Инструкция

Подберите подкоренному числу такой множитель, вынесение которого из под корня действительно выражение - иначе операция потеряет . Например, если под знаком корня с показателем, равным трем (кубический корень), стоит число 128, то из под знака можно вынести, например, число 5. При этом подкоренное число 128 придется разделить на 5 в кубе: ³√128 = 5∗³√(128/5³) = 5∗³√(128/125) = 5∗³√1.024. Если наличие дробного числа под знаком корня не противоречит условиям задачи, то можно в таком виде. Если же нужен более простой вариант, то сначала разбейте подкоренное выражение на такие целочисленные множители, кубический корень одного из которых будет являться целым число м. Например: ³√128 = ³√(64∗2) = ³√(4³∗2) = 4∗³√2.

Используйте для подбора множителей подкоренного числа , если вычислять в уме степени числа не представляется возможным. Особенно это актуально к корня м с показателем степени больше двух. Если есть доступ в интернет, то можно производить вычисления встроенными в поисковые системы Google и Nigma вычислителями. Например, если надо найти наибольший целочисленный множитель, который можно вынести из под знака кубического корня для числа 250, то перейдя на сайт Google введите запрос «6^3», чтобы проверить, нельзя ли вынести из под знака корня шестерку. Поисковик покажет результат, равный 216. Увы, 250 нельзя разделить без остатка на это число . Тогда введите запрос 5^3. Результатом будет 125, а это позволяет разбить 250 на множители 125 и 2, а значит вынести из под знака корня число 5, оставив там число 2.

Источники:

  • как вынести из под корня
  • Квадратный корень из произведения

Вынести из-под корня один из сомножителей необходимо в ситуациях, когда нужно упростить математическое выражение. Бывают случаи, когда выполнить нужные вычисления с помощью калькулятора невозможно. Например, если вместо чисел используются буквенные обозначения переменных.

Инструкция

Разложите подкоренное выражение на простые сомножители. Посмотрите, какой из сомножителей повторяется столько же раз, указано в показателей корня , или больше. Например, вам нужно извлечь корень из числа а в четвертой степени. В этом случае число можно представить как а*а*а*а = а*(а*а*а)=а*а3. Показателю корня в этом случае будет соответствовать сомножитель а3. Его и нужно вынести за знак .

Извлеките корень получившихся подкоренных в отдельности там, где это возможно. Извлечение корня представляет собой алгебраическое действие, обратное возведению в степень. Извлечение корня произвольной степени из числа найти такое число, которое при возведении его в эту произвольную степень даст в результате данное число. Если извлечение корня произвести нельзя, оставьте подкоренное выражение под знаком корня так, как оно есть. В результате проведения перечисленных действий вы произведете вынесение из-под знака корня .

Видео по теме

Обратите внимание

Будьте внимательны при записи подкоренного выражения в виде сомножителей – ошибка на этом этапе приведёт к неправильным результатам.

Полезный совет

При извлечении корней удобно пользоваться специальными таблицами или таблицами логарифмических корней – этим вы значительно сократите время на нахождение правильного решения.

Источники:

  • знак извлечения корня в 2019

Упрощение алгебраических выражений требуется во многих разделах математики, в том числе при решении уравнений высших степеней, дифференцировании и интегрировании. При этом используется несколько методов, включая разложение на множители. Чтобы применить этот способ, нужно найти и вынести общий множитель за скобки .

Инструкция

Вынесение общего множителя за скобки – один из самых распространенных способов разложения . Этот прием применяется для упрощения структуры длинных алгебраических выражений, т.е. многочленов. Общим может быть число, одночлен или двучлен, а для его поиска применяется распределительное свойство умножения.

Число.Посмотрите внимательно на коэффициенты при каждом многочлена, можно ли разделить их на одно и то же число. Например, в выражении 12 z³ + 16 z² – 4 очевидным является множитель 4. После преобразования получится 4 (3 z³ + 4 z² - 1). Иными , это число является наименьшим общим целочисленным делителем всех коэффициентов.

