Эмбрионизация онтогенеза - это возникновение в процессе эволюции способности к прохождению части стадий развития под защитой материнского тела или специальных (семенных или яйцевых) оболочек. Эмбриональное развитие - не изначальное свойство , а результат эволюции. Эмбрионизация при этом отражает тенденцию развития все усложняющегося в более защищенной и постоянной внутренней среде (табл. 14.2). При этом имеет место функций в онтогенезе и - результат сходно направленного действия отбора (А.А. Захваткин).

Таблица 14.2. Изменения, связанные с эмбрионизацией онтогенеза у животных и растений
Признаки эмбрионизации Животные Растения
Защита зародыша Формирование яйцевых оболочек, снабжение яиц запасами пищи, замена мелких яиц крупными Формирование семенной кожуры, снабжение вегетативного зачатка и зародыша питанием, замена мелких крупными
Забота о потомстве Насиживание яиц, вынашивание детенышей, строительство гнезд, передача индивидуального опыта потомству и т.д. Защита семени завязью (будущим плодом), развитие вегетативного зачатка под «опекунством» материнского
Упрощение циклов развития Переход от развития с метаморфозом к прямому развитию, неотения Ускорение жизненного цикла, неотения
Усиление роли внутренней среды Возникновение плацентарности, амниона, аллантоиса, Переход к развитию зиготы в зародышевом мешке, «живорождение»

В приспособительном значении эмбрионизации можно убедиться на примере эволюции разных типов эмбрионального развития у животных: первично-личиночного, неличиночного и вторично-личиночного. Исходным в эволюции является первично-личиночный тип развития, характерный для животных, откладывающих мелкие яйца с небольшим запасом желтка ( , губки, полихеты, ракообразные, пресноводные костистые , ). Личинка у этих животных свободная и может существовать самостоятельно. При переходе к образованию крупных яиц, содержащих больше желтка, личиночный тип сменяется неличиночным развитием (головоногие моллюски, акулы, миксины, некоторые земноводные, рептилии, птицы, яйцекладущие млекопитающие и др.). При неличиночном развитии зародыш долгое время находится под защитой яйцевых оболочек, потребляя запасы пищи из яйца. В приспособлении позвоночных к наземным условиям большое значение имел переход к неличиночному развитию. У рептилий и птиц по сравнению с амфибиями эмбрионизация онтогенеза усиливается за счет добавления плодного периода и приводит к освобождению начальных стадий развития от водной среды путем создания необходимых условий для развития зародыша в яйце. Запасы пищи в яйце ( и ) увеличиваются, формируются амнион, желточный мешочек, аллантоис, хорион-сероза, изменяются способ дробления и тип эмбриогенеза. Все это определяет возможность развития яиц на суше и выход из них особи, сразу способной к активной самостоятельной жизни.

В целом эмбрионизация онтогенеза сопровождается у растений и животных многими изменениями и приводит к усилению роли внутренней среды в развитии зародыша и эмансипации его от внешней среды. Одно из важных результатов эмбрионизации - снабжение зародыша необходимой пищей и достижение быстрого его развития. В связи с защищенностью зародыша при усилении эмбрионизации отбор идет на уменьшение числа яиц и зародышей, повышение выживаемости зародышей. Высшим этапом эмбрионизации является живорождение, связанное с плацентацией и вскармливанием детенышей молоком. В силу возрастания защищенности зародыша и усиления системы морфогенетических корреляций эмбриональное развитие у млекопитающих делается особенно консервативным по сравнению с таковым других животных (включая рептилий и птиц). Консервативность эмбриональных стадий, видимо, обезвреживает эффект малых мутаций, а при возникновении мутаций, выходящих за пределы допустимых пороговых уровней, способствует элиминации их носителей. Так, эмбрионизация способствует усилению целостности онтогенеза в эволюции, явлениям неотении и фетализации.

Живорождение - это такой способ воспроизведения потомства, при котором зародыш развивается внутри материнского организма и на свет появляется особь, уже свободная от яйцевых оболочек. Живородящи некоторые кишечнополостные, ветвистоусые рачки, моллюски, многие круглые черви, некоторые иглокожие, сальпы, рыбы (акулы, скаты, а также аквариумные рыбы - гуппи, меченосцы, мол- лиенезии и др.), некоторые жабы, червяги, саламандры, черепахи, ящерицы, змеи, почти все млекопитающие (в том числе и человек).

Истинным живорождением часто считают лишь рождение особей у плацентарных. Такое живорождение противопоставляют яйцерождению, когда развитие зародыша и освобождение его от яйцевых оболочек происходят вне материнского организма - после откладки яиц. Оно свойственно, например, насекомым, большинству рыб, птицам, пресмыкающимся. Историческая связь между живорождением и яйцерождением доказывается случаями яйцеживорождения, когда зародыш достигает полного развития в яйце, находящемся в теле матери, и там же происходит освобождение его от яйцевых оболочек (у некоторых рыб и змей).

