В процессе образования отверстия сверло одновременно совершает вращательное и поступательное движения, при этом режущие кромки сверла срезают тонкие слои материала, образуя стружку. Чем быстрее вращается сверло и чем большее расстояние за один оборот оно преодолевает в направлении оси обрабатываемого отверстия, тем быстрее происходит резание.

Скорость резания зависит от частоты вращения сверла и его диаметра, перемещение сверла вдоль оси заготовки за один оборот влияет на толщину снимаемого елс я материала (стружки). Сверло по сравнению с другими режущими инструментами работа, т в достаточно тяжелых условиях, так как при сверлении затруднен отвод стружки и подвод смазывающе-охлаждающей жидкости.

Основными элементами резания при сверлении являются скорость и глубина резания, подача, толщина и ширина стружки (рис. 3.77).

Скорость резания V — путь, пройденный точкой на режущей кромке сверла, наиболее удаленной от оси его вращения. Определяют скорость резания по формуле V = ndnl1000 (где V- скорость резания, м/мин; d — диаметр сверла, мм; п — частота вращения шпинделя, об/мин; п — постоянное число, равное 3,14; число 1 ООО введено в формулу для перевода диаметра сверла в метры). Величина скорости резания зависит от материала заготовки, материала инструмента и формы его заточки, подачи, глубины резания и наличия охлаждения при обработке отверстия.

Подача 3 измеряется в миллиметрах на один оборот сверла (мм/об). Величина подачи при сверлении выбирается в зависимости от требований, предъявляемых к шероховатости обработанной поверхности и точности обработки, обрабатываемого материала и материала сверля.

Глубина резания t измеряется в миллиметрах и представляет собой расстояние от обрабатываемой поверхности до оси сверла, т.е. при сверлении глубина резания составляет половину диаметра сверла, а при рассверливании — половину разности между диаметром предварительно просверленного отверстия и диаметр ом сверла.

Толщина среза (стружки) измеряется в направлении, перпендикулярном режущей кромки сверла, и равна половине величины перемещения сверла относительно оси обрабатываемого отверстия за один его оборот, т.е. половине величины подачи. Поскольку слой материала за один оборот сверла снимается двумя режущими зубьями, то каждый из этих зубьев удаляет слой материала, толщина которого равна половине величины подачи сверла на один его оборот.

Ширина среза измеряется вдоль режущей кромки и равна ее длине. При рассверливании ширина среза равна длине режущей кромки, участвующей в резании. Измеряется ширина среза в миллиметрах.

Режимы резания устанавливаются с целью обеспечения наибольшей производительности. При этом необходимо учитывать физико-механические свойства материала обрабатываемой заготовки, свойства материала инструмента и требования к качеству обработанной поверхности, заданные чертежом или техническими условиями на изготовление.

Теоретический расчет элементов режима резания выполняют в приведенной ниже последовательности.

1. По специальным справочным таблицам выбирают величину подачи в зависимости от xapat тера обработки, требований к качеству обработанной поверхности, материала сверла и других технологических данных.

2. Рассчитывают скорость инструмента с учетом технологических возможностей, режущих свойств материала инструмента и физико-механических свойств обрабатываемой заготовки.

3. Определяют расчетную частоту вращения шпинделя в соответствии с найденной скоростью резания. Полученную величину сравнивают с паспортными данными станка и принимают равной ближайшему наименьшему значению этой частоты.

4. Определяют действительную скорость резания, с которой будет производиться обработка.

На практике для определения режимов резания используют готовые данные технологических карт и таблиц справочников.

Режимы резания при зенкеровании и развертывании, а также критерии их выбора практически не отличаются от выбора этих параметров при сверлении.

Припуски на обработку отверстий

Припуск — это слой материала, подлежащий снятию при обработке. Величина этого Слоя зависит от требований, предъявляемых к обработанной поверхности и вида обработки.

При сверлении припуск на обработку составляет половину диаметра сверла. При рассверливании припуск определяется в зависимости от требований к обработанной поверхности и от необходимости в ее дальнейшей обработке (зенкеровании, развертывании). Припуск на зенкерование, в зависимости от того, является оно предварительным (перед развертыванием) или окончательным, составляет от 0,5 до 1,2 мм. Величина припуска зависит также от диаметра обрабатываемого отверстия. Припуск на развертывание зависит от диаметра обрабатываемого отверстия и от требований, предъявляемых к качеству обработанной поверхности и составляет от 0,05 до 0,3 мм. Типичные дефекты при обработке отверстий, причины их появления и способы предупреждения приведены в табл. 3.2.