Одночлен.Определите, ли одна и та же переменная в каждый из слагаемых многочлена. Предположим, что это так, теперь посмотрите на коэффициенты, как в предыдущем случае. Пример: 9 z^4 – 6 z³ + 15 z² – 3 z.

Каждый элемент этого многочлена содержит переменную z. Кроме того, все коэффициенты – числа, кратные 3. Следовательно, общим множителем будет одночлен 3 z:3 z (3 z³ – 2 z² + 5 z - 1).

Двучлен.За скобки общий множитель из двух , переменной и числа, которое является общего многочлена. Поэтому, если множитель -двучлен неочевиден, то нужно найти хотя бы один корень. Выделите свободный член многочлена, это коэффициент без переменной. Теперь примените метод подстановки в общее выражение всех целочисленных делителей свободного члена.

Рассмотрите : z^4 – 2 z³ + z² - 4 z + 4. Проверьте, не является ли какой-либо из целых делителей числа 4 z^4 – 2 z³ + z² - 4 z + 4 = 0. Путем простой подстановки найдите z1 = 1 и z2 = 2, значит, за скобки можно вынести двучлены (z - 1) и (z - 2). Для того, чтобы найти оставшееся выражение, воспользуйтесь последовательным делением в столбик.

Пусть дано выражение . Мы можем этот корень представить в более простом виде, применив к нему теорему об извлечении корня из произведения (§ 97):

Точно так же

Такое преобразование называется вынесением множителя за знак корня.

В результате применения этого преобразования данное выражение упрощается и часто сокращаются требуемые вычисления. В этом можно убедиться на следующих примерах.

Пр и мер 1. Вычислить с точностью до 0,01 выражение

Вычислим каждый из корней с точностью до 0,01:

Нам пришлось извлечь квадратный корень из трёх чисел, и притом мы не можем быть уверены, что результат действительно даст величину выражения с точностью до 0,01 (для уверенности в этом нужно было бы вычислить корни с точностью большей, чем заданная).

Попробуем упростить данное выражение, вынося за знак радикала те множители, которые возможно:

Итак, после преобразования нам придётся извлечь квадратный корень только из одного числа.

Вычислив его с точностью до 0,01, найдём:

Теперь видно, что в первом вычислении мы сделали ошибку на одну сотую, то есть получили результат не с заданной точностью.

Пример 2. Вычислить выражение

Подставив в данное выражение получим:

Нам придётся извлечь корень из шестизначного числа.

Мы значительно упростим вычисления, если предварительно вынесем за знак корня те множители, которые возможно. Будем иметь:

Подставив теперь легко найдём:

Во всех предыдущих примерах подкоренное выражение мы разлагали на множители, выделяя такие, показатель которых делится на два, и извлекали из них корень. В дальнейшем надо приобрести навык сразу выносить нужные множители за знак корня, не прибегая к предварительному разложению на множители подкоренного выражения.

Как видно из примеров, для вынесения множителей из-под знака квадратного корня достаточно показатель каждого множителя разделить на два и записать перед знаком корня этот множитель с показателем, равным полученному частному, а под знаком корня тот же множитель с показателем, равным полученному остатку.

В предыдущем примере .

2. Внесение множителей под знак квадратного корня.

Иногда бывает полезно, наоборот, подвести под знак корня множители, стоящие перед ним.

Пусть, например, требуется вычислить с точностью до 0,001 выражение Вычислив с точностью до 0,001 и умножив результат на 20, получим:

Заранее можем сказать, что результат не соответствует заданной точности, так как, умножив приближённое число 2,646 на 20, мы увеличили в 20 раз и ошибку.

Чтобы получить ббльшую точность, возьмём с точностью до 0,0001. Получим:

Но мы не можем и теперь быть уверены, что достигли требуемой точности.

Произведём вычисление другим способом. Представим данное выражение в таком виде:

Вычислив с точностью до 0,001, получим:

Такоза действительная величина данного выражения, вычисленная с точностью до 0,001.

Рассмотренное преобразование называется внесением множителя под знак корня.

Приведённый пример показывает целесообразность в некоторых случаях такого преобразования.

Чтобы внести под знсис квадратного корня стоящие перед ним множители, достаточно возвести эти множители в квадрат и подкоренное выражение умножить на полученный результат.

