УТВЕРЖДАЮ

Директор института природных ресурсов

А.Ю. Дмитриев

Базовая рабочая программа модуля (дисциплины) «эксплуатация насосных и компрессорных станций»

Направление (специальность) ООП 21.03.01 «Нефтегазовое дело»

Номер кластера (для унифицированных дисциплин )

Профиль(и) подготовки (специализация, программа)

« Эксплуатация и обслуживание объектов транспорта и хранения нефти, газа и продуктов переработки »

Квалификация (степень) Бакалавр

Базовый учебный план приема 2014 г.

Курс 4 семестр 7

Количество кредитов 6

Код дисциплины Б1.ВМ5.1.4

Форма обучения заочная

Виды учебной деятельности

Временной ресурс по заочной форме обучения

Лекции, ч

Практические занятия, ч

Лабораторные занятия, ч

Аудиторные занятия, ч

Курсовая работа,ч

Самостоятельная работа, ч

Вид промежуточной аттестации экзамен

Обеспечивающее подразделение кафедра ТХНГ ИПР

2014 Г.

1. Цели освоения модуля (дисциплины)

В результате освоения дисциплины Б1.ВМ5.1.4 «Эксплуатация насосных и компрессорных станций» бакалавр приобретает знания, умения и навыки, обеспечивающие достижение целей Ц1, Ц3, Ц4, Ц5 ООП 21.03.01 «Нефтегазовое дело»:

Код цели

Формулировка цели

Требования ФГОС

и заинтересованных

работодателей

Готовность выпускников к производственно-технологической и проектной деятельности, обеспечивающей модернизацию, внедрение и эксплуатацию оборудования для добычи, транспорта и хранения нефти и газа

Требования ФГОС, критерии АИОР, соответствие международным стандартам EUR–ACE и FEANI. Потребности научно-исследовательских центров ОАО «ТомскНИПИнефть» и предприятий нефтегазовой промышленности, предприятия ООО «Газпром», АК «Транснефть»

Готовность выпускников к организационно-управленческой деятельности для принятия профессиональных решений в междисциплинарных областях современных нефтегазовых технологий с использованием принципов менеджмента и управления

Готовность выпускников к умению обосновывать и отстаивать собственные заключения и выводы в аудиториях разной степени междисциплинарной профессиональной подготовленности

Требования ФГОС, критерии АИОР, соответствие международным стандартам EUR–ACE и FEANI, запросы отечественных и зарубежных работодателей

Готовность выпускников к самообучению и непрерывному профессиональному самосовершенствованию в условиях автономии и самоуправления

Требования ФГОС, критерии АИОР, соответствие международным стандартам EUR–ACE и FEANI, запросы отечественных и зарубежных работодателей

Общей целью изучения дисциплины является приобретение студентами базовых знаний, вязанных с эксплуатацией насосных и компрессорных станций.

Изучение дисциплины позволит студентам овладеть необходимыми знаниями и умениямив областинасосов и компрессоров. Приобрести знания, умения и навыки при проектировании, сооружении и эксплуатации насосов и компрессоров и его вспомогательного оборудования.

1. Аналитический обзор основ насосной теории, нагнетательного оборудования и технологии решения задач создания и повышения напора в системах подачи и распределения воды (СПРВ).

1.1. Насосы. Классификация, основные параметры и понятия. Технический уровень современного насосного оборудования.

1.1.1. Основные параметры и классификация насосов.

1.1.2. Насосное оборудование для повышения напора в водоснабжении.,

1.1.3. Обзор новаций и усовершенствований насосов с точки зрения практики их применения.

1.2. Технология применения нагнетателей в СПРВ.

1.2.1. Насосные станции систем водоснабжения. Классификация.

1.2.2. Общие схемы и способы регулирования работы насосов при повышении напора.

1.2.3. Оптимизация работы нагнетателей: регулирования скорости и совместная работа.

1.3. Проблемы обеспечения напоров в наружных и внутренних водопроводных сетях.

1.4. Выводы но главе.

2. Обеспечение потребного напора в наружных и внутренних водопроводных сетях. Повысительные компоненты СПРВ на уровне районных, квартальных и внутренних сетей.

2.1. Общие направления развития в практике применения насосного оборудования для повышения напора в водопроводных сетях.

2.2. Задачи обеспечения потребных напоров в водопроводных сетях.

2.2.1. Краткая характеристика СПРВ (на примере СПб).

2.2.2. Опыт решения задач повышения напора на уровне районных и квартальных сетей.

2.2.3. Особенности задач повышения напора во внутренних сетях.

2.3. Постановка задачи оптимизации повысительных компонентов

СПРВ на уровне районных, квартальных и внутренних сетей.

2.4. Выводы по главе.

3. Математическая модель оптимизации насосного оборудования на периферийном уровне СПРВ.

3.1. Статическая оптимизация параметров насосного оборудования на уровне районных, квартальных и внутренних сетей.

3.1.1. Общее описание структуры районной водопроводной сети при решении задач оптимального синтеза.

3.1.2. Минимизация энергетических затрат на один режим водопотребления.

3.2. Оптимизация параметров насосного оборудования на периферийном уровне СПРВ при изменении режима водопотребления.

3.2.1. Полирежимное моделирование в задаче минимизации энергетических затрат (общие подходы).

3.2.2. Минимизация энергетических затрат при возможности регулирования скорости (частоты вращения колеса) нагнетателя.

3.2.3. Минимизация энергетических затрат в случае каскадно-частотного регулирования (управления).

3.3. Имитационная модель для оптимизации параметров насосного оборудования на периферийном уровне СПРВ.

3.4. Выводы по главе.

4". Численные методы решения задач оптимизации параметров насосного оборудования.

4.1. Исходные данные для решения задач оптимального синтеза.

4.1.1. Изучение режима водопотребления методами анализа временных рядов.

4.1.2. Определение регулярностей временного ряда водопотребления.

4.1.3. Частотное распределение расходов и коэффициенты неравномерности водопотребления.

4.2. Аналитическое представление рабочих характеристик насосного оборудования.

4.2.1. Моделирование рабочих характеристик отдельных нагнетателей

4.2.2. Идентификация рабочих характеристик нагнетателей в составе насосных станций.

4.3. Поиск оптимума целевой функции.

4.3.1. Оптимальный поиск с использованием градиентных методов.

4.3.2. Модифицированный план Холланда.

4.3.3. Реализация оптимизационного алгоритма на ЭВМ.

4.4. Выводы по главе.

5. Сравнительная эффективность повысительных компонентов СПРВ на основе оценки стоимости жизненного цикла с применением МИК для измерения параметров).

5.1. Методология оценки сравнительной эффективности повысительных компонентов на периферийных участках СПРВ.

5.1.1. Стоимость жизненного цикла насосного оборудования.

5.1.2. Критерий минимизации совокупных дисконтированных затрат для оценки эффективности повысительных компонентов СПРВ.

5.1.3. Целевая функция экспресс-модели для оптимизации параметров насосного оборудования на периферийном уровне СПРВ.

5.2. Оптимизация повысительных компонентов на периферийных участках СПРВ при реконструкции и модернизации.

5.2.1. Система контроля подачи воды с использованием мобильного измерительного комплекса МИК.

5.2.2. Экспертная оценка результатов измерения параметров насосного оборудования ПНС с использованием МИК.

5.2.3. Имитационная модель стоимости жизненного цикла насосного оборудования ПНС на основе данных параметрического аудита.

5.3. Организационные вопросы реализации оптимизационных решений (заключительные положения).

5.4. Выводы по главе.

Рекомендованный список диссертаций

  • Энергосберегающие способы выбора параметров и оптимизации управления группой лопастных нагнетателей в нестационарных технологических процессах 2008 год, доктор технических наук Николаев, Валентин Георгиевич

  • Энергосберегающие методы управления режимами работы насосных установок систем водоснабжения и водоотведения 2010 год, доктор технических наук Николаев, Валентин Георгиевич

  • Совершенствование методов расчета систем подачи и распределения воды в условиях многорежимности и неполной исходной информации 2005 год, доктор технических наук Карамбиров, Сергей Николаевич

  • Автоматическое управление материальными потоками в инженерных системах жизнеобеспечения 1999 год, кандидат технических наук Абдулханов, Наиль Назымович

  • Разработка моделей функциональной и структурной диагностики при оптимизации систем подачи и распределения воды 2006 год, кандидат технических наук Селиванов, Андрей Сергеевич

Введение диссертации (часть автореферата) на тему «Оптимизация насосных станций систем водоснабжения на уровне районных, квартальных и внутридомовых сетей»

Система подачи и распределения воды (СПРВ) является главным ответственным комплексом сооружений водоснабжения, обеспечивающим транспортировку воды на территорию снабжаемых объектов, распределение по территории и доставку к местам отбора потребителями. Нагнетательные (повыси-тельные) насосные станции (НС, ПНС), как один из основных структурных элементов СПРВ, во многом задают эксплуатационные возможности и технический уровень системы водоснабжения в целом, а также существенно определяют экономические показатели ее работы.