При сверлении режущий инструмент-сверло 1 (рис. 181, а) получает одновременно вращение со скоростью v и поступательное движение вдоль оси, т. е. подачу S. Заготовка 2 при этом закреплена.

Основными элементами резания при сверлении являются: скорость v и глубина резания t, подача S, толщина а и ширина стружки b (рис. 181, б).

Рис. 181. Движения инструмента при сверлении (а) к элементы резания (б)

Скорость резания v - это путь, проходимый в единицу времени точкой режущей кромки, наиболее удаленной от оси сверла.

Скорость резания выбирается в зависимости от величины подачи, диаметра сверла, его стойкости, материала обрабатываемой детали. Эти данные приведены в специальных справочниках.

Скорость резания подсчитывают по формуле:

где π - постоянное число, равное 3 , 14;

п - заданное число оборотов шпинделя (инструмента) в минуту;

D - диаметр режущего инструмента, мм.

От скорости резания зависит стойкость режущего инструмента, т. е. время непрерывной работы его между двумя переточками. Чем выше скорость резания, тем больше выделяется тепла при образовании стружки и тем быстрее режущая кромка тупится.

По найденной скорости резания подсчитывают число оборотов шпинделя станка по формуле:

которое корректируют по кинематическим данным станка.

Подачей S называется величина перемещения режущего инструмента или детали вдоль оси вращения за один оборот.

Так как у сверла две режущие кромки, то подача, приходящаяся на каждую из них,

Правильный выбор подачи имеет большое значение для стойкости режущего инструмента. Всегда выгоднее работать с большой подачей и меньшей скоростью резания, в этом случае сверло изнашивается медленнее. Однако при сверлении отверстий малых диаметров величина подачи ограничивается прочностью сверла. С увеличением диаметра сверла прочность его возрастает, позволяя увеличивать подачу; следует учесть, что увеличение подачи ограничивается прочностью станка.

При выборе режимов резания в первую очередь подбирают наибольшую подачу в зависимости от качества обрабатываемой поверхности, прочности сверла и станка и других факторов (по таблицам, приводимым в справочниках) и корректируется по кинематическим данным станка (берется ближайшая меньшая), а затем устанавливают такую максимальную скорость резания, при которой стойкость инструмента между переточками будет наибольшей.

Режимы сверления в зависимости от диаметра отверстия, обрабатываемого материала, материала сверла и других факторов приведены в справочниках.

Подготовка и наладка станка

Перед началом работы на сверлильном станке необходимо прежде всего проверить исправность его заземления, протереть стол, отверстие шпинделя, проверить наличие ограждения, проверить вхолостую вращение, осевое перемещение шпинделя и работу механизма подачи, закрепление стола.

Подготовка станка к работе заключается в установке и закреплении режущего инструмента и детали и в определении режима резания (скорости и подачи).

Сверло выбирается в соответствии с заданным диаметром отверстия и в зависимости от обрабатываемого материала.

Выбирая диаметр сверла, следует помнить, что при работе сверлом в результате биения отверстие получается несколько большего диаметра, чем сверло. Средние величины разработки отверстия:

Точность сверления в отдельных случаях можно повысить тщательной регулировкой станка, правильной заточкой сверла или применением кондукторной втулки.

В зависимости от того, какой хвостовик имеет сверло - цилиндрический или конический, подбирают сверлильный патрон или соответствующую переходную втулку.

Исходя из того, какую форму и размеры имеет обрабатываемая деталь, выбирают то или иное приспособление для закрепления ее при сверлении.

Прежде чем установить патрон или переходную втулку, необходимо чисто протереть как хвостовик, так и отверстие шпинделя. Запрещается протирание шпинделя при его вращении.

Сверло вводят в отверстие шпинделя легким толчком руки. При установке сверла в патрон необходимо следить за тем, чтобы хвостовик сверла упирался в дно патрона, иначе при работе сверло может переместиться вдоль своей оси. Затем устанавливают приспособление или деталь на столе станка, предварительно очистив как поверхность стола, так и упорную плоскость приспособления или самой детали.

Если необходимо сверлить сквозное отверстие, то во избежание повреждения стола под деталь помещают подкладку (если стол не имеет отверстия).

Зная диаметр и материал сверла, а также материал обрабатываемой детали, налаживают станок на определенное число оборотов и подачу.

Порядок наладки станка на определенное число оборотов и подачу зависит от конструкции станка. В одних станках это производится путем переброски ремня с одной ступени шкива на другую или переключением с помощью рукояток зубчатых колес в коробке скоростей и коробке подач. Многие станки, особенно предназначенные для сверления отверстий малого диаметра, не имеют механической подачи, и перемещение сверла на таких станках осуществляется вручную.