В двух первых примерах сначала множитель, стоящий перед знаком корня, был подведён под знак корня, затем произведено умножение.

В третьем примере обе эти операции были выполнены сразу.

3. Приведение подкоренного выражения к целому виду.

Если подкоренное выражение дробное, то часто бывает целесообразно привести его к целому виду, или, как говорят, освободить подкоренное выражение от знаменателя.

Покажем на примерах, как это делается.

Пр имер 1.

Чтобы из знаменателя подкоренного выражения можно было извлечь корень, умножим числитель и знаменатель этого выражения на а. Получим.

Формулы корней. Свойства квадратных корней.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

В предыдущем уроке мы разобрались, что такое квадратный корень . Пришла пора разобраться, какие существуют формулы для корней , каковы свойства корней , и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями - это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да...

Начнём с самой простой. Вот она:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В данном материале мы продолжим рассказывать о том, как преобразовывать рациональные выражения, а конкретно о том, как правильно выносить множитель из-под знака корня. В первом пункте объясним, зачем нужно такое преобразование, далее покажем, как именно оно делается и сформулируем общее для всех случаев правило. Далее покажем, какие существуют методы, чтобы привести подкоренное выражение к удобному для преобразования виду, и разберем примеры решений задач.

Yandex.RTB R-A-339285-1

Что такое вынесение множителя из-под знака корня

Чтобы лучше понять суть подобного преобразования, нужно сначала сформулировать, что такое вообще вынесение множителя из-под знака корня. Сформулируем определение:

Определение 1

Вынесение множителя из-под знака корня представляет собой замену выражения B n · C n на произведение B · C n с условием, что n – нечетное число, или же на произведение B · C – где n – четное число, а B и C – другие числа и выражения.

Если мы имеем в виду только квадратный корень, то есть число n равно двум, то процесс вынесения множителя можно свести к замене выражения B 2 · C на произведение B · C . Отсюда и название данного преобразования: после того, как оно было проведено, множитель B y оказывается свободным от знака корня.

Приведем примеры, поясняющие данное определение. Так, допустим, у нас есть выражение 2 2 · 3 . Оно аналогично B 2 · C , где B равно двум, а C – трем. Заменив данный корень на произведение 2 · 3 и опустив знаки модулей (это можно сделать, поскольку оба множителя являются положительными числами), мы получим 2 · 3 . Мы вынесли множитель 2 2 из-под знака корня.

Приведем еще один пример подобного преобразования. У нас есть выражение (x 2 - 3 · x · y · z) 2 · x = x 2 - 3 · x · y · z · x . Здесь из-под корня был вынесен не просто числовой множитель, а целое выражение с переменными (x 2 − 3 · x · y · z) 2 .

Оба примера относятся к случаю вынесения множителя из-под квадратного корня. Можно также производить данные преобразования и для корней n -ной степени. Вот пример с кубическим корнем: (3 · a 2) 3 · 2 · a 2 3 = 3 · a 2 · 2 · a 2 3

Пример с корнем шестой степени: 1 2 · x 2 + y 2 6 · 5 · (x 2 + y 2) 6 можно преобразовать в произведение 1 2 · x 2 + y 2 · 5 · (x 2 · y 2) 6 , которое, в свою очередь, упрощается до 1 2 · (x 2 + y 2) · 5 · (x 2 + y 2) 6 . В данном случае мы выносим множитель 1 2 · x 2 + y 2 6 .

Мы выяснили, что такое вынесение множителя из-под знака корня. Теперь перейдем к доказательствам, т.е. поясним, почему произведение, полученное в итоге данного преобразования, равнозначно исходному выражению.

Почему возможно заменить корень на произведение

В этом пункте мы будем разбираться, как возможна такая замена и почему корень B n · C n равнозначен произведениям B · C n и B · C n . Обратимся к ранее изученным теоретическим положениям.

Когда мы разбирали преобразование иррациональных выражений, у нас получились некоторые важные результаты, которые мы собрали в таблицу. Здесь нам будут нужны только два из них:

1. Выражение A · B n при условии нечетности n может быть заменено на A n · B n , а для четных n – A n · B n .

