И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм , потому что у него и (вспоминаем наш признак 2 ).

И снова, раз ромб - параллелограмм , то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Свойства ромба

Посмотри на картинку:

Как и в случае с прямоугольником, свойства эти - отличительные , то есть по каждому из этих свойств можно заключить, что перед нами не просто параллелограмм , а именно ромб.

Признаки ромба

И снова обрати внимание : должен быть не просто четырехугольник, у которого перпендикулярны диагонали, а именно параллелограмм . Убедись:

Нет, конечно, хотя его диагонали и перпендикулярны, а диагональ - биссектриса углов и. Но … диагонали не делятся, точкой пересечения пополам, поэтому - НЕ параллелограмм , а значит, и НЕ ромб .

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно почему? - ромб - биссектриса угла A, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

СРЕДНИЙ УРОВЕНЬ

Свойства четырехугольников. Параллелограмм

Свойства параллелограмма

Внимание! Слова «свойства параллелограмма » означают, что если у тебя в задаче есть параллелограмм, то всем нижеследующим можно пользоваться.

Теорема о свойствах параллелограмма.

В любом параллелограмме:

Давай-ка поймём, почему это всё верно, иными словами ДОКАЖЕМ теорему.

Итак, почему верно 1)?

Раз - параллелограмм, то:

  • как накрест лежащие
  • как накрест лежащие.

Значит, (по II признаку: и - общая.)

Ну вот, а раз, то и - всё! - доказали.

Но кстати! Мы ещё доказали при этом и 2)!

Почему? Но ведь (смотри на картинку), то есть, а именно потому, что.

Осталось только 3).

Для этого всё-таки придётся провести вторую диагональ.

И теперь видим, что - по II признаку (угла и сторона «между» ними).

Свойства доказали! Перейдём к признакам.

Признаки параллелограмма

Напомним, что признак параллелограмма отвечает на вопрос "как узнать?", что фигура является параллелограммом.

В значках это так:

Почему? Хорошо бы понять, почему - этого хватит. Но смотри:

Ну вот и разобрались, почему признак 1 верен.

Ну, это ещё легче! Снова проведём диагональ.

А значит:

И тоже несложно. Но …по-другому!

Значит, . Ух! Но и - внутренние односторонние при секущей!

Поэтому тот факт, что означает, что.

А если посмотришь с другой стороны, то и - внутренние односторонние при секущей! И поэтому.

Видишь, как здорово?!

И опять просто:

Точно так же, и.

Обрати внимание: если ты нашел хотя бы один признак параллелограмма в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:


Свойства четырехугольников. Прямоугольник.

Свойства прямоугольника:

Пункт 1) совсем очевидный - ведь просто выполнен признак 3 ()

А пункт 2) - очень важный . Итак, докажем, что

А значит, по двум катетам (и - общий).

Ну вот, раз треугольники и равны, то у них и гипотенузы и тоже равны.

Доказали, что!

И представь себе, равенство диагоналей - отличительное свойство именно прямоугольника среди всех параллелограммов. То есть верно такое утверждение^

Давай поймём, почему?

Значит, (имеются в виду углы параллелограмма). Но ещё раз вспомним, что - параллелограмм, и поэтому.

Значит, . Ну и, конечно, из этого следует, что каждый из них по! Ведь в сумме-то они должны давать!

Вот и доказали, что если у параллелограмма вдруг (!) окажутся равные диагонали, то это точно прямоугольник .

Но! Обрати внимание! Речь идёт о параллелограммах ! Не любой четырехугольник с равными диагоналями - прямоугольник, а только параллелограмм!

Свойства четырехугольников. Ромб

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм, потому что у него и (Вспоминаем наш признак 2).

И снова, раз ромб - параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

Почему? Ну, раз ромб - это параллелограмм, то его диагонали делятся пополам.

Почему? Да, потому же!

Иными словами, диагонали и оказались биссектрисами углов ромба.

Как в случае с прямоугольником, свойства эти - отличительные , каждые из них является ещё и признаком ромба.

Признаки ромба.

А это почему? А посмотри,

Значит, и оба этих треугольника - равнобедренные.