Для повышения стойкости режущего инструмента и получения чистой поверхности отверстия при сверлении металлов и сплавов следует использовать охлаждающие жидкости.

Выбор охлаждающих жидкостей зависит от марки обрабатываемого металла и сплава:

Неправильный выбор режима резания, неточная заточка сверла, сверление без охлаждения вызывают преждевременный износ сверла и являются причиной брака (табл. 2).

Таблица 2
Причины неполадок при сверлении и способы их устранения

4.1. Основы теории резания металлов. .

Сущность обработки металлов резанием заключается в удалении с поверхности заготовки излишней части металла (припуска). При этом заготовка, превращаясь в изделие, приобретает необходимую форму, размеры и шероховатость поверхности, предусмотренные чертежом.

Обработка металлов резанием производится режущими инструментами на различных металлорежущих станках: токарных, фрезерных, строгальных, сверлильных, шлифовальных и др.

В процессе резания различают: обрабатываемую, обработанную поверхность и поверхность резания (рис. 4.1).

Поверхность, подлежащая обработке, называется обрабатываемой поверхностью. Поверхность, полученная в результате обработки (при сверлении — это цилиндрическая поверхность просверленного отверстия), называется обработанной. Поверхность, образуемая режущей кромкой инструмента в процессе резания, называется поверхностью резания.

Процесс резания при сверлении может быть осуществлен при наличии двух рабочих движений режущего инструмента по отношению к обрабатываемой детали: вращательного движения и подачи (рис. 4.2).

Рис. 4.1.

Рис. 4.2. Рабочие движения при сверлении

Элементы резания при сверлении. В процессе образования отверстий на сверлильных станках сверло одновременно совершает вращательное и поступательное движения. При этом режущие кромки сверла срезают тонкие слои металла у неподвижно закрепленной заготовки, образуя стружку, которая, завиваясь и скользя по спиральным канавкам сверла, выходит из обрабатываемого отверстия. Чем быстрее вращается сверло и глубже перемещается вдоль оси за один оборот, тем быстрее осуществляется процесс обработки.

Частота вращения сверла и его диаметр характеризуют скорость резания, а перемещение его вдоль оси за один оборот определяет толщину срезаемой стружки.

Сверло по сравнению с другими режущими инструментами работает в довольно тяжелых условиях, так как при сверлении затрудняется отвод стружки и подвод смазочно-охлаждающей жидкости.

В отличие от резца сверло является не однолезвийным, а многолезвийным режущим инструментом. В процессе резания при сверлении участвуют не только два главных лезвия, но и лезвие перемычки, а также два вспомогательных лезвия, находящихся на направляющих ленточках сверла, что весьма усложняет процесс образования стружки.

В начале обработки передняя поверхность сверла сжимает прилегающие к ней частицы металла. Затем, когда давление, создаваемое сверлом, становится большим, чем силы сцепления частиц металла, происходит их отделение от обрабатываемой поверхности и образование элементов стружки.

При обработке пластичных металлов (сталей) резанием образуются три вида стружки; элементная (скалывания), ступенчатая, сливная, а при обработке малопластичных металлов (чугун, бронза) —стружка надлома. При сверлении образуются два вида стружки: сливная и надлома. Срезаемая стружка значительно изменяет свою форму (увеличивается по толщине и укорачивается по длине). Это явление называется усадкой стружки.

Основными элементами резания при сверлении являются: скорость. и глубина резания, подача, толщина и ширина стружки (рис. 4.3).

Скорость резания v — путь перемещения режущей кромки сверла относительно обрабатываемой заготовки в единицу времени — определяется по формуле:

v = πDn/1000, где

v — скорость резания, м/мин;

D — диаметр сверла, мм;

n— частота вращения сверла, об/мин;

π — постоянное число, равное 3,14.

Так как диаметр отверстия выражается в миллиметрах, а скорость резания — в метрах, то произведение πD необходимо разделить на 1000.

Величина скорости резания зависит от обрабатываемого материала, диаметра, материала сверла и формы его заточки, подачи, глубины резания и охлаждения.

Подача S (мм/об) - перемещение сверла вдоль оси за один его оборот. Величина подачи при сверлении и рассверливании зависит от заданного параметра шероховатости и точности обработки, обрабатываемого материала, прочности сверла и жесткости технологической системы станка.

Глубина резания t (мм) — расстояние от обрабатываемой поверхности до оси сверла (т.е. радиус сверла). Определяется глубина резания по формуле t = D/2, где D — диаметр сверла, мм.

Толщина среза (стружки) а измеряется в направлении, перпендикулярном режущей кромке сверла, и равна S/2.

Ширина среза (стружки) b измеряется вдоль режущей кромки и равна ее длине.

Таким образом, площадь поперечного сечения среза становится больше с увеличением диаметра сверла.

Рис. 4.3.

Рис. 4.4. Силы, действующие на сверло

Материал при обработке отверстия оказывает сопротивление резанию и снятию стружки. Для осуществления процесса резания с помощью механизма подачи станка к режущему инструменту должна быть приложена сила подачи Р, превосходящая силы сопротивления материала, а к шпинделю станка — крутящий момент Мкр (рис. 4.4).

Сила подачи при сверлении и крутящий момент зависят от диаметра сверла D, величины подачи и обрабатываемого материала; так, например, при увеличении диаметра сверла и подачи они также увеличиваются.

Крутящий момент Мкр (Н*м) станка подсчитывается по формуле Мкр = 9750 Nшп/n, где Nшп — мощность на шпинделе; кВт; n — частота вращения шпинделя, об/мин.

В свою очередь, Nшп = Nст* η , где Nст — мощность электродвигателя станка; η — КПД станка.

Мощность , затрачиваемая на резание, будет складываться из мощности, затрачиваемой на вращение, и мощности, затрачиваемой на движение подачи, т.е. Nрез = Nвр +Nпод.

Мощность (кВт), затрачиваемая на вращение, Nвр= Mn/975 000, где M — суммарный момент от сил сопротивления резанию, H*m; n — частота вращения сверла, об/мин.

Расчеты показывают, что мощность, затрачиваемая на движение подачи, мала (0,5—1,5% мощности, затрачиваемой на вращение сверла), и ею можно пренебречь.

Поэтому Nрез = Nвр = Mn/975 000 или N рез = Mv / (3060D). Нагрев инструмента и охлаждение при обработке. В процессе сверления выделяется большое количество теплоты вследствие деформации металла, трения выходящей по канавкам сверла стружки и трения задней поверхности сверла об обрабатываемую поверхность. Основная часть теплоты уносится стружкой, а остальная распределяется между заготовкой и инструментом.

Для предохранения от затупления и преждевременного износа при нагреве режущего инструмента в процессе резания применяют смазочно-охлаждающую жидкость (табл. 4.1), которая отводит теплоту от стружки, заготовки и инструмента. Смазочно-охлаждающая жидкость, смазывая трущиеся поверхности инструмента и заготовки, значительно уменьшает трение и облегчает тем самым процесс резания.

Применяя при обработке отверстий указанные в табл. 4.1 смазочно-охлаждающие жидкости, можно увеличить стойкость режущего инструмента от 1,5 до 3 раз.

4.1. Смазочно-охлаждающие жидкости, применяемые при обработке отверстий

Обрабатываемый материал СОЖ Сверление и зенкерование Развертывание Нарезание резьбы метчиками
Серый чугун Рекомендуемая Укринол-1 (3%) Укринол-1 (3%) Укринол-1 (3%), ОСМ-3
Заменяемая ЭТ-2 (5%) ЭТ-2 (5%) Керосин
Углеродистые стали Рекомендуемая Аквол-2 (5%), Аквол-10 (3%), Укринол-1 (5%), МР-1, ОСМ-3 Укринол-1 (3%), МР-1 ОСМ-3, ОСМ-5
Заменяемая ЭТ-2 (5%), ЭГТ (5—20%), сульфофрезол ЭТ-2 (5%), сульфофрезол ЭТ-2 (5%), сульфофрезол
Легированные стали Рекомендуемая Укринол-1 (3%), СДМУ-2 (10), МР-1, ОСМ-3 Укринол-1 (5%), ОСМ-3, МР-1 Укринол-1 (8%), МР-1
Заменяемая ЭТ-2 (5%), сульфофрезол Сульфофрезол, ЭТ-2 (5%) ЭТ-2 (5%), сульфофрезол
Нержавеющие стали Рекомендуемая Аквол-10 (10%), Укринол-1 (3%), МР-1 Укринол-1 (10%) МР-1
Заменяемая ЭТ-2 осерненная (10%), ЭТ-2 (5%), сульфофрезол Сульфофрезол
Алюминиевые стали Рекомендуемая Укринол-1 (3%) Укринол-1 (16%), ОСМ-3 Укринол-1 (20%), ОСМ-3
Заменяемая МОТ-2, керосиново-мас-ляная смесь ЭГТ (20%), сульфофрезол, МОТ-2
Титановые стали Рекомендуемая Р3-СОЖ8 (10%), МР-1, МР-4 РЗ-СОЖ8 (10%), МР-1, ОСМ-3 МР-1
Заменяемая ЭТ-2 осерненная (10%), сульфофрезол ЭТ-2 осерненная (10%), сульфофрезол Сульфофрезол