2. Выражение A n n при нечетном значении n может быть преобразовано в A , а при четном – в | A | .

Определение 2

Используя эти результаты и зная основные свойства модуля, мы можем вывести следующее:

  • при четном n: B n · C n = B n n · C n = B · C n ;
  • при нечетном n: B n · C n = B n n · C n = B n n · C n = B · C n .

Эти выражения лежат в основе преобразований, которые мы проводим, вынося множитель из-под знака корня.

Следовательно, можно вывести две формулы:

Определение 3

С помощью данных формул можно выполнить вынесение из-под корня сразу нескольких множителей.

Основное правило вынесения множителя из-под корня

Когда нам нужно решать примеры с подобными преобразованиями, чаще всего приходится предварительно приводить подкоренное выражение к виду B n · C . С учетом этого момента мы можем записать следующие правила.

Определение 4

Для вынесения множителя из-под корня в выражении A n нужно предварительно привести корень к виду B n · C n и после этого перейти к произведению B · C n (при нечетном показателе) или к B · C n (при четном показателе, при необходимости раскрываем модули).

Таким образом, схема решения подобных задач выглядит следующим образом:

A n → B n · C n → B · C n , е с л и n - н е ч е т н о е B · C n , е с л и n - ч е т н о е

Если нам надо вынести несколько множителей, то действуем так:

A n → B 1 n · B 2 n · . . . · B k n · C n → B 1 · B 2 · . . . · B k · C n , е с л и n - н е ч е т н о е B 1 · B 2 · . . . · B k · C n , е с л и n - ч е т н о е

Теперь можно переходить к решению задач.

Задачи на вынесение множителя из-под знака корня

Пример 1

Условие: выполните вынесение множителя за знак корня в трех выражениях: 2 2 · 7 , - 1 2 3 2 · 5 , (- 0 , 4) 7 · 11 7 .

Решение

Мы видим, что подкоренные выражения во всех трех случаях уже имеют нужный нам вид. Поскольку в первых двух примерах показателем корня является четное число, а в третьем – нечетное, записываем следующее:

  1. Показатель корня равен 2 . Берем правило вынесения множителя для четного показателя и вычисляем: 2 2 · 7 = 2 · 7 = 2 · 7
  2. Во втором выражении показатель тоже четный, значит, - 1 2 3 2 · 5 = - 1 2 3 · 5 = 1 2 3 · 5
    В этом случае мы можем сначала преобразовать выражения, исходя из основных свойств корня:
    - 1 2 3 2 · 5 = - 1 2 · 1 2 3 2 · 5 = 1 2 3 2 · 5
    А потом уже выносить множитель: 1 2 3 2 · 5 = 1 2 3 · 5 = 1 2 3 · 5 .
  3. Последнее выражение имеет нечетный показатель, поэтому нам понадобится другое правило: (- 0 , 4) 7 · 11 7 = - 0 , 4 · 11 7 .
    Возможен и такой вариант расчета:
    - 0 , 4 7 · 11 7 = (- 1) 7 · 0 , 4 7 · 11 7 = = - 0 , 4 7 · 11 7 = - 0 , 4 7 · 11 7 = - 0 , 4 · 11 7
    ​​​​​​Или такой:
    - 0 , 4 7 · 11 7 = (- 1) 7 · 0 , 4 7 · 11 7 = = - 0 , 4 7 · 11 7 = 0 , 4 7 · - 11 7 = 0 , 4 · - 11 7 = - 0 , 4 · 11 7

Ответ: 1) 2 · 7 ; 2) 1 2 3 · 5 ; 3) - 0 , 4 · 11 7 .

Пример 2

Условие: преобразуйте выражение (- 2) 4 · (0 , 3) 4 · 7 4 · 11 4 .

Решение:

При помощи схемы, приведенной во втором пункте статьи, мы можем вынести из-под корня сразу три множителя.

(- 2) 4 · (0 , 3) 4 · 7 4 · 11 4 = = - 2 · 0 , 3 · 7 · 11 4 = 4 , 2 · 11 4

Можно сделать преобразование в несколько шагов, вынося множителя по одному, но так будет гораздо дольше.

