Урок и презентация на тему: "Квадратные неравенства, примеры решений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Электронное учебное пособие "Понятная геометрия" для 7-9 классов
Образовательный комплекс 1С: "Геометрия, 9 класс"

Ребята, мы уже умеем решать квадратные уравнения. Теперь давайте научимся решать и квадратные неравенства.
Квадратным неравенством называется неравенство вот такого вида:

$ax^2+bx+c>0$.

Знак неравенства может стоять любой, коэффициенты а, b, c – любые числа ($а≠0$).
Все правила, которые мы определили для линейных неравенств, работают и тут. Эти правила повторите самостоятельно!

Введем еще одно важное правило:
Если у трехчлена $ax^2+bx+c$ отрицательный дискриминант, то если подставить любое значение х, знак трехчлена будет такой же, как и знак у коэффициента а.

Примеры решения квадратного неравенства

можно решать путем построения графиков или построения интервалов. Давайте посмотрим примеры решений неравенств.

Примеры.
1. Решить неравенство: $x^2-2x-8
Решение:
Найдем корни уравнения $x^2-2x-8=0$.
$x_1=4$ и $x_2=-2$.

Построим график квадратного уравнения. Ось абсцисс пересекается в точках 4 и -2.
Наш квадратный трехчлен принимает значения меньшие нуля там, где график функции расположен ниже оси абсцисс.
Посмотрев на график функции, получаем ответ: $x^2-2x-8 Ответ: $-2

2. Решить неравенство: $5x-6

Решение:
Преобразуем неравенство: $-x^2+5x-6 Разделим неравенство на минус один. Не забудем поменять знак: $x^2-5x+6>0$.
Найдем корни трехчлена: $x_1=2$ и $x_2=3$.

Построим график квадратного уравнения, ось абсцисс пересекается в точках 2 и 3.


Наш квадратный трехчлен принимает значения большие нуля там, где график функции расположен выше оси абсцисс. Посмотрев на график функции, получаем ответ: $5x-6 Ответ: $x 3$.

3. Решить неравенство: $2^2+2x+1≥0$.

Решение:
Найдем корни нашего трехчлена, для этого вычислим дискриминант: $D=2^2-4*2=-4 Дискриминант меньше нуля. Воспользуемся правилом, которые мы ввели в начале. Знак неравенства будет такой же, как и знак коэффициента при квадрате. В нашем случае коэффициент положительный, значит наше уравнение будет положительном для любого значения х.
Ответ: При всех х, неравенство больше нуля.

4. Решить неравенство: $x^2+x-2
Решение:
Найдем корни трехчлена и расположим их на координатной прямой: $x_1=-2$ и $x_2=1$.

Если $x>1$ и $x Если $x>-2$ и $x Ответ: $x>-2$ и $x

Задачи на решение квадратных неравенств

Решить неравенства:
а) $x^2-11x+30 б) $2x+15≥x^2$.
в) $3x^2+4x+3 г) $4x^2-5x+2>0$.

Определение квадратного неравенства

Замечание 1

Квадратным неравенство называется т.к. переменная возведена в квадрат. Также квадратные неравенства называют неравенствами второй степени .

Пример 1

Пример .

$7x^2-18x+3 0$, $11z^2+8 \le 0$ – квадратные неравенства.

Как видно из примера, не все элементы неравенства вида $ax^2+bx+c > 0$ присутствуют.

Например, в неравенстве $\frac{5}{11} y^2+\sqrt{11} y>0$ нет свободного члена (слагаемое $с$), а в неравенстве $11z^2+8 \le 0$ нет слагаемого с коэффициентом $b$. Такие неравенства также являются квадратными, но их еще называют неполными квадратными неравенствами . Это лишь означает, что коэффициенты $b$ или $с$ равны нулю.

Методы решения квадратных неравенств

При решении квадратных неравенств используют такие основные методы:

  • графический;
  • метод интервалов;
  • выделения квадрата двучлена.

Графический способ

Замечание 2

Графический способ решения квадратных неравенств $ax^2+bx+c > 0$ (или со знаком $

Данные промежутки и являются решением квадратного неравенства .

Метод интервалов

Замечание 3

Метод интервалов решения квадратных неравенств вида $ax^2+bx+c > 0$ (знак неравенства может быть также $

Решениями квадратного неравенства со знаком $«»$ – положительные промежутки, со знаками $«≤»$ и $«≥»$ – отрицательные и положительные промежутки (соответственно), включая точки, которые отвечают нулям трехчлена.