Чтобы быть ромбом, четырёхугольник сперва должен «стать» параллелограммом, а потом уже демонстрировать признак 1 или признак 2.

Свойства четырехугольников. Квадрат

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно, почему? Квадрат - ромб - биссектриса угла, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

Почему? Ну, просто применим теорему Пифагора к.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Свойства параллелограмма:

  1. Противоположные стороны равны: , .
  2. Противоположные углы равны: , .
  3. Углы при одной стороне составляют в сумме: , .
  4. Диагонали делятся точкой пересечения пополам: .

Свойства прямоугольника:

  1. Диагонали прямоугольника равны: .
  2. Прямоугольник - параллелограмм (для прямоугольника выполняются все свойства параллелограмма).

Свойства ромба:

  1. Диагонали ромба перпендикулярны: .
  2. Диагонали ромба являются биссектрисами его углов: ; ; ; .
  3. Ромб - параллелограмм (для ромба выполняются все свойства параллелограмма).

Свойства квадрата:

Квадрат - ромб и прямоугольник одновременно, следовательно для квадрата выполняются все свойства прямоугольника и ромба. А так же.

Сегодня рассмотрим геометрическую фигуру - четырехугольник. Из названия этой фигуры уже становится понятно, что у этой фигуры есть четыре угла. А вот остальные характеристики и свойства этой фигуры мы рассмотрим ниже.

Что такое четырех угольник

Четырёхугольник - многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки. Площадь четырехугольника равна полупроизведению его диагоналей и угла между ними.

Четырехугольник - это многоугольник с четырьмя вершинами, три из которых не лежат на одной прямой.

Виды четырехугольников

  • Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
  • Четырехугольник, у которого две противоположные стороны параллельны, а две другие − нет, называется трапецией.
  • Четырехугольник, у которого все углы прямые, является прямоугольником.
  • Четырехугольник, у которого все стороны равны, является ромбом.
  • Четырехугольник, у которого все стороны равны и все углы прямые, называется квадратом.
Четырехугольник может быть:


Самопересекающимся


Невыпуклым


Выпуклым

Самопересекающийся четырехугольник - это четырехугольник, у которого любые из его сторон имеют точку пересечения (на рисунке синим цветом).

Невыпуклый четырехугольник - это четырехугольник, в котором один из внутренних углов более 180 градусов (на рисунке обозначен оранжевым цветом).

Сумма углов любого четырехугольника, который не является самоперсекающимся всегда равна 360 градусов.

Особые виды четырехугольников

Четырехугольники могут обладать дополнительными свойствами, образуя особые виды геометрических фигур:

  • Параллелограмм
  • Прямоугольник
  • Квадрат
  • Трапеция
  • Дельтоид
  • Контрпараллелограмм

Четырехугольник и окружность

Четырехугольник, описанный вокруг окружности (окружность, вписанная в четырехугольник).

Главное свойство описанного четырехугольника:

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин противоположных сторон равны.

Четырехугольник, вписанный в окружность (окружность, описанная вокруг четырехугольника)

Главное свойство вписанного четырехугольника:

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы противоположных углов равны 180 градусов.

Свойства длин сторон четырехугольника

Модуль разности любых двух сторон четырёхугольника не превосходит суммы двух других его сторон.

|a - b| ≤ c + d

|a - c| ≤ b + d

|a - d| ≤ b + c

|b - c| ≤ a + d

|b - d| ≤ a + b

|c - d| ≤ a + b

Важно . Неравенство верно для любой комбинации сторон четырехугольника. Рисунок приведен исключительно для облегчения восприятия.

В любом четырёхугольнике сумма длин трёх его сторон не меньше длины четвёртой стороны .

Важно . При решении задач в пределах школьной программы можно использовать строгое неравенство (<). Равенство достигается только в случае, если четырехугольник является "вырожденным", то есть три его точки лежат на одной прямой. То есть эта ситуация не попадает под классическое определение четырехугольника.


В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Одна из наиболее интересных тем по геометрии из школьного курса - это «Четырехугольники» (8 класс). Какие виды таких фигур существуют, какими особыми свойствами они обладают? В чем уникальность четырехугольников с углами по девяносто градусов? Давайте разберемся во всем этом.