Есть и другой способ. Преобразуем само выражение, приведя его к виду B n · C . После этого уже будем выносить множители:

(- 2) 4 · (0 , 3) 4 · 7 4 · 11 4 = = (- 2 · 0 , 3 · 7) 4 · 11 4 = (- 4 , 2) 4 · 11 4 = = - 4 , 2 · 11 4 = 4 , 2 · 11 4

Ответ: (- 2) 4 · (0 , 3) 4 · 7 4 · 11 4 = - 4 , 2 · 11 4 = 4 , 2 · 11 4 .

Разберем более подробно тот случай, когда подкоренное выражение требует предварительного преобразования. Здесь есть несколько моментов, которые нужно дополнительно пояснить.

Предварительное преобразование подкоренного выражения

Мы уже отмечали, что выражение под корнем не всегда имеет удобный для нас вид. Часто корень дан как A n , и множитель, который нужно вынести, не представлен в явном виде. Иногда это обозначено в условии, но довольно часто множитель приходится определять самостоятельно. Посмотрим, как надо действовать в этих случаях.

Допустим, нам надо вынести заранее определенный множитель B . Естественно, подкоренное выражение должно быть таким, чтобы эта операция была возможна. Тогда для преобразования A n в B n · C n достаточно определить второй множитель, т.е. вычислить значение C из выражения A = B n · C .

Пример 3

Условие: есть выражение 24 · x 3 . Вынесите из-под знака корня множитель 2 3 .

Решение

Здесь мы имеем n = 3 , A = 24 · x , B 3 = 2 3 . Тогда из A = B n · С вычисляем C = A: (B n) = 24 · x: (2 3) = 3 · x .

Значит, 24 · x 3 = 2 3 · 3 · x 3 . Подкоренное выражение имеет нужный нам вид, и мы можем воспользоваться правилом для нечетного показателя и подсчитать: 24 · x 3 = 2 3 · 3 · x 3 = 2 · 3 · x 3 .

Ответ: 24 · x 3 = 2 · 3 · x 3 .

А как быть в случае, если множитель, который нужно вынести, не указан? Тогда у нас есть определенная свобода выбора, и мы можем использовать несколько подходов к решению задачи.

Допустим, нам дано выражение, под корнем у которого стоит степень или произведение нескольких степеней. В таком случае, зная основные свойства степени, мы можем преобразовать выражение в удобный для нас вид с очевидно указанными множителями для вынесения.

Пример 4

Условие : необходимо вынести множитель из-под корня в трех выражениях – 2 4 · 5 4 , 2 7 · 5 4 , 2 22 · 5 4 .

Решение

Преобразование первого выражения не представляет особой сложности, т.к. подобные примеры мы уже разбирали. Сразу вычисляем: 2 4 · 5 4 = 2 · 5 4 = 2 · 5 4 .

Во втором примере легко догадаться, как преобразовать подкоренное выражение: нужно просто представить 2 7 как 2 4 · 2 3 .

2 7 · 5 4 = 2 4 · 2 3 · 5 4 = 2 4 · 40 4 = 2 · 40 4 = 2 · 40 4

В последнем примере также нужно начать с преобразования подкоренного выражения. Сразу отметим, что итоговый вид будет таким:

2 5 4 · 2 2 · 5 4

Теперь покажем, как именно прийти к этому виду. Сначала выполняем деление 22 на 4 , получаем 5 с остатком 2 (если нужно, повторите, как правильно выполнять деление с остатком). Иначе говоря, 22 можно рассматривать как 4 · 5 + 2 . Используя свойства степени, можем записать:

2 22 + 2 5 · 4 + 2 = 2 5 · 4 · 2 2 = (2 5) 4 · 2 2

Таким образом:

2 22 · 5 4 = (2 5) 4 · 2 2 · 5 4 = (2 5) 4 · 20 4 = = 2 5 · 20 4 = 32 · 20 4

Ответ: 1) 2 4 · 5 4 = 2 · 5 4 , 2) 2 7 · 5 4 = 2 · 40 4 , 3) 2 22 · 5 4 = 32 · 20 4 .