Выделение квадрата двучлена

Метод решения квадратного неравенства выделением квадрата двучлена заключается в переходе к равносильному неравенству вида $(x-n)^2 > m$ (или со знаком $

Неравенства, которые сводятся к квадратным

Замечание 4

Зачастую при решении неравенств их нужно привести к квадратным неравенствам вида $ax^2+bx+c > 0$ (знак неравенства может быть также $ неравенствами, которые сводятся к квадратным.

Замечание 5

Самым простым способом приведения неравенств к квадратным может быть перестановка в исходном неравенстве слагаемых или перенос их, например, из правой части в левую.

Например, при переносе всех слагаемых неравенства $7x > 6-3x^2$ из правой части в левую получается квадратное неравенство вида $3x^2+7x-6 > 0$.

Если переставить в левой части неравенства $1,5y-2+5,3x^2 \ge 0$ слагаемые в порядке убывания степени переменной $у$, то это приведет к равносильному квадратному неравенству вида $5,3x^2+1,5y-2 \ge 0$.

При решении рациональных неравенств часто используют приведение их к квадратным неравенствам. При этом необходимо перенести все слагаемые в левую часть и преобразовать получившееся выражение к виду квадратного трехчлена.

Пример 2

Пример .

Привести неравенство $7 \cdot (x+0,5) \cdot x > (3+4x)^2-10x^2+10$ к квадратному.

Решение .

Перенесем все слагаемые в левую часть неравенства:

$7 \cdot (x+0,5) \cdot x-(3+4x)^2+10x^2-10 > 0$.

Используя формулы сокращенного умножения и раскрывая скобки, упростим выражение в левой части неравенства:

$7x^2+3,5x-9-24x-16x^2+10x^2-10 > 0$;

$x^2-21,5x-19 > 0$.

Ответ : $x^2-21,5x-19 > 0$.

Понятие математического неравенства возникло в глубокой древности. Это произошло тогда, когда у первобытного человека появилась потребность при счёте и действиях с различными предметами сравнивать их количество и величину. Начиная с античных времён неравенствами пользовались в своих рассуждениях Архимед, Евклид и другие прославленные деятели науки: математики, астрономы, конструкторы и философы.

Но они, как правило, применяли в своих работах словесную терминологию. Впервые современные знаки для обозначения понятий «больше» и «меньше» в том виде, каком их сегодня знает каждый школьник, придумали и применили на практике в Англии. Оказал такую услугу потомкам математик Томас Гарриот. А случилось это около четырёх столетий назад.

Известно множество видов неравенств. Среди них простые, содержащие одну, две и больше переменных, квадратные, дробные, сложные соотношения и даже представленные системой выражений. А понять, как решать неравенства, лучше всего на различных примерах.

Не опоздать на поезд

Для начала представим себе, что житель сельской местности спешит на железнодорожную станцию, которая находится на расстоянии 20 км от его деревни. Чтобы не опоздать на поезд, отходящий в 11 часов, он должен вовремя выйти из дома. В котором часу это необходимо сделать, если скорость его движения составляет 5 км/ч? Решение этой практической задачи сводится к выполнению условий выражения: 5 (11 - Х) ≥ 20, где Х - время отправления.

Это понятно, ведь расстояние, которое необходимо преодолеть селянину до станции равно скорости движения, умноженной на количество часов в пути. Прийти раньше человек может, но вот опоздать ему никак нельзя. Зная, как решать неравенства, и применив свои умения на практике, в итоге получим Х ≤ 7, что и является ответом. Это значит, что селянину следует отправиться на железнодорожную станцию в семь утра или несколько ранее.

Числовые промежутки на координатной прямой

Теперь выясним, как отобразить описываемые соотношения на Полученное выше неравенство не является строгим. Оно означает, что переменная может принимать значения меньше 7, а может быть равным этому числу. Приведём другие примеры. Для этого внимательно рассмотрим четыре рисунка, представленных ниже.

На первом из них можно увидеть графическое изображение промежутка [-7; 7]. Он состоит из множества чисел, размещённых на координатной прямой и находящихся между -7 и 7, включая границы. При этом точки на графике изображаются в виде закрашенных кругов, а запись промежутка производится с использованием

Второй рисунок является графическим представлением строгого неравенства. В данной случае пограничные числа -7 и 7, показанные выколотыми (не закрашенными) точками, не включаются в указанное множество. А запись самого промежутка производится в круглых скобках следующим образом: (-7; 7).

То есть, выяснив, как решать неравенстватакого типа, и получив подобный ответ, можно заключить, что он состоит из чисел, находящихся между рассматриваемыми границами, кроме -7 и 7. Следующие два случая необходимо оценивать аналогичным образом. На третьем рисунке даются изображения промежутков (-∞; -7] U }