Какая геометрическая фигура называется четырехугольником

Многоугольники, которые состоят из четырех сторон и, соответственно, из четырех вершин (углов), называются в евклидовой геометрии четырехугольниками.

Интересна история названия этого вида фигур. В российском языке существительное «четырехугольник» образовано от словосочетания «четыре угла» (точно так же, как «треугольник» - три угла, «пятиугольник» - пять углов и т. п.).

Однако на латыни (через посредничество которой пришли многие геометрические термины в большинство языков мира) он называется quadrilateral. Это слово образовано из числительного quadri (четыре) и существительного latus (сторона). Так что можно сделать вывод, что у древних этот многоугольник именовался не иначе как "четырехсторонник".

Кстати, такое название (с упором на наличие у фигур этого вида четырех сторон, а не углов) сохранилось в некоторых современных языках. Например, в английском - quadrilateral и в французском - quadrilatère.

При этом в большинстве славянских языков рассматриваемый вид фигур идентифицируют все так же по количеству углов, а не сторон. Например, в словацком (štvoruholník), в болгарском («четириъгълник»), в белорусском («чатырохкутнік»), в украинском («чотирикутник»), в чешском (čtyřúhelník), но в польском четырехугольник именуют по количеству сторон - czworoboczny.

Какие виды четырехугольников изучаются в школьной программе

В современной геометрии выделяются 4 вида многоугольников с четырьмя сторонами.

Однако из-за слишком сложных свойств некоторых из них на уроках геометрии школьников знакомят только с двумя видами.

  • Параллелограмм (parallelogram). Противолежащие стороны четырехугольника такого попарно параллельны между собой и, соответственно, равны также попарно.
  • Трапеция (trapezium или trapezoid). Этот четырехугольник состоит из двух противолежащих сторон, параллельных между собой. Однако другая пара сторон не имеет такой особенности.

Не изучаемые в школьном курсе геометрии виды четырехугольников

Помимо вышеперечисленных, существуют еще два вида четырехугольников, с которыми школьников не знакомят на уроках геометрии, из-за их особой сложности.

  • Дельтоид (kite) - фигура, в которой каждая из двух пар смежных сторон равна по длине между собою. Свое название такой четырехугольник получил из-за того, что по внешнему виду он довольно сильно напоминает букву греческого алфавита - «дельта».
  • Антипараллелограмм (antiparallelogram) - эта фигура так же сложна, как и ее название. В ней две противоположные стороны равны, но при этом они не параллельны между собою. Кроме того, длинные противоположные стороны этого четырехугольника пересекаются между собой, как и продолжения двух других, более коротких сторон.

Виды параллелограмма

Разобравшись с основными видами четырехугольников, стоит обратить внимание на его подвиды. Так, все параллелограммы, в свою очередь, тоже делятся на четыре группы.

  • Классический параллелограмм.
  • Ромб (rhombus) - четырехугольная фигура с равными сторонами. Ее диагонали пересекаются под прямым углом, деля ромб на четыре равных прямоугольных треугольника.
  • Прямоугольник (rectangle). Название это говорит само за себя. Так как это четырехугольник с прямыми углами (каждый из них равен девяноста градусам). Противоположные стороны его не только параллельны между собою, но и равны.
  • Квадрат (square). Как и прямоугольник, это четырехугольник с прямыми углами, но у него все стороны равны между собой. Этим данная фигура близка к ромбу. Так что можно утверждать, что квадрат - это нечто среднее между ромбом и прямоугольником.

Особые свойства прямоугольника

Рассматривая фигуры, в которых каждый из углов между сторонами, равен девяноста градусам, стоит более внимательно остановиться на прямоугольнике. Итак, какими особенными он обладает признаками, отличающими его от других параллелограммов?

Чтобы утверждать, что рассматриваемый параллелограмм - прямоугольник, его диагонали должны быть равны между собою, а каждый из углов - прямыми. Кроме того, квадрат его диагоналей должен соответствовать сумме квадратов двух смежных сторон этой фигуры. Иными словами, классический прямоугольник состоит из двух прямоугольных треугольников, а в них, как известно, В роли гипотенузы выступает диагональ рассматриваемого четырехугольника.