Если выражение под корнем не является степенью или произведением степеней, надо попробовать представить его в таком виде. Чаще всего встречаются следующие случаи.

Подкоренное выражение – натуральное составное число. Тогда мы сразу можем увидеть нужные множители, которые надо вынести из-под знака корня, предварительно разложив данное число на простые множители.

Пример 5

Условие : выполните вынесение множителя из-под знака корня в следующих выражениях: 1) 45 ; 2) 135 ; 3) 3456 ; 4) 102 .

  1. Выполняем разложение 45 на простые множители.

То есть 45 = 3 · 3 · 5 = 3 2 · 5 , а 45 = 3 2 · 5 . В этом выражении видно, что выносить мы будем множитель 3 2 . Вычисляем:

3 2 · 5 = 3 · 5 = 3 · 5

  1. Теперь представим в нужном виде число 135 и получим: 135 = 3 · 3 · 3 · 5 = 3 3 · 15 . Иначе можно записать, что 3 2 · 3 · 5 = 3 2 · 15 . Следовательно, 135 = 3 2 · 15 . Мы видим, что вынесению из-под знака корня подлежит множитель 3 2 :

3 2 · 15 = 3 · 15 = 3 · 15

  1. Разложим на простые множители число 3456:

3456 1728 864 432 216 108 54 27 9 3 1 2 2 2 2 2 2 2 3 3 3

У нас получилось, что 3456 = 2 7 · 3 3 , а 3456 = 2 7 · 3 3 . Поскольку 2 7 = 2 3 · 2 + 1 = (2 3) 2 · 2 и 3 3 = 3 2 · 3 , то 2 7 · 3 3 = (2 3) 2 · 2 · 3 2 · 3 = (2 3) 2 · 3 2 · 6 = = 2 3 · 3 · 6 = 24 · 6

  1. Представим натуральное число 102 как произведение простых множителей и получим 2 · 3 · 17 . Видим, что все множители имеют показатель, равный единице, а показатель корня в этом примере равен двум. Следовательно, в данном примере ни один множитель не нужно выносить из-под знака корня, то есть такое действие для 102 нецелесообразно.

Ответ: 1) 45 = 3 · 5 ; 2) 135 = 3 · 15 ; 3) 3456 = 24 · 6 ; 4) 102 .

Теперь разберем, как решать примеры, у которых подкоренное выражение представлено в виде обыкновенной дроби. В этом случае следует числитель и знаменатель разложить на простые множители и посмотреть, можно ли вынести какие-то из них за знак корня. Если у нас есть десятичная дробь или смешанное число, предварительно заменяем их обыкновенными дробями, после чего переходим от корня отношения к отношению корней.

Пример 6

Условие: выполните вынесение множителя за корень в выражении 200 · 0 , 000189 · x 3 и упростите его.

Решение

Для начала перейдем от десятичной дроби к обыкновенной и разложим ее числитель и знаменатель на простые множители.

0 , 189 = 189 1000000 = 3 3 · 7 2 6 · 5 6

Используя свойства степени, перепишем выражение в следующем виде:

3 2 2 · 5 2 3 · 7

Подставим получившееся выражение в исходное и получим:

200 · 0 , 000189 · x 3 = = 200 · 3 2 2 · 5 2 3 · 7 · x 3 = = 200 · 3 2 2 · 5 2 · 7 · x 3 = 6 · 7 · x 3

К такому же ответу можно прийти и с помощью других преобразований:

200 · 0 , 000189 · x 3 = = 200 · 189 1000000 · x 3 = 200 · 189 1000000 3 · x 3 = = 200 · 189 3 1000000 3 · x 3 = 200 · 3 3 · 7 3 100 3 3 · x 3 = = 200 · 3 · 7 3 100 · x 3 = 6 · 7 3 · x 3 = 6 · 7 · x 3

Ответ: 200 · 0 , 000189 · x 3 = 6 · 7 · x 3 .

Иными словами, для обнаружения множителя, который можно вынести за знак корня, можно преобразовывать подкоренное выражение любыми допустимыми способами.