Значимый вклад в разработку тематики внесли отечественные ученые: Н.Н.Абрамов, М.М.Андрияшев, А.Г.Евдокимов, Ю.А.Ильин, С.Н.Карамбиров, ВЛ.Карелин, А.М.Курганов, А.П.Меренков, Л.Ф.Мошнин, Е.А.Прегер, С.В.Сумароков, А.Д.Тевяшев, ВЛ.Хасилев, П.Д.Хорунжий, Ф.А.Шевелев и др.

Проблемы при обеспечении напоров в водопроводных сетях, стоящие перед российскими коммунальными предприятиями, как правило, однородны. Состояние магистральных сетей привело к необходимости снижения давления, вследствие чего возникла задача компенсировать соответствующее падение напора на уровне районных и квартальных сетей. Подбор насосов в составе ПНС зачастую производился с учетом перспектив развития, параметры производительности и напора завышались. Распространенным стал вывод насосов на потребные характеристики дросселированием с помощью задвижек, приводящий к перерасходу электроэнергии. Замена насосов вовремя не производится, большинство из них работает с низким КПД. Износ оборудования обострил необходимость реконструкции ПНС для повышения КПД и надежности работы.

С другой стороны, развитие городов и увеличение высотности домов, особенно при уплотнительной застройке, требуют обеспечения потребных напоров для новых потребителей, в том числе за счет оснащения нагнетателями домов повышенной этажности (ДПЭ). Создание напора, необходимого для различных потребителей, в оконечных участках водопроводной сети, может являться одним из наиболее реальных путей повышения эффективности СПРВ.

Совокупность указанных факторов является основанием постановки задачи определения оптимальных параметров ПНС при имеющихся ограничениях входных напоров, в условиях неопределенности и неравномерности фактических расходов. При решении задачи встают вопросы сочетания последовательной работы групп насосов и параллельной работы насосов, объединенных в пределах одной группы, а также оптимального совмещения работы параллельно соединенных насосов с частотным регулированием привода (ЧРП) и, в конечном счете, подбора оборудования, обеспечивающего потребные параметры конкретной системы водоснабжения. Следует учитывать значимые изменения последних лет в подходах к подбору насосного оборудования - как в плане исключения избыточности, так и в техническом уровне доступного оборудования.

Актуальность рассматриваемых в диссертации вопросов определяется возросшим значением, которое в современных условиях отечественные хозяйствующие субъекты и общество в целом придают проблеме энергоэффективности. Насущная необходимость решения этой проблемы закреплена в Федеральном Законе Российской Федерации от 23.11.2009 г. № 261-ФЗ "Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации".

Эксплуатационные расходы СПРВ составляют определяющую часть затрат на водоснабжение, которая продолжает увеличиваться в связи с ростом тарифов на электроэнергию. С целью снижения энергоемкости большое значение придается оптимизации СПРВ. По авторитетным оценкам от 30% до 50 % энергозатрат насосных систем может быть сокращено за счет изменения насосного оборудования и способов управления.

Поэтому представляется актуальным совершенствование методологических подходов, разработка моделей и комплексного обеспечения принятия решений, позволяющих оптимизировать параметры нагнетательного оборудования периферийных участков сети, в том числе при подготовке проектов. Распределение потребного напора между насосными узлами, а также определение в пределах узлов, оптимального числа и типа насосных агрегатов с учетом расчетной подачи, обеспечат анализ вариантов периферийной сети. Полученные результаты могут быть интегрированы в задачу оптимизации СПРВ в целом.

Цель работы - исследование и разработка оптимальных решений при выборе повысительного насосного оборудования периферийных участков СПРВ в процессе подготовки реконструкции и строительства, включая методическое, математическое и техническое (диагностическое) обеспечение. Для достижения цели в работе решались следующие задачи: анализ практики в сфере повысительных насосных систем с учетом возможностей современных насосов и методов регулирования, сочетания последовательной и параллельной работы с ЧРП; определение методического подхода (концепции) оптимизации повысительного насосного оборудования СПРВ в условиях ограниченности ресурсов; разработка математических моделей, формализующих задачу выбора насосного оборудования периферийных участков водопроводной сети; анализ и разработка алгоритмов численных методов для исследования предложенных в диссертации математических моделей; разработка и практическая реализация механизма сбора исходных данных для решения задач реконструкции и проектирования новых ПНС; реализация имитационной модели формирования стоимости жизненного цикла по рассматриваемому варианту оборудования ПНС.

Научная новизна. Представлена концепция периферийного моделирования подачи воды в контексте сокращения энергоемкости СПРВ и снижения стоимости жизненного цикла "периферийного" насосного оборудования.

Разработаны математические модели для рационального выбора параметров насосных станций с учетом структурной взаимосвязи и полирежимного характера функционирования периферийных элементов СПРВ.

Теоретически обоснован подход к выбору числа нагнетателей в составе ПНС (насосных установок); проведено исследование функции стоимости жизненного цикла ПНС в зависимости от числа нагнетателей.

Разработаны специальные алгоритмы поиска экстремумов функций многих переменных, основанные на градиентных и случайных методах, для-исследования оптимальных конфигураций НС на периферийных участках.

Создан, мобильный измерительный комплекс (МИК) для диагностики действующих повысительных насосных систем, запатентованный в полезной модели № 81817 "Система контроля подачи воды".

Определена методика выбора оптимального варианта насосного оборудования ПНС на базе имитационного моделирования стоимости жизненного цикла.

Практическая значимость и реализация результатов работы. Даны рекомендации по выбору типа насосов для повысительных установок и ПНС на основе уточненной классификации современного насосного оборудования для повышения напора в системах водоснабжения с учетом таксонометрического деления, эксплуатационных, конструктивных и технологических признаков.

Математические модели ПНС периферийных участков СПРВ позволяют снизить стоимость жизненного цикла за счет выявления "резервов", в первую очередь в части энергоемкости. Предложены численные алгоритмы, позволяющие доводить до конкретных значений решение оптимизационных задач.

Разработано специальное оперативное средство сбора и оценки исходных данных (МИК), используемое для обследования действующих систем водоснабжения при подготовке их реконструкции.

Подготовлены рекомендации по обследованию действующих повысительных систем водоснабжения с использованием МИК и подбору оборудования для ПНС (выбору проектного решения) на основе малогабаритных автоматических насосных станций (МАНС).

Результаты НИОКР реализованы на ряде объектов коммунального водоснабжения, включая ПНС и МАНС в домах повышенной этажности.

1: АНАЛИТИЧЕСКИЙ ОБЗОР ОСНОВ НАСОСНОЙ ТЕОРИИ, НАГНЕТАТЕЛЬНОГО ОБОРУДОВАНИЯ И ТЕХНОЛОГИИ РЕШЕНИЯ ЗАДАЧ СОЗДАНИЯ И ПОВЫШЕНИЯ НАПОРА В СИСТЕМАХ ПОДАЧИ И РАСПРЕДЕЛЕНИЯ ВОДЫ (СПРВ)

Самая сложная и дорогостоящая часть современных систем водоснабжения - СПРВ, которая состоит из множества элементов, находящихся в гидравлическом взаимодействии . Поэтому естественно, что за последние четверть века в этой области сделаны значимые наработки и произошли важные изменения, как в< плане конструктивного совершенствования насосной техники, так и в плане развития технологии создания и повышения напора.

Похожие диссертационные работы по специальности «Водоснабжение, канализация, строительные системы охраны водных ресурсов», 05.23.04 шифр ВАК

  • Разработка методов диагностики и оперативного управления системами подачи и распределения воды (СПРВ) в аварийных состояниях 2002 год, кандидат технических наук Зайко, Василий Алексеевич

  • Экспериментальное и численное моделирование переходных процессов в кольцевых водопроводных сетях 2010 год, кандидат технических наук Лиханов, Дмитрий Михайлович

  • Анализ, техническая диагностика и реновация систем подачи и распределения воды на основе принципов энергетического эквивалентирования 2002 год, доктор технических наук Щербаков, Владимир Иванович

  • Совершенствование методов гидравлического расчета систем подачи и распределения воды 1981 год, кандидат технических наук Каримов, Рауф Хафизович

  • Энергосберегающее регулирование режима работы главных водоотливных установок шахт и рудников средствами электропривода 2010 год, кандидат технических наук Боченков, Дмитрий Александрович

Заключение диссертации по теме «Водоснабжение, канализация, строительные системы охраны водных ресурсов», Штейнмиллер, Олег Адольфович

ОБЩИЕ ВЫВОДЫ

1. Технические новации в области насосного оборудования создали условия для изменений, влияющих на эксплуатационную практику в части надежности и экономии энергии. С другой стороны, совокупность ряда факторов (состояние сетей и оборудования, территориальное и высотное развитие городов) привела к необходимости нового подхода к реконструкции и развитию систем подачи воды. Проведенный анализ публикаций и накопленный практический опыт стали основанием постановки задачи определения оптимальных параметров повысительного насосного оборудования.

2. Предложена концепция периферийного моделирования, как развитие идеи перераспределения нагрузки между магистральной и распределительной частями системы с целью минимизации непроизводственных потерь и энергозатрат. Стабилизация избыточных напоров на оконечных участках водопроводной сети обеспечит сокращение энергоемкости СПРВ.

3. Предложены оптимизационные модели для рационального выбора повысительного насосного оборудования периферийных участков сети с привлечением ТГЦ. Разработанная методология учитывает полирежимный характер функционирования, способы регулирования работы нагнетателей и их компоновку в составе НС, взаимодействия отдельных элементов системы с учетом обратной связи, а также разнообразие целевых функций, отражающих энерго эффективность системы или ее инвестиционную привлекательность.

4. Исследование оптимизационных моделей и верификация результатов моделирования действующих повысительных насосных систем позволили теоретически обосновать подход к выбору количества и параметров нагнетателей в составе ПНС (насосных установок) на основе принципа минимизации дисконтированной стоимости жизненного цикла (1ССО) насосного оборудования. Проведено исследование зависимости функции ЬССИ насосных установок от числа нагнетателей.

5. Разработаны специальные алгоритмы поиска экстремумов функций многих переменных для решения реальных задач оптимизации насосных станций на периферийных участках, сочетающие особенности градиентных и стохастических подходов исследования поисковых пространств. Алгоритм, основанный на модификации репродуктивного плана Холланда, позволяет решать рассматриваемые задачи без введения упрощающих предположений и замены дискретного характера пространства возможных решений на непрерывный.

6. Создан МИК для диагностики действующих повысительных насосных систем, запатентованный в полезной модели (№ 81817), обеспечивающий необходимую полноту и достоверность исходных данных для решения задач оптимального синтеза элементов СПРВ. Разработаны рекомендации по обследованию действующих повысительных систем водоснабжения с использованием МИК.

7. Разработана методика выбора оптимального варианта насосного оборудования ПНС на базе имитационного моделирования ЬССВ. Совокупность методических, математических и технических подходов работы позволяет осуществить поиск решения и выполнить сравнительную оценку действующих и новых нагнетателей с точки зрения их эффективности, рассчитать срок окупаемости инвестиций.

Список литературы диссертационного исследования кандидат технических наук Штейнмиллер, Олег Адольфович, 2010 год

1. Абрамов Н. Н. Расчет водопроводных сетей / Н. Н. Абрамов, М. М. Поспелова, М. А. Сомов, В. Н. Варапаев и др. - М. : Стройиздат, 1983. - 278 с.

2. Абрамов Н. Н. Теория и методика расчета систем подачи и распределения воды / Н. Н. Абрамов. - М. : Стройиздат, 1972. - 288 с.

3. Айвазян С. А. Прикладная статистика. Основы моделирования и первичная обработка данных / С. А. Айвазян, И. С. Енюков, Л. Д. Мешалкин. - М. : Финансы и статистика, 1983. - 471 с.

4. Алексеев М. И. Методические принципы прогнозирования расходов воды и надежности систем водоснабжения и водоотведения / М. И. Алексеев, Г. Г. Кривошеев // Вестник РААСН. - 1997. - Вып. 2.

5. Алыптуль А. Д. Гидравлика и аэродинамика: учеб. пособие для вузов /

6. A. Д. Алыптуль, П. Г. Кисилев. - Изд. 2-е. - М. : Стройиздат, 1975. - 323 с.

7. Андрияшев М. М. Гидравлические расчеты оборудования водоводов / М. М. Андрияшев. - М. : Стройиздат, 1979. - 104 с.

8. Баженов В. И. Экономический анализ насосных систем на базе показателя -■ затраты жизненного цикла / В. И. Баженов, С. Е. Березин, Н. Н. Зубовская // ВСТ. - 2006. - № 3, ч. 2. - С. 31- 35.

9. Беллман Р. Динамическое программирование / Р. Беллман. - М. : ИЛ, 1961. -400 с.

10. Березин С. Е. Насосные станции с погружными насосами: расчет и конструирование / С. Е. Березин. -М. : Стройиздат, 2008. - 160 с.

11. Большой энциклопедический словарь / гл. ред. А. М. Прохоров. - М. : Большая Российская Энциклопедия, 2002. - 1456 с.

12. Водоснабжение Санкт-Петербурга / под общ. ред. Ф. В. Кармазинова. - СПб. : Новый журнал. - 2003. - 688 с.

13. Гримитлин А. М. Насосы, вентиляторы, компрессоры в инженерном оборудовании зданий: учеб. пособие / А. М. Гримитлин, О. П. Иванов,

14. B. А. Пухкал. - СПб. : АВОК Северо-Запад, 2006. - 214 с.

15. Гришин А. П. Закон регулирования преобразователя частоты при питании погружного электронасоса / А. П. Гришин // Сантехника. - 2007. - № 7. -1. C. 20-22.

16. Евдокимов А. Минимизация функций и ее приложение к задачам автоматизированного управления инженерными сетями / А. Евдокимов. - Харьков: В ища школа, 1985 - 288 с.

17. Евдокимов А. Г. Моделирование и оптимизация потокораспределения в инженерных сетях / А. Г. Евдокимов, А. Д. Тевяшев. - М. : Стройиздат, 1990. -368 с.

18. Евдокимов А. Оптимальные задачи на инженерных сетях / А. Евдокимов. - Харьков: Вища школа, 1976. - 153 с.

19. Зоркин Е. М. Сравнительный анализ устойчивости замкнутых по напору систем водоподачи с регулируемым насосным агрегатом / Е. М. Зоркин // Вода: технология и экология. - 2008. - № 3. - С. 32-39.

20. Ильин Ю. А. Методика выбора энергосберегающих устройств при реконструкции повысительных насосных станций / Ю. А. Ильин, С. Ю. Игнатчик, С. В. Саркисов и др. // Материалы 4-х академических чтений. - СПб., 2009. - С. 53-58.

21. Ильин Ю. А. Надежность водопроводных сооружений и оборудования / Ю. А. Ильин. - М. : Стройиздат, 1985. - 240 с.

22. Ильин Ю. А. О параллельной работе насосов и водоводов / Ю. А. Ильин, А. П. Авсюкевич // Межвузовский тематический сборник трудов ЛИСИ. - СПб., 1991. -С. 13-19.

23. Ильин Ю. А. Особенности методики поверочных расчетов при мониторинге водопроводных сетей / Ю. А. Ильин, В. С. Игнатчик, С. В. Саркисов // Материалы 2-х академических чтений. - СПб., 2004. -- С. 30-32.

24. Ильин Ю. А. Повышение надежности подачи воды при параллельно-последовательной схеме зонирования водопровода / Ю. А. Ильин, В. С. Игнатчик, С. Ю. Игнатчик и др. // Материалы 4-х академических чтений. - СПб., 2009. - С. 50-53.

25. Ильин Ю. А. Расчет надежности подачи воды / Ю. А. Ильин. - М. : Стройиздат, 1987. - 320 с.

26. Ильина Т. Н. Основы гидравлического расчета инженерных сетей: учеб. пособие / Т. Н. Ильина. - М. : Ассоциация строительных вузов, 2007. - 192 с.

27. Инженерные системы зданий. - М. : ООО "Грундфос", 2006. - 256 с.

28. Каждан А. А. Гидроаудит как возможность комплексного решения проблем водоснабжения и водоотведения / А. А. Каждан // Вода: технология и экология. - 2008. - № 3. - С. 70-72.

29. Канаев А. Н. К вопросу измерения расходов воды в трубопроводах больших диаметров / А. Н. Канаев, А. И. Поляков, М. Г. Новиков // Вода: технология и экология. - 2008. - № 3. - С. 40-47.

30. Карамбиров С. Н. Совершенствование методов расчета систем подачи и распределения воды в условиях многорежимности и неполной исходной информации: автореф. дис. . докт.техн.наук / С. Н. Карамбиров. - М., 2005. - 48 с.

31. Карелин В. Я. Насосы и насосные станции / В. Я. Карелин, А. В. Минаев. - М. : Стройиздат, 1986. - 320 с.

32. Кармазинов Ф. В. Инновационные подходы к решению проблем водоснабжения и водоотведения Санкт-Петербурга / Ф. В. Кармазинов // ВСТ. - 2008. -№8. -С. 4-5.

33. Карттунен Э. Водоснабжение II: пер. с финского / Э. Карттунен; Ассоциация инженеров-строителей Финляндии RIL г.у. - СПб. : Новый журнал, 2005 - 688 с.

34. Ким А. Н. Мобильный измерительный комплекс (МИК) и его использование для оценки работы насосных систем / А. Н. Ким, О. А. Штейнмиллер, А. С. Миронов // Доклады 66-й научной конференции. - СПб., 2009. - Ч. 2. - С. 66-70.

35. Ким А. Н. Оптимизация насосных систем подачи воды / А. Н. Ким, О. А. Штейнмиллер // Доклады 64-й научной конференции. - СПб., 2007. - Ч. 2. -С. 44-48.

36. Ким А. Н. Проблемы в системах хозяйственно-питьевого водоснабжения зданий. Установки повышения давления / А. Н. Ким, П. Н. Горячев,

37. О. А. Штейнмиллер // Материалы 7-го международного форума НЕАТ&УЕЫТ. - М., 2005. - С. 54-59.

38. Ким А. Н. Разработка мобильного измерительного комплекса (МИК) для оценки работы насосных систем / А. Н. Ким, О. А. Штейнмиллер, А. С. Миронов // Материалы 4-х академических чтений. - СПб., 2009. - С. 46-50.

39. Ким А. Н. Совершенствование напорных водоочистных сооружений: ав-тореф. дис. . докт. техн. наук / А. Н. Ким. - СПб. : ГАСУ, 1998. - 48 с.

40. Кинебас А. К. Оптимизация подачи воды в зоне влияния Урицкой насосной станции Санкт-Петербурга / А. К. Кинебас, М. Н. Ипатко, Ю. В. Руксин и др. // ВСТ. - 2009. - № 10, ч. 2. - С. 12-16.

41. Кинебас А. К. Реконструкция системы подачи воды на Южной водопроводной станции Санкт-Петербурга / А. К. Кинебас, М. Н. Ипатко, Ю. А. Ильин //ВСТ. -2009. -№ Ю, ч. 2. -С. 17-22.

42. Классификация основных средств, включаемых в амортизационные группы: утв. Постановл. Прав-ва РФ от 01.01.2002 № 1. - М. : Налог Инфо, 2007. - 88 с.

43. Кожинов И. В. Устранение потерь воды при эксплуатации систем водоснабжения / И. В. Кожинов, Р. Г. Добровольский. - М. : Стройиздат, 1988. - 348 с.

44. Копытин А. Н. Современные подходы в определении эффективности работы насосных агрегатов / А. Н. Копытин, О. Ю. Царинник // Сантехника, отопление, кондиционирование. - 2007. -№8. - С. 14-16.

45. Корн Г. Справочник по математике (для научных работников и инженеров: пер. с англ: / Г. Корн, Т. Корн; под общ. ред. И. Г. Арамановича. - М. : Наука, 1973. - 832 с.

46. Костин В. И. Регулирование производительности нагнетателей при смешанной схеме совместной работы / В. И. Костин // Известия вузов. Строительство. - Новосибирск, 2006. - № 6. - С. 61-64.

47. Красильников А. Применение автоматизированных насосных установок с каскадным управлением в системах водоснабжения Электронный ресурс. /

48. A. Красильников // Строительная инженерия. - Электрон, дан. - М., 20052006. - Режим доступа: http://www.archive-online.ru/read/stroing/330.

49. Курганов А. М. Гидравлические расчеты систем водоснабжения и водоот-ведения: справочник / А. М. Курганов, Н. В. Федоров. - Л. : Стройиздат, 1986. -440 с.

50. Курганов А. М. Справочник по гидравлическим расчетам систем водоснабжения и канализации / А. М. Курганов, Н. Ф. Федоров. - Л. : Стройиздат, 1973. -408 с.

51. Лапчик М. П. Численные методы: учеб. пособие / М. П. Лапчик, М. И. Ра-гулина, Е. К. Хеннер; под ред. М. П. Лапчика. - М. : ИЦ "Академия", 2007 - 384 с.

52. Лезнов Б. С. Энергосбережения и регулируемый привод в насосных и воздуходувных установках / Б. С. Лезнов. - М. : Энергоатомиздат, 2006. - 360 с.

53. Лезнов Б.С. Современные проблемы использования регулируемого электропривода в насосных установках / Б. С. Лезнов // ВСТ. - 2006. - № 11, ч. 2. - С. 2-5.

54. Ленский В. А. Водоснабжение и канализация / В. А. Ленский,

55. B. И. Павлов. - М. : Высшая школа, 1964. - 387 с.

56. Меренков А. П. Теория гидравлических цепей / А. П. Меренков, В. Я. Хасилев. - М. : Наука, 1985. - 294 с.

57. Методика определения неучтенных расходов и потерь воды в системах коммунального водоснабжения: утв. Приказом МинПромЭнерго РФ от 20.12.2004 № 172. - М. : Росстрой России, 2005. - 57 с.

58. Морозов К. Е. Математическое моделирование в научном познании / К. Е. Морозов. - М. : Мысль, 1969. -212 с.

59. Мошнин Л. Ф. Методы технико-экономического расчета водопроводных сетей / Л. Ф. Мошнин. - М. : Стройиздат, 1950. - 144 с.

60. Николаев В. Анализ энергоэффективности различных способов управления насосными установками с регулируемым приводом / В. Николаев // В СТ. - 2006. - № 11, ч. 2. - С. 6-16.

61. Николаев В. Потенциал энергосбережения при переменной нагрузке лопастных нагнетателей / В. Николаев // Сантехника. - 2007. - № 6. - С. 68-73 ; 2008. -№ 1. -С. 72-79.

62. Оводов В. С. Примеры расчетов по сельскохозяйственному водоснабжению и канализации: учеб. пособие / В. С. Оводов, В. Г. Ильин. - М. : Государственное издательство сельскохозяйственной литературы, 1955. - 304 с.

63. Патент 2230938 Российская Федерация, МПК 7 Б 04 Д 15/00. Способ регулировки работы системы лопастных нагнетателей при переменной нагрузке / В.Николаев.

64. Патент на полезную модель № 61736, МПК Е03В 11/16. Система управления насосным агрегатом / Ф. В. Кармазинов, Ю. А. Ильин, В. С. Игнатчик и др. ; опубл. 2007, Бюлл. № 7.

65. Патент на полезную модель № 65906, МПК ЕОЗВ 7/04. Многозонная система водоснабжения / Ф. В. Кармазинов, Ю. А. Ильин, В. С. Игнатчик и др. ; опубл. 2007, Бюлл. № 7.

66. Патент на полезную модель № 81817, МПК в05В 15/00. Система контроля подачи воды / А. Н. Ким, О. А. Штейнмиллер. ; опубл. 2008, Бюлл. № 9.

67. Правила технической эксплуатации систем и сооружений коммунального водоснабжения и канализации: утв. Приказом Госстроя России от 30.12.1999. - М. : Госстрой России, 2000. - 123 с.

68. Прегер Е. А. Аналитический метод исследования совместной работы насосов и трубопроводов канализационных насосных станций: учеб. пособие / Е. А. Прегер. - Л.: ЛИСИ, 1974. - 61 с.

69. Прегер Е. А. Аналитическое определение в проектных условиях производительности центробежных насосов, параллельно работающих в сети / Е. А. Прегер // Научные труды ЛИСИ. - Л., 1952. - Вып. 12. - С. 137-149.

70. Промышленное насосное оборудование. - М. : ООО "Грундфос", 2006. - 176 с.

71. Промэнерго. Малогабаритные автоматические насосные станции ЗАО "Промэнерго". - Изд. 3-е, доп. - СПб., 2008. - 125 с.

72. Пфлейдерер К. Центробежные и пропеллерные насосы: пер. со 2-го немецкого издания / К. Пфлейдерер. - М.; Л. : ОНТИ, 1937. - 495 с.

73. Райзберг Б.А. Диссертация и ученая степень: пособие для соискателей / Б. А. Райзберг. - 3-е изд. - М. : ИНФРА-М, 2003. - 411 с.

75. Рутковская Д. Нейронные сети, генетические алгоритмы и нечеткие системы / Д. Рутковская, М. Пилиньский, Л. Рутковский. - М. : Горячая линия - Телеком, 2004. - 452 с.

76. Селиванов А. С. Разработка моделей функциональной и структурной диагностики при оптимизации систем подачи и распределения воды: автореф. дис. . канд. техн. наук / А. С. Селиванов. - СПб, 2007. - 27 с.

77. СНиП 2.04.01-85*. Внутренний водопровод и канализация зданий. - М. : ГПЦПП, 1996.

78. СНиП 2.04.02-84*. Водоснабжение. Наружные сети и сооружения. - М. : ГПЦПП, 1996.

79. СНиП 2.04.03-85. Канализация. Наружные сети и сооружения. - М. : ГП ЦПП, 1996.

80. СНиП 3.05.04-85*. Наружные сети и сооружения водоснабжения и канализации. - М. : ГП ЦПП, 1996.

81. Сумароков С. В. Математическое моделирование систем водоснабжения / С. В. Сумароков. - Новосибирск: Наука, 1983. - 167 с.

82. Турк В. И. Насосы и насосные станции / В. И. Турк. - М. : Стройиздат, 1976. -304 с.

83. Фаддеев Д. К. Вычислительные методы линейной алгебры / Д. К. Фаддеев, В. Н. Фаддеева. - М. : Лань, 2002. - 736 с.

84. Феофанов Ю. А. Повышение надежности систем водоснабжения городов (на примере Санкт-Петербурга) / Ю. А. Феофанов // Российская архитектурно-строительная энциклопедия. - М., 2000. - Т. 6. - С. 90-91.

85. Феофанов Ю. А. Методика определения неучтенных расходов и потерь в системах водоснабжения Санкт-Петербурга / Ю. А. Феофанов, П. П. Махнев, М. М. Хямяляйнен, М. Ю. Юдин // ВСТ. - 2006. - № 9, ч. 1. - С. 33-36.

86. Форсайт Дж. Машинные методы математических вычислений / Дж. Форсайт, М. Малькольм, К. Моулер. - М. : Мир, 1980. - 177 с.

87. Хасилев В. Я. Элементы теории гидравлических цепей: автореф. дис. . докт. техн. наук./ В. Я. Хасилев. - Новосибирск, 1966. - 98 с.

88. Хорунжий П. Д. Расчет гидравлического взаимодействия водопроводных сооружений / П. Д. Хорунжий. - Львов: Вища школа, 1983. - 152 с.

89. Хямяляйнен М. М. Комплексные гидравлические расчеты системы подачи воды Санкт-Петербурга / М. М. Хямяляйнен, С. В. Смирнова, М. Ю. Юдин // ВСТ. - 2006. - № 9, ч. 1. - С. 22-24.

90. Чугаев Р. Р. Гидравлика / Р. Р. Чугаев. - Л. : Энергоиздат, 1982. - 670 с.

91. Шевелев Ф. А. Водоснабжение больших городов зарубежных стран / Ф. А. Шевелев, Г. А. Орлов. - М. : Стройиздат, 1987. - 347 с.

92. Шевелев Ф. А. Таблицы для гидравлического расчета водопроводных труб / Ф. А. Шевелев, А. Ф. Шевелев. -М. : Стройиздат, 1984. - 352 с.

93. Штейнмиллер О. А. Задача оптимального синтеза повысительных систем подачи и распределения воды (СПРВ) микрорайона / О. А. Штейнмиллер, А. Н. Ким // Вестник гражданских инженеров. - 2009. -- № 1 (18). - С. 80-84.

94. Штейнмиллер О. А. Коллективные системы водоснабжения / О. А. Штейнмиллер // Еврострой, Приложение "Дом". - СПб., 2003. - С. 5457.

95. Штейнмиллер О. А. Коллективные системы водоснабжения / О. А. Штейнмиллер // Инженерные системы АВОК Северо-Запад. - СПб., 2005. - № 4 (20). - С. 22-24.

96. Штейнмиллер О. А. Проблемы в системах хозяйственно-питьевого водоснабжения зданий. Установки повышения давления / О. А. Штейнмиллер // Инженерные системы АВОК Северо-Запад. - СПб., 2004. - № 2 (14). - С. 26-28.

97. Штейнмиллер О. А. Скважинные водозаборы / О. А. Штейнмиллер // Сборник тезисов докладов научно-практической конференции. Серия "Подъем отечественной промышленности - подъем России" / под ред. А. М. Гримитли-на. - СПб., 2005. - С. 47-51.

98. Штейнмиллер О. А. Статическая и полирежимная оптимизация параметров насосного оборудования системы "районная насосная станция - абонентская сеть" / О. А. Штейнмиллер, А. Н. Ким // Вестник гражданских инженеров. - 2009. - № 2 (19). - С. 41-45.

99. Штейнмиллер О. А. Численные методы решения задачи оптимального синтеза повысительных систем подачи и распределения воды микрорайона / О. А. Штейнмиллер // Вестник гражданских инженеров. - 2009. - № 4 (21) .1. С. 81-87.

101. GRUNDFOS. Каталоги продукции. Проспекты Электронный ресурс. / GRUNDFOS // Техническая документация 2007. - Электрон, дан. - М. : ООО "Грундфос", 2007. - 1 электрон, опт. диск (CD-ROM).

102. Hydraulics in Civil and Environmental Engineering: Solutions manual. - Taylor & Francis, 2004. - 680 p.

103. ITT. Vogel Pumpen. Lowara. Общий каталог (поз. № 771820390 от 2/2008 russisch). - 2008. - 15 с.

104. Mohammad Karamouz. Water Resources Systems Analysis / Mohammad Karamouz, Ferenc Szidarovszky, Banafsheh Zahraie. - Lewis Publishers/CRC,2003. - 608 p.

105. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems. Executive Summary / Hydraulic Institute, Europump, U.S. Department of Energy"s Office of Industrial Technologies (OIT). - 2000. - 16 p.

106. Rama Prasad. Research Perspectives in Hydraulics and Water Resources Engineering / Rama Prasad, S. Vedula. - World Scientific Publishing Company, 2002.368 p.

107. Thomas M. Walski. Advanced water distribution modeling and management / Thomas M. Walski, Donald V. Chase, Dragan A. Savic. - Bentley Institute Press,2004. - 800 p.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Основой энергоэффективного использования насосного оборудования является согласованная работа на сеть, т.е. рабочая точка должна находиться в рабочем диапазоне характеристики насоса. Выполнение этого требования позволяет эксплуатировать насосы с высокой эффективностью и надежностью. Рабочая точка определяется характеристиками насоса и системы, в которой установлен насос. На практике многие водоснабжающие организации сталкиваются с проблемой неэффективной эксплуатации насосного оборудования. Зачастую к.п.д. насосной станции значительно ниже к.п.д. установленных на ней насосов.

Исследования показывают, что в среднем к.п.д. насосных систем составляет 40%, а 10% насосов работают с к.п.д. ниже 10%. В основном это связано с переразмериванием (выбором насосов с большими значениями подачи и напора, чем требуется для работы системы), регулированием режимов работы насосов при помощи дросселирования (т.е. задвижкой), износом насосного оборудования. Выбор насоса с большими параметрами имеет две стороны.

Как правило, в системах водоснабжения график водопотребления в сильной степени меняется в зависимости от времени суток, дня недели, времени года. При этом станция должна обеспечить максимальное водопотребление в штатном режиме во время пиковых нагрузок. Зачастую к этому добавляется и необходимость подачи воды на нужды систем пожаротушения. При отсутствии регулирования насос не может эффективно работать во всем диапазоне изменения водопотребления.

Эксплуатация насосов в условиях изменения требуемых расходов в широком диапазоне приводит к тому, что оборудование большую часть времени работает за пределами рабочей области, с низкими значениями к.п.д. и низким ресурсом. Иногда к.п.д. насосных станций составляет 8-10% при том, что к.п.д. установленных на них насосов в рабочем диапазоне составляет свыше 70%. В результате такой эксплуатации у потребителей складывается ложное мнение о ненадежности и неэффективности насосного оборудования. А учитывая тот факт, что значительную его долю составляют насосы отечественного производства, возникает миф о ненадежности и неэффективности отечественных насосов. При этом практика показывает, что целый ряд отечественных насосов по показателям надежности и энергоэффективности не уступает лучшим мировым аналогам. Для оптимизации энергопотребления существует множество способов, основные из которых приведены в таблице 1.

Таблица 1. Методы снижения энергопотребления насосных систем

Методы снижения энергопотребления насосных систем Снижение энергопотребления
Замена регулирования подачи задвижкой на регулирование частотой вращения 10 - 60%
Снижение частоты вращения насосов, при неизменных параметрах сети 5 - 40%
Регулирование путем изменения количества параллельно работающих насосов. 10 - 30%
Подрезка рабочего колеса до 20%, в среднем 10%
Использование дополнительных резервуаров для работы во время пиковых нагрузок 10 - 20%
Замена электродвигателей на более эффективные 1 - 3%
Замена насосов на более эффективные 1 - 2%

Эффективность того или иного способа регулирования во многом определяется характеристикой системы и графиком ее изменения во времени. В каждом случае необходимо принимать решение в зависимости от конкретных особенностей условий эксплуатации. Например, получившее в последнее время большое распространение регулирование насосов при помощи изменения частоты не всегда может привести к снижению энергопотребления. Иногда это дает обратный эффект. Применение частотного привода имеет наибольший эффект при работе насосов на сеть с преобладанием динамической составляющей характеристики, т.е. потерь в трубопроводах и запорно-регулирующей арматуре. Применение каскадного регулирования путем включения и выключения необходимого количества насосов, установленных параллельно, имеет наибольший эффект при работе в системах с преимущественной статической составляющей.

Поэтому основным исходным требованием для проведения мероприятий по снижению энергопотребления является характеристика системы и ее изменение во времени. Основная проблема при разработке энергосберегающих мероприятий связана с тем, что на действующих объектах параметры сети практически всегда неизвестны, и сильно отличаются от проектных. Отличия связаны с изменением параметров сети вследствие коррозии трубопроводов, схем водоснабжения, объемов водопотребления и т.п.

Для определения реальных режимов работы насосов и параметров сети возникает необходимость проведения замеров непосредственно на объекте с использованием специального контрольно-измерительного оборудования, т.е. проведения технического аудита гидравлической системы. Для успешного проведения мероприятий, направленных на повышение энергоэффективности установленного оборудования, необходимо располагать как можно более полной информацией о работе насосов и учитывать ее в дальнейшем. В целом можно выделить несколько определенных последовательных этапов аудита насосного оборудования.
1. Сбор предварительной информации о составе оборудования, установленного на объекте, в т.ч. сведений о технологическом процессе, в котором используются насосы (станции первого, второго, третьего подъемов и т.д.)
2. Уточнение на месте предварительно полученной информации о составе установленного оборудования, возможностей получения дополнительных данных, наличия средств проведения измерений, системе управления и т.д. Предварительное планирование проведения испытаний.
3. Проведение испытаний на объекте.
4. Обработка и оценка результатов.
5. Подготовка технико-экономического обоснования для различных вариантов модернизации.

Таблица 2. Причины повышенного энергопотребления и меры по его снижению

Причины высокого энергопотребления Рекомендуемые мероприятия по снижению энергопотребления Ориентировочный срок окупаемости мероприятий
Наличие в системах периодического действия насосов, работающих в постоянном режиме независимо от потребностей системы, технологического процесса и т.п. - Определение необходимости в постоянной работе насосов.
- Включение и выключение насоса в ручном или автоматическом режиме только в промежутки времени.
От нескольких дней до нескольких месяцев
Системы с меняющейся во времени величиной требуемого расхода. - Использование привода с регулируемой частотой вращения для систем с преимущественными потерями на трение
- Применение насосных станций с двумя и более параллельно установленными насосами для систем с преимущественно статической составляющей характеристики.
Месяцы, годы
Переразмеривание насоса. - Подрезка рабочего колеса.
- Замена рабочего колеса.
- Применение электродвигателей с меньшей частотой вращения.
Недели - годы
Износ основных элементов насоса - Ремонт и замена элементов насоса в случае снижения его рабочих параметров. Недели
Засорение и коррозия труб. - Очистка труб
- Применение фильтров, сепараторов и подобной арматуры для предотвращения засорения.
- Замена трубопроводов на трубы из современных полимерных материалов, трубы с защитным покрытием
Недели, месяцы
Большие затраты на ремонт (замена торцовых уплотнений, подшипников)
- Работа насоса за пределами рабочей зоны, (переразмеривание насоса).
- Подрезка рабочего колеса.
- Применение электродвигателей с меньшей частотой вращения или редукторов в тех случаях, когда параметры насоса значительно превосходят потребности системы.
- Замена насоса на насос меньшего типоразмера.
Недели-годы
Работа нескольких насосов, установленных параллельно в постоянном режиме - Установка системы управления или наладка существующей Недели

Рис. 1. Работа насоса на сеть с преимущественной статической составляющей при частотном регулировании


Рис. 2. Работа насоса на сеть с преимущественными потерями на трение при частотном регулировании

При первичном посещении объекта можно определить "проблемные", с точки зрения энергопотребления, насосы. В таблице 2 приведены основные признаки, которые могут свидетельствовать о неэффективной эксплуатации насосного оборудования и типовые мероприятия, которые могут исправить положение с указанием ориентировочного срока окупаемости мероприятий по энергосбережению.

В результате проведения испытаний необходимо получить следующую информацию:
1. Характеристики системы и ее изменения с течением времени (часовой, суточный, недельный графики).
2. Определение действительных характеристик насосов. Определение режимов работы насосов для каждого из характерных режимов (наиболее продолжительный режим, максимальная, минимальная подача).

Оценка применения различных вариантов модернизации и способа регулирования принимается на основании расчета стоимости жизненного цикла (LCC) оборудования. Основную долю в затратах жизненного цикла любой насосной системы составляют затраты на электроэнергию. Поэтому на этапе предварительной оценки различных вариантов необходимо воспользоваться критерием удельной мощности, т.е. мощности, потребляемой насосным оборудованием, отнесенной к единице расхода перекачиваемой жидкости.

Выводы :
Задачи снижения энергопотребления насосного оборудования решаются, прежде всего, путем обеспечения согласованной работы насоса и системы. Проблема избыточного энергопотребления насосных систем, находящихся в эксплуатации, может быть успешно решена за счет модернизации, направленной на обеспечение этого требования.

В свою очередь, любые мероприятия по модернизации должны опираться на достоверные данные о работе насосного оборудования и характеристиках системы. В каждом случае необходимо рассматривать несколько вариантов, а в качестве инструмента по выбору оптимального варианта использовать метод оценки стоимости жизненного цикла насосного оборудования.

Александр Костюк, кандидат физико-математических наук, директор программы насосов для воды;
Ольга Диброва, инженер;
Сергей Соколов, ведущий инженер. ООО "УК "Группа ГМС"

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

На современном этапе развития нефтегазодобывающей промышленности большое значение имеет развитие автоматического управления производством, замена физически и мораль устаревших средств автоматизации и систем управления техническими процессами и объектами нефтегазодобычи. Введение новых систем автоматического контроля и управления приводит к повышению надежности и точности отслеживания технологического процесса.

Автоматизация производственных процессов является высшей формой развития техники добычи нефти и газа, создание высокопроизводительного оборудования, повышения культуры производства, основание новых нефтяных и газовых районов, рост добычи нефти и газа стали возможны благодаря развитию и внедрению автоматизации и совершенствованию управления.

Системный подход при решении вопросов автоматизации технологических процессов, создание и внедрение автоматизированных систем управления позволили осуществить переход к комплексной автоматизации всех основных и вспомогательных технологических процессов бурения, добычи, обессоливания и транспортировки нефти и газа.

Современные нефтедобывающие и газодобывающие предприятия представляют собой сложные комплексы технологических объектов, рассредоточенных на больших площадях. Технологические объекты связаны между собой. Это повышает требование к надежности и совершенству средств автоматизации. Обеспечение надежности и эффективности функционирования системы газоснабжения, оптимизация процессов нефтедобычи, транспорта, улучшение технико-экономических показателей развития нефтедобывающей отрасли требует решения важнейших задач перспективного планирования и оперативно-диспетчерского управления системы нефтедобычи на основе осуществления программы комплексной автоматизации технологических процессов, широкого внедрения автоматизированных систем управления.

В данной работе рассмотрена система автоматизации дожимной насосной станции (ДНС).

1. Автоматизия работы дожимной насосной станции

Дожимная насосная станция (рис. 1) после первичной сепарации нефти обеспечивает ее переток к установкам дальнейшего технологического цикла и поддержание там необходимого давления.

Рис. 1 - Технологическая схема работы дожимной насосной станции

Основу этой станции составляют центробежные насосы с самозаливкой, к которым нефть поступает из установки первичной сепарации или из резервных буллитов. Закачка нефти в насосы производится через фильтры, которые устанавливаются как на всасывающих, так и на выкидных магистралях этой системы. Станция укомплектована всегда рабочим и резервным насосами. Резервируют также фильтры и на ее выкидной магистрали. Включение в работу каждого из насосов или одного из фильтров на выкидной магистрали производится с помощью приводных задвижек, управляемых системой автоматики.

Система автоматизации управления работой дожимной насосной станции не только обеспечивает поддержание заданного давления нефти на выкидной магистрали, но и производит своевременное переключение рабочей линии на резервную в случае выхода из строя рабочего насоса или закупорки одного из рабочих фильтров. Для контроля рабочих параметров в технологической цепочке дожимной насосной станции используют следующие технические средства:

DM1 - DM4 - дифференциальные манометры;

P1, P3 - датчики давления на входе насосов;

P2, P4 - датчики давления на выходе насосов;

Z1 - Z6 - приводы задвижек и датчики их положения;

F1 - F4 - фильтры на линии нефти.

Эта аппаратура подключается к соответствующим портам контроллера системы управления дожимной насосной станцией по схеме, представленной на рис. 2.

К модулю (порту) дискретного ввода этого контроллера подключены, как и в предыдущем случае, кнопки управления и датчики положения задвижек. Аналоговые датчики давления и дифференциальные манометры подключены на вход модуля (порта) аналогового ввода. Двигатели всех задвижек и приводы насосов подключены к модулю (порту) дискретного вывода.

Рис. 2 - Структура нижнего уровня системы управления дожимной насосной станцией

нефть добыча насосный станция

Алгоритм управления дожимной насосной станцией имеет сложную структуру, состоящую из нескольких взаимосвязанных подпрограмм. Основная программа этого алгоритма представлена на рис. 3.

По этому алгоритму после ввода величины задающих сигналов выполняется цикл ожидания нажатия кнопки «Пуск», после нажатия которой происходит автоматический выбор насоса № 1 и задвижки Z5 в качестве рабочего оборудования технологического цикла. Этот выбор фиксируется присвоением единичного значения константам N и K. По значению этих констант в дальнейшем будет определен выбор направления ветвления в подпрограммах алгоритма.

Эти подпрограммы запускаются основным алгоритмом сразу же после подачи команды на открытие задвижки Z1, соединяющей технологическую линию дожимной насосной станции с установкой первичной сепарации нефти. Первая из этих подпрограмм «Пуск насосов» управляет процессом запуска рабочего (или резервного) насоса, а другая подпрограмма «Контроль параметров» производит текущий контроль основных параметров технологического процесса и в случае их несоответствия заданным значениям осуществляет переключения в технологической цепочке этого процесса.