Последний из перечисленных признаков этой фигуры является также ее особенным свойством. Помимо этого, есть и другие. Например, то, что все стороны изучаемого четырехугольника с прямыми углами - это одновременно и его высоты.

Кроме того, если вокруг любого прямоугольника начертить круг, его диаметр будет равен диагонали вписанной фигуры.

Среди других свойств четырехугольника этого, то, что он является плоским и в неевклидовой геометрии не существует. Это связано с тем, что в такой системе отсутствуют четырехугольные фигуры, сумма углов которых равна трехстах шестидесяти градусам.

Квадрат и его особенности

Разобравшись с признаками и свойствами прямоугольника, стоит обратить внимание на второй известный науке четырехугольник с прямыми углами (это квадрат).

Являясь по факту тем же прямоугольником, но с равными сторонами, эта фигура обладает всеми его свойствами. Но в отличие от него, квадрат присутствует в неевклидовой геометрии.

Кроме этого, у данной фигуры, есть и другие собственные отличительные черты. Например, то, что диагонали квадрата не просто равны между собою, но и пересекаются под прямым углом. Таким образом, как и ромб, квадрат состоит из четырех прямоугольных треугольников, на которые ее делят диагонали.

Помимо этого, данная фигура является самой симметричным среди всех четырехугольников.

Чему равна сумма углов четырехугольника

Рассматривая особенности четырехугольников евклидовой геометрии, стоит обратить внимание на их углы.

Так, в каждой из вышеперечисленных фигур, независимо от того, есть у нее прямые углы или нет, общая сумма их всегда одинакова - триста шестьдесят градусов. Это уникальная отличительная черта этого вида фигур.

Периметр четырехугольников

Разобравшись с тем, чему равна сумма углов четырехугольника и другими особенными свойствами фигур этого вида, стоит узнать, какими формулами лучше всего пользоваться, чтобы вычислить их периметр и площадь.

Чтобы определить периметр любого четырехугольника, нужно лишь сложить между собою длину всех его сторон.

Например, в фигуре KLMN ее периметр можно вычислить по формуле: Р = KL + LM + MN + KN. Если подставить сюда числа, получится: 6 + 8 + 6 + 8 = 28 (см).

В случае когда рассматриваемая фигура - это ромб или квадрат, для нахождения периметра можно упростить формулу, просто помножив длину одной из его сторон на четыре: Р = KL х 4. Например: 6 х 4=24 (см).

Формулы четырехугольников площади

Разобравшись с тем, как найти периметр любого фигуры с четырьмя углами и сторонами, стоит рассмотреть наиболее популярные и простые способы нахождения ее площади.


Другие свойства четырехугольников: вписанные и описанные окружности

Рассмотрев особенности и свойства четырехугольника как фигуры евклидовой геометрии, стоит обратить внимание на возможность описывать вокруг или вписывать внутри него круги:

  • Если суммы противолежащих углов фигуры составляют по сто восемьдесят градусов и попарно равны между собою, то вокруг такого четырехугольника можно свободно описать окружность.
  • Согласно теореме Птолемея, если снаружи многоугольника с четырьмя сторонами описан круг, то произведение его диагоналей равно сумме произведений противоположных сторон данной фигуры. Таким образом, формула будет выглядеть так: КМ х LN = KL х MN + LM х KN.
  • Если построить четырехугольник, в котором суммы противоположных сторон равны между собою, то в него можно вписать круг.

Разобравшись с тем, что такое четырехугольник, что за виды его существуют, какие из них имеют только прямые углы между сторонами и какими свойствами они обладают, стоит запомнить весь этот материал. В особенности формулы нахождения периметра и площади рассмотренных многоугольников. Ведь фигуры такой формы - одни из самых распространенных, и эти знания могут пригодиться для вычислений в реальной жизни.

|
в выпуклом четырёхугольник, четырёхугольник
равнобедренная трапеция
равнобокая

Это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), попарно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.).

  • 1 Виды четырёхугольников
  • 2 Четырёхсторонник
  • 3 Свойства
  • 4 Площадь
    • 4.1 Особые случаи
    • 4.2 История
  • 5 См. также
  • 6 Примечания
  • 7 Литература

Виды четырёхугольников

  1. Параллелограмм - четырёхугольник, у которого все противоположные стороны попарно равны и параллельны;
    • Прямоугольник - четырёхугольник, у которого все углы прямые;
    • Ромб - четырёхугольник, у которого все стороны равны;
    • Квадрат - четырёхугольник, у которого все углы прямые и все стороны равны;
  2. Трапеция - четырёхугольник, у которого две противоположные стороны параллельны;
  3. Дельтоид - четырёхугольник, у которого две пары смежных сторон равны.

Четырёхсторонник

Хотя такое название может быть эквивалентно четырёхугольнику, в него часто вкладывают дополнительный смысл. Четвёрка прямых, никакие две из которых не параллельны и никакие три не проходят через одну точку, называется четырёхсторонником. Такая конфигурация встречается в некоторых утверждениях евклидовой геометрии (например, теорема Менелая, прямая Гаусса, прямая Обера, теорема Микеля и др.), в которых часто все прямые являются взаимозаменяемыми.

Свойства

  • Сумма углов четырёхугольника равна 2 π = 360°.
  • Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180°

(). См. также теорема Птолемея.

  • Выпуклый четырёхугольник является описанным около окружности тогда и только тогда, когда суммы длин противоположных сторон равны ()
  • Формула Эйлера : учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей.
  • Средние линии четырёхугольника и отрезок, соединяющий середины его диагоналей, пересекаются в одной точке и делятся ею пополам.
  • Четыре отрезка, каждый из которых соединяет вершину четырёхугольника с центроидом треугольника, образованного оставшимися тремя вершинами, пересекаются в центроиде четырёхугольника и делятся им в отношении 3:1, считая от вершин.
  • Две противоположные стороны четырёхугольника перпендикулярны тогда и только тогда, когда сумма квадратов двух других противоположных сторон равна сумме квадратов диагоналей.
  • Диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов противоположных сторон равны.
  • Средние линии четырёхугольника равны тогда и только тогда, когда равны суммы квадратов его противоположных сторон.
  • См. также свойства центроида четырёхугольника.
  • Шесть расстояний между четырьмя произвольными точками плоскости, взятыми попарно, связаны соотношением:
.

Это соотношение можно представить в виде определителя:

Площадь

Площадь произвольного не самопересекающегося четырёхугольника с диагоналями, и углом между ними (или их продолжениями), равна:

Площадь произвольного выпуклого четырёхугольника равна:

  • , где, - длины диагоналей, a, b, c, d - длины сторон.
  • : где p - полупериметр, а есть полусумма противоположных углов четырёхугольника. (Какую именно пару противоположных углов взять роли не играет, так как если полусумма одной пары противоположных углов равна, то полусумма двух других углов будет и). Из этой формулы для вписанных 4-угольников следует формула Брахмагупты.

Особые случаи

Если 4-угольник и вписан, и описан, то.Если он описан, то площадь равна половине его периметра, умноженной на радиус вписанной окружности

История

В древности египтяне и некоторые другие народы использовали для определения площади четырёхугольника неверную формулу - произведение полусумм его противоположных сторон a, b, c, d:

.

Для непрямоугольных четырёхугольников эта формула даёт завышенное значение площади. Можно предположить, что она использовалась только для определения площади почти прямоугольных участков земли. При неточном измерении сторон прямоугольника эта формула позволяет повысить точность результата за счет усреднения исходных измерений.

См. также

  • Теорема косинусов для четырёхугольника
  • Прямая Обера
  • Соотношение Бретшнайдера

Примечания

  1. Понарин, с. 74
  2. Г. Г. Цейтен История математики в древности и в средние века, ГТТИ, М-Л, 1932.

Литература

В Викисловаре есть статья «четырёхугольник»
  • Болтянский В., Четырехугольники. Квант, № 9,1974.
  • Понарин Я. П. Элементарная геометрия. 2 тт. - М.: МЦНМО, 2004. - С. 74. - ISBN 5-94057-170-0.

в выпуклом четырёхугольник, как найти площадь четырёхугольника, площадь четырёхугольника, площадь четырёхугольника формула, четырёхугольник, четырёхугольники

Четырёхугольник Информацию О