Пример 7

Условие: выполните упрощение иррационального выражения 2 · (3 + 2 · 2) .

Решение

Мы можем преобразовать выражение в скобках как 2 + 2 · 2 + 1 и далее как 2 2 + 2 · 2 · 1 + 1 2 .

То, что у нас получилось, можно свернуть в квадрат суммы с помощью формулы сокращенного умножения: 2 2 + 2 · 2 · 1 + 1 = 2 + 1 2 .

В итоге: 2 · 3 + 2 · 2 = 2 · 2 + 1 2 . Теперь выносим 2 + 1 2 за знак корня и упрощаем выражение:

2 · 2 + 1 2 = 2 · 2 + 1 = = 2 · 2 + 1 = 2 + 2

Ответ: 2 · 3 + 2 · 2 = 2 + 2 .

Теперь посмотрим, как вынести из-под знака корня выражение, содержащее переменные. В целом можно сказать, что для этого используются те же методы, что и при работе с числами.

Пример 8

Условие: вынесите множитель из-под знака корня в выражениях (x - 5) 5 4 и (x - 5) 6 4 .

Решение

  1. Выполняем преобразование в первом примере.

(x - 5) 5 4 = (x - 5) 4 · x - 5 4 = x - 5 · x - 5 4

Знак модуля можно опустить. Посмотрим, каким условием определяется область допустимых значений переменной для исходного выражения. Таким условием будет неравенство (x − 5) 5 ≥ 0 . Для его решения выбираем метод интервалов и получаем x ≥ 5 . Если значение x принадлежит области допустимых значений, то значением выражения x - 5 будет неотрицательное число. Значит, можем записать следующее:

x - 5 · x - 5 4 = x - 5 · x - 5 4

  1. (x - 5) 6 4 = (x - 5) 4 · x - 5 2 4 = = x - 5 · (x - 5) 2 4 = x - 5 · x - 5 2 4

Выполним сокращение показателей корня и степени на два. Обратимся к таблице результатов из статьи о преобразовании иррациональных выражений, о которой мы говорили выше. Возьмем из нее следующий результат: выражение A m n · m можно заменить на A n при условии, что m и n – натуральные числа. Следовательно,

x - 5 · x - 5 2 4 = x - 5 · x - 5

Нужно ли здесь убирать знак модуля? Посмотрим на область допустимых значений данного выражения: ее составляют все действительные числа, поскольку (x − 5) 6 ≥ 0 для любого x . При этом значения x − 5 могут быть больше 0 , если x > 5 , равными 0 или отрицательными. Значит, оставляем выражение в виде x - 5 · x - 5 или представляем его в виде системы уравнений

(x - 5) · x - 5 , x ≥ 5 (5 - x) · 5 - x , x < 5

Ответ: 1) (x - 5) 5 4 = (x - 5) · x - 5 4 ; 2) (x - 5) 6 4 = x - 5 · x - 5 .

Пример 9

Условие: выполните упрощение выражения x 5 + 2 · x 4 · y + x 3 · y 2 .

Решение

Выносим за скобки x 3 и получаем x 3 · (x 2 + 2 · x · y + y 2) . Выражение в скобках можно представить в виде квадрата суммы: x 3 · (x 2 + 2 · x · y + y 2) = x 3 · (x + y) 2 .

Теперь видим множители, подлежащие вынесению из-под корня: x 3 · (x + y) 2 = x 2 · x · (x + y) 2 = x · x + y · x

Также мы можем убрать знаки модуля, в которых находится x, поскольку область допустимых значений будет определена условием x 5 + 2 · x 4 · y + x 3 · y 2 ≥ 0 . Оно равносильно x 3 · (x + y) 2 ≥ 0 , а из него можно сделать вывод, что x ≥ 0 . У нас получилось, что x · x + y · x .

Ответ: x 5 + 2 · x 4 · y + x 3 · y 2 = x · x + y · x .

Это все, что мы хотели бы вам рассказать о вынесении множителя за знак корня. В следующей статье мы разберем обратное действие – внесение множителя под корень.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter