ 10 – 4мм) ∙ 3 ∙ 105 км/с = 30 км/с; модуль υr = 30 км/с;
так как линии смещены к фиолетовому концу, то звезда приближается к нам.

c / r c ; υ2
σ
/ 206265". Отсюда
r = D ∙
σ
c ; Мгал = υ2
c ∙ r c / G; G = 6.67 ∙ 10 – 11Н∙м2/кг2.
/ 206265", где
D и r выражены в парсеках, а
c ∙ r c / G =((2,2 ∙105м/с)2 ∙ 2,4 ∙1020м) / (6.67 ∙ 10 – 11Н∙м2/кг2) = 1,7 ∙ 1041кг или
Задача №3: Центростремительное ускорение, которое испытывает Солнце под
действием притяжения массы Галактики: а = υ2
c – скорость Солнца, r c –
для Солнца;
а = GMгал/ r2
Масса Галактики:
Мгал = υ2
Мгал = 1,7 ∙ 1041кг = 8 ∙ 1010Мсолнца
Задача №4: Обозначим расстояние до галактики через r, линейный диаметр через
D,
σ
– угловой диаметр. Для определения диаметра галактики применим формулу:
D = r ∙
б – угловой диаметр, выражается в секундах дуги.
σ

206265"∙
Литература:
1. Малахова И.М.: Дидактический материал по астрономии: Пособие для учителя, / И. М.
Малахова, Е.К. Страут, ­ М.: Просвещение, 1989.­ 96 с.
2. Орлов В.Ф.:«300 вопросов по астрономии», издательство «Просвещение», / В.Ф. Орлов ­
Москва, 1967.
3. Моше Д.: Астрономия: Кн. для учащихся. Пер. с англ. / Под ред. А.А. Гурштейна./ Д.
Моше – М.: Просвещение, 1985. – 255 с.
4. Воронцов­Вильяминов Б.А. «Астрономия», / Б.А. Воронцов­Вильяминов, Е.К. Страут;
Издательство «Дрофа».
5. Левитан Е.П., «Астрономия»: учеб. для 11 кл., общеобразоват. учреждений/ Е. П.
Левитан: М.: «Просвещение»,1994. – 207 с.
6.Чаругин В.М. Астрономия. 10­11 классы: учеб. для общеобразоват. организаций: базовый
уровень/ В. М. Чаругин. – М.: Просвещение, 2018. – 144с: ил. – (Сферы 1­11).
r / D = 3 ∙104 пк ∙ (2 ∙ 105)" / 6 ∙105 пк = 10000"

Как показывают наблюдения и расчеты, звезды движутся в пространстве с большими скоростями вплоть до сотен километров в секунду. Скорость, с которой звезда движется в пространстве, называется пространственной скоростью этой звезды.

Пространственная скорость V звезды разлагается на две составляющие: лучевую скорость звезды относительно Солнца V r (она направлена по лучу зрения) и тангенциальную скорость V t (направлена перпендикулярно лучу зрения). По­скольку V r и V t взаимно перпендикулярны, пространственная скорость звезды равна

Лучевая скорость звезды определяется по доплеровскому смещению линий в спектре звезды. Но непосредственно из наблюдений можно найти лучевую скорость относительно Земли v r :

где l и l ¤ - эклиптические долготы соответственно звезды и Солнца, b - эклиптическая широта звезды (см. § 1.9). Соотношение (6.3) указывает на то, что для нахождения V r необходимо из скорости v r исключить проекцию скорости обращения Земли вокруг Солнца v Å = 29,8 км/с на направление к звезде.

Наличие тангенциальной скорости звезды V t приводит к угловому смещению звезды по небу. Смещение звезды на небесной сфере за год называется собственным движением звезды m . Оно выражается в секундах дуги в год.

Собственные движения у разных звезд различны по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1" в год. Самое большое известное собственное движение m = 10”,27 (у “летящей” звезды Барнарда). Громадное же большинство измеренных собственных движений у звезд составляют сотые и тысячные доли секунды дуги в год. Из-за малости собственных движений изменение видимых положений звезд не заметно для невооруженного глаза.

Выделяют две составляющие собственного движения звезды: собственное движение по прямому восхождению m a и собственное движение по склонению m d . Собственное же движение звезды m вычисляется по формуле

Зная обе составляющие V r и V t , можно определить величину и направление пространственной скорости звезды V .

Анализ измеренных пространственных скоростей звезд позволяет сделать следующие выводы.



1) Наше Солнце движется относительно ближайших к нам звезд со скоростью около 20 км/с по направлению к точке, расположенной в созвездии Геркулеса. Эта точка называется апексом Солнца.

2) Кроме этого, Солнце вместе с окружающими звездами движется со скоростью около 220 км/с по направлению к точке в созвездии Лебедя. Это движение есть следствие вращения Галактики вокруг собственной оси . Если подсчитать время полного оборота Солнца вокруг центра Галактики, то получается примерно 250 млн лет. Этот промежуток времени называется галактическим годом .

Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса, находящегося в созвездии Волосы Вероники. Угловая скорость вращения зависит от расстояния до центра и убывает по мере удаления от него.

Звезды в древности считались неподвижными друг относительно друга. Однако в XVIII в. было обнаружено очень медленное перемещение Сириуса по небу. Оно заметно лишь при сравнении точных измерений его положения, сделанных с промежутком времени в десятилетия.

Собственным движением звезды называется ее видимое угловое смещение по небу за один год. Оно выражается долями секунды дуги в год.

Только звезда Барнарда проходит за год дугу в что за 200 лет составит 0,5°, или видимый поперечник Луны. За это звезду Барнарда назвали «летящей». Но если расстояние до звезды неизвестно, то ее собственное движение мало что говорит об ее истинной скорости.

Например, пути, пройденные звездами за год (рис. 98), могут быть разные: а соответствующие им собственные движения одинаковые.

2. Компоненты пространственной скорости звезд.

Скорость звезды в пространстве можно представить как векторную сумму двух компонент, один из которых направлен вдоль луча зрения, другой перпендикулярен ему. Первый компонент представляет собой лучевую, второй - тангенциальную скорость. Собственное движение звезды определяется лишь ее тангенциальной скоростью и не зависит от лучевой. Чтобы вычислить тангенциальную скорость в километрах в секунду, надо выраженное в радианах в год, умножить на расстояние до звезды выраженное в километрах,

Рис. 98. Собственное движение лучевая тангенциальная и полная пространственная скорость звезды .

Рис. 99. Изменение видимого расположения ярких звезд созвездия Большой Медведицы вследствие их собственных движений: сверху - 50 тыс. лет назад; в середине - в настоящее время; внизу - через 50 тыс. лет.

и разделить на число секунд в году. Но так как на практике всегда определяется в секундах дуги, в парсеках, то для вычисления в километрах в секунду получается формула:

Если определена по спектру и лучевая скорость звезды то пространственная скорость ее V будет равна:

Скорости звезд относительно Солнца (или Земли) обычно составляют десятки километров в секунду.

Собственные движения звезд определяют, сравнивая фотографии выбранного участка неба, сделанные на одном и том же телескопе через промежуток времени, измеряемый годами или даже десятилетиями. Из-за того, что звезда движется, ее положение на фоне более далеких звезд за это время немного изменяется. Смещение звезды на фотографиях измеряют с помощью специальных микроскопов. Такое смещение удается оценить лишь для сравнительно близких звезд.

В отличие от тангенциальной скорости лучевую скорость можно измерить, даже если звезда очень далека, но яркость ее достаточна для получения спектрограммы.

Звезды, близкие друг к другу на небе, в пространстве могут быть расположены далеко друг от друга и двигаться с различными скоростями. Поэтому по истечении тысячелетий вид созвездий должен сильно меняться вследствие собственных движений звезд (рис. 99).

3. Движение Солнечной системы.

В начале XIX в. В. Гершель

установил по собственным движениям немногих близких звезд, что по отношению к ним Солнечная система движется в направлении созвездий Лиры и Геркулеса. Направление, в котором движется Солнечная система, называется апексом движения. Впоследствии, когда стали определять по спектрам лучевые скорости звезд, вывод Гершеля подтвердился. В направлении апекса звезды в среднем приближаются к нам со скоростью 20 км/с, а в противоположном направлении с такой же скоростью в среднем удаляются от нас.

Итак, Солнечная система движется в направлении созвездий Лиры и Геркулеса со скоростью 20 км/с по отношению к соседним звездам Задавать вопрос о том, когда мы долетим до созвездия Лиры, бессмысленно, так как созвездие не является пространственно ограниченным образованием. Одни звезды, которые сейчас мы относим к созвездию Лиры, мы минуем раньше (на огромном от них расстоянии), другие будут всегда оставаться практически так же далеки от нас, как и сейчас.

(см. скан)

4. Если звезда (см. задачу 1) приближается к нам со скоростью 100 км/с, то как изменится ее яркость за 100 лет?

4. Вращение Галактики.

Все звезды Галактики обращаются вокруг ее центра. Угловая скорость обращения звезд во внутренней области Галактики (почти до Солнца) примерно одинакова, а внешние ее части вращаются медленнее. Этим обращение звезд в Галактике отличается от обращения планет в Солнечной системе, где и угловая, и линейная скорости быстро уменьшаются с увеличением радиуса орбиты. Это различие связано с тем, что ядро Галактики не преобладает в ней по массе, как Солнце в Солнечной системе.

Солнечная система совершает полный оборот вокруг центра Галактики примерно за 200 млн. лат со скоростью 250 км/с.

Вопросы программы:

Собственное движение и лучевые скорости звезд;

Пекулярные скорости звезд и Солнца в Галактике;

Вращение Галактики.

Краткое содержание:

Собственное движение и лучевые скорости звезд, пекулярные скорости звезд и Солнца в Галактике

Сравнение экваториальных координат одних и тех же звезд, определенных через значительные промежутки времени, показало, что a и d меняются с течением времени. Значительная часть этих изменений вызывается прецессией, нутацией, аберрацией и годичным параллаксом. Если исключить влияние этих причин, то изменения уменьшаются, но не исчезают полностью. Оставшееся смещение звезды на небесной сфере за год называется собственным движением звезды m. Оно выражается в секундах дуги в год.

Для определения этих движений сравниваются фотопластинки, отснятые через большие промежутки времени, составляющие 20 и более лет. Поделив полученное смещение на число прошедших лет, исследователи получают движение звезды в год. Точность определения зависит от величины промежутка времени, прошедшего между двумя снимками.

Собственные движения различны у разных звезд по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1″ в год. Самое большое известное собственное движение у “летящей” звезды Барнарда m = 10″,27. Основное число звезд имеет собственное движение, равное сотым и тысячным долям секунды дуги в год. Лучшие современные определения достигают 0",001 в год. За большие промежутки времени, равные десяткам тысяч лет, рисунки созвездий сильно меняются.

Собственное движение звезды происходит по дуге большого круга с постоянной скоростью. Прямое движение изменяется на величину m a , называемую собственным движением по прямому восхождению, а склонение - на величину m d , называемую собственным движением по склонению.

Собственное движение звезды вычисляется по формуле:

Если известно собственное движение звезды за год и расстояние до нее r в парсеках, то нетрудно вычислить проекцию пространственной скорости звезды на картинную плоскость. Эта проекция называется тангенциальной скоростью V t и вычисляется по формуле:

где r - расстояние до звезды, выраженное в парсеках.

Чтобы найти пространственную скорость V звезды, необходимо знать ее лучевую скорость V r , которая определяется по доплеровскому смещению линий в спектре и V t , которая определяется по годичному параллаксу и m. Поскольку V t и V r взаимно перпендикулярны, пространственная скорость звезды равна:

V = Ö(V t 2 + V r 2).

Для определения V обязательно указывается угол q, отыскиваемый по его функциям:

Угол q лежит в пределах от 0 до 180°.

V r
V t

Направление собственного движения вводится позиционным углом y, отсчитываемым против часовой стрелки от северного направления круга склонения звезды. В зависимости от изменения экваториальных координат звезды, позиционный угол y может иметь значения от 0 до 360° и вычисляется по формулам:

с учетом знаков обеих функций. Пространственная скорость звезды на протяжении многих столетий остается практически неизменной по величине и направлению. Поэтому, зная V и r звезды в настоящую эпоху, можно вычислить эпоху наибольшего сближения звезды с Солнцем и определить для нее расстояние r min , параллакс, собственное движение, компоненты пространственной скорости и видимую звездную величину. Расстояние до звезды в парсеках равно r = 1/p, 1 парсек = 3,26 св. года.