Подпрограмма «Контроль параметров» запускается циклически на всем протяжении рабочего цикла этого процесса. Одновременно в этом цикле производится опрос кнопки «Стоп», при нажатии которой закрывается задвижка Z1. Затем, прежде чем остановить основную программу, алгоритм запускает на выполнение подпрограмму «Останов насоса». По этой подпрограмме выполняются последовательные действия по остановке рабочего насоса.

По подпрограмме «Пуск насоса» (рис. 4) первоначально производится анализ содержания параметра N, которым определен номер рабочего насоса (соответственно N=1 для насоса № 1 и N=0 для другого насоса). В зависимости от значения этого параметра алгоритм выбирает ветвь запуска соответствующего насоса. Эти ветви аналогичны по структуре, но отличаются только параметрами технологических элементов.

Рис. 3 - Алгоритм управления дожимной насосной станцией

Первой процедурой выбранной ветви этой подпрограммы производится опрос дифференциального датчика давления DM1, содержание которого определяет рабочее состояние соответствующего фильтра на входе насосного агрегата. Показания этого датчика сравниваются с заданным предельным значением относительного давления на фильтре. При зашламованности фильтра (когда он требует чистки) разность давлений на его входе и выходе будет превышать заданное значение, поэтому данная технологическая ветвь не может быть запущена в работу, и потребуется переход на запуск резервной линии, т.е. резервного насоса.

В случае нормального состояния фильтра его фактическое разностное давление меньше заданного, и алгоритм переходит к опросу датчика, контролирующего давление на входе выбранного насоса. Снова показания этого датчика сравниваются с заданным значением. В случае недостаточного давления на входе насоса он не сможет выйти на рабочий режим, поэтому он также не может быть запущен, а это снова потребует перехода на запуск резервного насоса.

Рис. 4 - Структура подпрограммы «Пуск насоса»

В случае нормального значения давления на входе насоса следующая команда подпрограммы запускает его, при этом параметру N присваивается соответствующее числовое значение, а дискретные датчики контроля запуска насоса контролируют этот процесс. После этого запуска опрашивается датчик, контролирующий давление на выходе запущенного насоса. В случае, если это давление окажется ниже заданного уровня, насос тоже не может работать в нормальном режиме, поэтому и этот случай требует запуска резервного насоса, но только после остановки запущенного насоса.

Если же заданное давление на выходе насоса достигнуто, то это значит, что он вышел на заданный режим, поэтому на следующем шаге алгоритм открывает задвижку, соединяющую выход насоса с линией выходных фильтров системы. Открытие каждой из задвижек фиксируется дискретными датчиками ее положения.

На этом подпрограмма запуска насоса выполнила свои функции, поэтому на следующем шаге производится выход из нее в основную программу, где затем производится запуск следующей подпрограммы «Контроль параметров» работающей системы. Эта подпрограмма выполняется в цикле до тех пор, пока технологический процесс не будет остановлен кнопкой «Стоп».

Структурно подпрограмма «Контроль параметров» идентична подпрограмме «Пуск насоса», однако имеет некоторые особенности (рис. 5).

Рис. 5 - Структура подпрограммы «Контроль параметров»

В этой подпрограмме, как и в предыдущей, производится последовательный опрос тех же датчиков и сравниваются их показания с заданными значениями контролируемых параметров. В случае их несоответствия подается команда на закрытие соответствующей задвижки и на остановку соответствующего насоса, при этом параметру N присваивается значение, противоположное предыдущему. После всего этого производится запуск подпрограммы «Пуск насоса», по которой включается в работу резервный насос.

Если все контролируемые параметры соответствуют заданным значениям, то, прежде чем выйти в основную программу, алгоритм проверяет состояние фильтров основной магистрали. Для этой цели запускается подпрограмма «Управление задвижками Z5 и Z6» (рис. 6), по которой в случае выхода из строя одного из этих фильтров включается в работу резервный фильтр.

Рис. 6 - Структура подпрограммы «Управление задвижками Z5 и Z6»

По этой подпрограмме через анализ значения параметра K в ней выбирается рабочая ветвь, по которой производится опрос дифференциального манометра работающего фильтра. В случае нормальной работы фильтра разность фактического давления между входом и выходом фильтра не будет превышать заданного значения, поэтому алгоритм по условию «да» выходит из подпрограммы без изменения структуры подключения элементов в магистрали.

В случае превышения этой разницей заданного значения алгоритм следует по условию «нет», в результате чего закрывается работающая задвижка и открывается резервная, а параметру Nприсваивается противоположное значение. После выполнения этого производится выход из этой подпрограммы в предыдущую, а из нее в основную программу.

Процесс контролируемого пуска рабочего насоса, а в случае его поломки запуска резервного производится алгоритмом автоматически. Аналогично осуществляется контролируемый запуск фильтров через включение задвижек в основной магистрали.

При нажатии на кнопку «Стоп» цикл непрерывного контроля за параметрами системы прекращается, закрывается задвижка, подключающая дожимную насосную станцию к сепарационной установке, и производится переход к подпрограмме «Остановка насоса» (рис. 7).

По этой подпрограмме на основе анализа параметра N выбирается одна из двух идентичных ветвей следования алгоритма. По ней алгоритмом первоначально подается команда на закрытие задвижки, установленной на выходе работающего насоса. После закрытия ее другая команда останавливает работающий насос. Затем новым анализом значения уже параметра K выбирается ветвь алгоритма, по которой закрывается задвижка работающего магистрального фильтра, после чего алгоритм останавливает свою работу.

Рис. 7 - Структура подпрограммы «Остановка насоса»

Список литературы

1. Сажин Р.А. Элементы и структуры систем автоматизации технологических процессов нефтяной и газовой промышленности. Изд-во ПГТУ, Пермь, 2008. ? 175 с.

2. Исакович Р.Я. и др. Автоматизация производственных процессов нефтяной и газовой промышленности. «Недра», М., 1983 г.

Размещено на Allbest.ru

Подобные документы

    Автоматизация технологического процесса на ДНС. Выбор технических средств автоматизации нижнего уровня. Определение параметров модели объекта и выбор типа регулятора. Расчёт оптимальных настроек регулятора уровня. Управление задвижками и клапанами.

    курсовая работа , добавлен 24.03.2015

    Описание принципиальной технологической схемы дожимной насосной станции. Принцип работы ДНС с установкой предварительного сброса воды. Отстойники для нефтяных эмульсий. Материальный баланс ступеней сепарации. Расчет материального баланса сброса воды.

    курсовая работа , добавлен 11.12.2011

    Определение расходов воды и скоростей в напорном трубопроводе. Расчет потребного напора насосов. Определение отметки оси насоса и уровня машинного зала. Выбор вспомогательного и механического технологического оборудования. Автоматизация насосной станции.

    курсовая работа , добавлен 08.10.2012

    Описание технологического процесса перекачки нефти. Общая характеристика магистрального нефтепровода, режимы работы перекачивающих станций. Разработка проекта автоматизации насосной станции, расчет надежности системы, ее безопасность и экологичность.

    дипломная работа , добавлен 29.09.2013

    Технология компримирования газа, подбор и обоснование необходимого оборудования, технологическая схема производства работ. Требования к системе автоматизации, ее объекты, средства. Логическая программа запуска компрессорной установки, работа контроллера.

    дипломная работа , добавлен 16.04.2015

    Технологический процесс автоматизации дожимной насосной станции, функции разрабатываемой системы. Анализ и выбор средств разработки программного обеспечения, расчет надежности системы. Обоснование выбора контроллера. Сигнализаторы и датчики системы.

    дипломная работа , добавлен 30.09.2013

    Общая характеристика насосной станции, расположенной в прокатном цехе на участке термоупрочнения арматуры. Разработка системы автоматического управления данной насосной станцией, которая своевременно предупреждает (сигнализирует) об аварийной ситуации.

    дипломная работа , добавлен 05.09.2012

    Описание нефтеперекачивающей станции, ее принципиальная технологическая схема, принцип работы и функциональные особенности блоков. Программно-технический комплекс и назначение автоматизации. Выбор и обоснование датчиков, преобразователей, контроллеров.

    дипломная работа , добавлен 04.05.2015

    Характеристика мелиоративной насосной станции, выбор принципиальной электрической схемы. Составление схемы соединений щита управления. Экономическая эффективность схемы системы автоматического управления. Определение надежности элементов автоматики.

    курсовая работа , добавлен 19.03.2011

    Описание принципиальной технологической схемы дожимной насосной станции с установкой предварительного сброса воды. Принцип работы установки подготовки нефти "Хитер-Тритер". Материальный баланс ступеней сепарации и общий материальный баланс установки.

апрель 2001 г.

В одной из публикаций ("ЖКХ", N 3/2001), где речь шла о вопросах экономической эффективности внедрения информационных технологий на предприятиях инженерных сетей, мы вскользь упоминали об оптимизации оперативного управления насосными станциями и регулирования запасов воды в резервуарах. В частности, было отмечено, что в структуре себестоимости водоснабжения львиная доля приходится на электроэнергию, и снижение затрат за счет оптимизации режимов работы насосных агрегатов позволяет получить весьма существенную экономию. Целью данной статьи является более подробное освещение этого вопроса.

У проблемы оптимизации управления режимами водоснабжения есть несколько составляющих, каждая из которых носит достаточно изолированный характер и способна дать хороший экономический эффект, а будучи рассматриваемы в комплексе, они в состоянии вывести технологический процесс на качественно новый уровень. Рассмотрим эти составляющие.

    Управление насосными агрегатами. Существует и применяется на практике несколько видов регулирования подач: включение/выключение групп насосов и отдельных агрегатов (дискретное управление); дросселирование и рециркуляция потока; применение электропривода с переменной частотой вращения. Каждый насосный агрегат имеет свою фактическую расходно-напорную характеристику, . каждой точке которой соответствует некоторое паспортное значение потребляемой мощности электродвигателя. Именно выбор комбинации работающих насосных агрегатов и способа регулирования в зависимости от гидравлической характеристики сети и требуемых значений подач определяет положение текущей рабочей точки, а следовательно, и текущее значение потребляемой мощности по каждому агрегату и всей насосной станции в целом. Следовательно, критерием оптимизации является обеспечение заданного режима работы насосной станции по подачам и давлениям при минимально возможном расходе электроэнергии с учетом всех доступных способов регулирования. Основных проблем две: идентификация и "пересчет" реальных характеристик насосных агрегатов (они, как правило, не соответствуют паспортным, и, кроме того, изменяются с течением времени в силу естественного износа), а также расчет и построение совокупной характеристики "расход-напор-мощность" для группы работающих насосов по известным характеристикам каждого из них. Обе проблемы легко решаемы при наличии средств измерений для проведения время от времени натурных испытаний насосных агрегатов, а также соответствующего компьютерного математического обеспечения. Сама по себе оптимизация регулирования п этом не вызывает принципиальных сложностей - методы и алгоритмы решения таких задач разработаны достаточно давно и проверены практикой, достаточно эти методы знать и уметь применить. Результатом решения задачи оптимизации в каждый конкретный момент времени является выработка рекомендации по осуществлению такого комплекса управляющих воздействий (включение/отключение агрегатов, изменение положения дросселирующего клапана, изменение частоты вращения электродвигателей), который переводит текущую рабочую точку совокупной характеристики насосной станции к значению, которому соответствуют минимально достижимая при этом потребляемая электрическая мощность приводов насосов. При наличии технических средств телеметрии и дистанционного управления эти оптимальные управляющие воздействия могут осуществляться автоматически, с некоторым заданным интервалом времени. При отсутствии средств телеуправления полученные от компьютерной программы рекомендации выполняются диспетчерским персоналом в обычном "ручном" режиме, а сама оптимизация выполняется каждый раз при существенном изменении требуемых режимных параметров. Побочным полезным эффектом при этом является сохранение и возможность анализа электронного журнала значений параметров работы насосной станции и "истории" управляющих воздействий.

    Управление запасами воды в резервуарах на основе статистических данных и прогноза водопотребления. Специалистами нашей компании создана уникальная в своем роде математическая модель прогнозирования водопотребления на основе накапливаемых данных по подачам и уровням воды в резервуарах. "Изюминкой" модели является специальный учет так называемых "нерегулярных дней", описание которых "не укладывается" в рамки обычного календарного временного ряда. Их особенность состоит в том, что они повторяются из года в год, приходясь каждый раз на различные дни недели (официальные и неофициальные праздники и связанные с ними переносы рабочих дней), или даже на различные недели и месяцы (в частности, религиозные праздники, такие как Пасха). В математической модели прогноза учитываются, кроме того, метеорологические данные и некоторые другие факторы, существенно влияющие на водопотребление. (Диспетчеры знают об эффекте "Штирлица", проявившемся впервые во время премьерного показа фильма "Семнадцать мгновений весны", когда в часы демонстрации по ТВ водопотребление в городах падало почти до нуля, тогда как обычно на вечерние часы приходится пик водоразбора - вместо "помыться-постираться" люди не отрываясь, сидели у телевизоров. В результате кое-где имели место переполнения резервуаров с затоплением прилегающих территорий). Основой для решения задачи прогнозирования потребления воды является многолетний архив данных почасовых измерений, для накопления которых предусмотрен специальный автоматизированный компьютерный журнал. Данные в этот журнал могут заноситься как автоматически, с использованием средств телемеханики (если они есть и работают), так и в "ручном" режиме, на основе суточных рапортов, поступающих с насосных станций в виде бумажных, электронных или факсимильных документов. Ориентируясь на данные прогноза, можно эффективно планировать загрузку насосных станций второго подъема для обеспечения необходимых запасов в резервуарах чистой воды, поскольку текущие значения уровней воды в них вкупе с данными прогноза водопотребления позволяют сформировать обоснованное "задание" для программы оптимизации режимов работы насосных станций (об этом шла речь выше). Точность прогноза, конечно же, существенно зависит от величины периода, за который накоплены архивные данные, от вида прогноза и времени "упреждения", но в любом случае она достаточно высока. Так, на основе многолетнего архива данных МГП "Мосводоканал", в центральной диспетчерской службе которого эксплуатируется описываемая модель, достигнуты следующие показатели точности прогнозов: средняя абсолютная процентная ошибка составляет примерно 1,3% для месячных данных, менее 5% для данных суточного прогноза, и около 2,5% для почасового прогноза. Кроме собственно прогнозирования, наличие архива данных позволяет строить аналитические отчеты и графики любой сложности - как во временной развертке, так и корреляционные.

  1. Моделирование гидравлических режимов сети водоснабжения с учетом суточной неравномерности нагрузки. С некоторой степенью условности альтернативой задаче прогноза водопотребления на основе архивов реальных измерений может являться задача почасового моделирования потокораспределения в водопроводной сети. Это классическая задача гидравлического расчета, но с существенным дополнением. Если для обычного гидравлического расчета в качестве исходных данных по потребителям задается расчетная нагрузка в виде среднесуточного либо максимального значения водоразбора, то в рассматриваемой задаче для каждого потребителя задается и так называемый "суточный график водопотребления" (а точнее, один из нескольких существующих типов графиков суточной неравномерности). В этом случае может быть выполнен почасовой гидравлический расчет сети, в результате которого формируется график заполнения резервуаров. Следует отметить, что для целей оперативного управления использовать данный метод вряд ли целесообразно в силу возможных значительных отклонений реальных параметров водопотребления от расчетных величин. Однако как инструмент поверочного расчета при долгосрочном проектировании режимов и схем водоснабжения, проектировании новых подключений, анализе качественных и количественных характеристик гидравлических режимов в системе водоснабжения - такое моделирование представляется весьма полезным.

Все описанные выше математические модели и алгоритмы реализованы специалистами нашей компании в виде специализированной информационно-графической системы (ИГС) "AnWater" . Это весьма сложный программный комплекс, интегрирующий несколько подсистем разного функционального назначения и предназначенный для эксплуатации персоналом центральных и районных диспетчерских служб муниципальных предприятий водоснабжения. В различном функциональном составе ИГС "AnWater" внедрена в водоканалах нескольких крупных городов России и прошла многолетнюю проверку промышленной эксплуатацией.

В заключение - несколько слов в адрес двух самых крупных в стране водоканалов. Создание информационно-технологических систем такого класса как ИГС "AnWater" , аккумулирующих в себе массу наукоемких решений, сложных математических моделей, знаний и методов прикладной предметной области, и требующих кропотливой и тщательной выверки и отладки, - невозможно без заинтересованности и поддержки со стороны персонала предприятия-заказчика. Сотрудники и руководители служб МГП "Мосводоканал" и его филиалов (Северная водопроводная станция, Производственное управление регулирующих узлов), а впоследствии и ГУП "Водоканал Санкт-Петербурга" на протяжении нескольких лет терпеливо и внимательно вникали в разрабатываемый и внедряемый "с колес" программный продукт, засыпали нас замечаниями и пожеланиями, заставляя в итоге делать систему не так, как нам было проще с точки зрения разработчиков, а так, как правильно и удобно с точки зрения эксплуатации. Персонал Московского и Питерского водоканалов, с которым при разработке и внедрении нам пришлось работать в постоянном контакте, проявил максимум терпимости и доброжелательности, а высокая профессиональная квалификация сотрудников, безусловно, сыграла свою роль при формировании предметных требований к системе. Именно благодаря сотрудничеству с этими двумя предприятиями ИГС "AnWater" и сейчас продолжает совершенствоваться и "обрастать" новыми задачами, но уже и в своем нынешнем виде эта система стала полноценным высококачественным продуктом, которому по функциональному составу и характеристикам математических моделей аналога в мире на сегодняшний день практически не существует. Пользуясь случаем, со страниц журнала я хочу от имени ИВЦ "Поток" высказать признательность коллективам МГП "Мосводоканал", его филиалов (СВС, ПУРУ) и ГУП "Водоканал Санкт-Петербурга" за их вклад в развитие отечественных интеллектуальных технологий, пожелать им успехов и выразить надежду на дальнейшее сотрудничество, от которого в конечном итоге выигрывают все.