Знание собственных движений и лучевых скоростей звёзд позволяет судить о движениях звёзд относительно Солнца, которое тоже движется в пространстве. Поэтому наблюдаемые движения звёзд складываются из двух частей, из которых одна является следствием движения Солнца, а другая - индивидуальным движением звезды.

Чтобы судить о движениях звёзд, следует найти скорость движения Солнца и исключить её из наблюдаемых скоростей движения звёзд.

Точка на небесной сфере, к которой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная точка - антиапексом.

Апекс Солнечной системы находится в созвездии Геркулеса, имеет координаты: a = 270 0 , d = +30 0 . В этом направлении Солнце движется со скоростью около 20 км/с, относительно звезд, находящихся от него не далее 100 пс. В течение года Солнце проходит 630 000 000 км, или 4,2 а.е.

Вращение Галактики

Если какая-то группа звёзд движется с одинаковой скоростью, то находясь на одной из этих вёзд, нельзя обнаружить общее движение. Иначе обстоит дело, если скорость меняется так, как будто группа звёзд движется вокруг общего центра. Тогда скорость более близких к центру звёзд будет меньшей, чем удалённых от центра. Наблюдаемые лучевые скорости далёких звёзд демонстрируют такое движение. Все звёзды вместе с Солнцем движутся перпендикулярно к направлению на центр Галактики. Это движение является следствием общего вращения Галактики, скорость которого меняется с расстоянием от её центра (дифференциальное вращение).

Вращение Галактики имеет следующие особенности:

1. Оно происходит по часовой стрелке, если смотреть на Галактику со стороны северного её полюса, находящегося в созвездии Волос Вероники.

2. Угловая скорость вращения убывает по мере удаления от центра.

3. Линейная скорость вращения сначала возрастает по мере удаления от центра. Затем примерно на расстоянии Солнца достигает наибольшего значения около 250 км/с, после чего медленно убывает.

4. Солнце и звёзды в его окрестности совершают полный оборот вокруг центра Галактики примерно за 230 млн. лет. Этот промежуток времени называется галактическим годом.

Контрольные вопросы:

  1. Что такое собственное движение звезд?
  2. Как обнаруживается собственное движение звезд?
  3. У какой звезды обнаружено самое большое собственное движение?
  4. По какой формуле вычисляется собственное движение звезды?
  5. На какие составляющие разлагается пространственная скорость звезды?
  6. Как называется точка на небесной сфере, в направлении которой движется Солнца?
  7. В каком созвездии находится апекс?
  8. С какой скоростью движется Солнце относительно ближайших звезд?
  9. Какое расстояние проходит Солнце за год?
  10. Каковы особенности вращения Галактики?
  11. Каков период вращения Галактики?

Задачи:

1. Лучевая скорость звезды Бетельгейзе = 21 км/с, собственное движение m = 0,032² в год, а параллакс р = 0,012². Определите полную пространственную скорость звезды относительно Солнца и угол, образованный направлением движения звезды в пространстве с лучом зрения.

Ответ : q = 31°.

2. Звезда 83 Геркулеса находится от нас на расстоянии D = 100 пк, ее собственное движение составляет m = 0,12². Какова тангенциальная скорость этой звезды?

Ответ : » 57 км/с.

3. Собственное движение звезды Каптейна, находящейся на расстоянии 4 пк, составляет 8,8² в год, а лучевая скорость 242 км/с. Определите пространственную скорость звезды.

Ответ : 294 км/с.

4.На какое минимальное расстояние звезда 61 Лебедя приблизится к нам, если параллакс этой звезды равен 0,3² и собственное движение 5,2². Звезда движется к нам с лучевой скоростью 64 км/с.

Ответ : » 2,6 пк.

Литература:

1. Астрономический календарь. Постоянная часть. М., 1981.

2. Кононович Э.В., Мороз В.И. Курс общей астрономии. М., Эдиториал УРСС, 2004.

3. Ефремов Ю.Н. В глубины Вселенной. М., 1984.

4. Цесевич В.П. Что и как наблюдать на небе. М., 1979.