У некоторых растений на надземных органах формируются растеньица - детки, падающие затем на почву. Пример такого растения - брио- филлум, или каланхое.

Развитие зародыша при живорождении может происходить в яичнике, яйцеводах или в их расширениях, преобразованных в матку. Источником питания при живорождении служат запасные питательные вещества яйца или же вещества, поступающие из материнского организма. В последнем случае часто имеется специальный орган - плацента, через который осуществляется газообмен и питание зародыша (у некоторых членистоногих, у сальп, некоторых видов акул и скатов, млекопитающих животных, кроме клоачных и сумчатых, и у человека).

Жнвородящие акулы: (сверху вниз):
1 - ангел; 2 - рыба-молот; 3 - синяя акула.

У некоторых растений в пазухах листьев и в соцветиях вместо цветков образуются маленькие побеги, отпадающие с материнского растения и укореняющиеся.

Яйцеживородящие аквариумные рыбы:
1 - моллиенезия; 2 - меченосец; 3 - гуппи; 4 - гамбузия.

Такие растения назвали живородящими, так как ошибочно считали, что у них на материнском растении прорастают семена. Распространены эти растения главным образом в полярных, высокогорных или степных местах, где не успевают вызреть семена. К ним относится, например, степной мятлик, некоторые арктические овсяницы, камнеломки. К живородящим растениям причисляют и те, на листьях которых возникают «детки», которые затем отваливаются и прорастают, как, например, у комнатного брио- филлуша.


2). Стадии или фазы развития насекомых. Время, с момента откладки яиц и до появления взрослого насекомого, называется периодом индивидуального развития или онтогенезом. За это время насекомые проходят два периода- развитие внутри яйца или эмбриогенез, и развитие после выхода из яйца- постэмбриональное развитие. В целом развитие сопровождается прохождением трёх или четырёх фаз: фазы яйца, личинки, куколки и взрослого насекомого.

а).) Фаза яйца. Яйцо насекомого представляет собой крупную клетку и помимо ядра и протоплазмы содержит дейтоплазму или желток необходимый для питания зародыша. Яйцо состоит из наружного хитинового покрытия называемого хорионом. Под хорионом находится желточная оболочка, а под ней желток и ядро, которое и является собственно яйцом. Размеры и внешний вид яйца весьма разнообразны. У некоторых тлей трипсов, мелких перепончатокрылых длина яйца составляет 0,02-0,03 мм, а у крупных саранчовых 8-10 мм и более. Поверхность яйца может быть гладкой или с различными скульптурными образованиями. По форме яйца бывают овальными, удлинёнными, полусферическими, бутылковидными, бочёнкообразными и т.д. Расцветка яиц разнообразная; чёрные, красные, зелёные с множеством других цветовых оттенков.

б). Фаза личинки. Сразу после вылупления личинка нередко лишена своей нормальной окраски, бесцветная или беловатая и имеет мягкие покровы. Но у открыто живущих личинок, окрашивание и затвердевание покровов происходит очень быстро и личинка приобретает нормальный вид и вступает в пору усиленного питания, роста и развития. Следует отметить, что при выходе из яйца все органы личинки достаточно развиты для питания и обмена с внешней средой. Личиночная стадия является стадией питания и все органы личинки - это типичные органы для сохранения и переработки пищи. Личинки насекомых весьма разнообразны, но могут быть сведены к двум основным типам личинок- имагообразным, т. е. сходным с взрослой фазой и неимагообразным. Иногда их называют первичными и вторичными личинками, соответственно



в). Фаза куколки или нимфы. Эта фаза развития свойственна насекомым с полным превращением. Закончив свой рост, личинка прекращает питание и становится неподвижной, линяет в последний раз и превращается в куколку. Характерная особенность куколки – неспособность питаться и пребывание в неподвижном состоянии. Она живёт за счёт запасов накопленных личинкой и часто рассматривается как фаза покоя. Но в действительности в этой фазе происходят интенсивные процессы внутренней перестройки организма с личиночной во взрослую стадию- стадию имаго.

г). Фаза имаго. Вышедшее из куколки насекомое имеет уже признаки взрослой фазы, но первое время крылья остаются свёрнутыми. Спустя короткое время насекомое расправляет их, его покровы уплотняются и окрашиваются, возникает вполне сформировавшееся взрослое насекомое. Биологическая функция взрослой фазы состоит в размножении и расселении. Это уже функция видовой жизни и направлена на сохранение существования вида. Благодаря крыльям способность расселения взрослых насекомых значительно возрастает, а размножение позволяет оставлять потомство в новых местах.



3) Метаморфоз насекомых. Под метаморфозом понимаются все изменения, которым подвергается популяция вида во время всего периода развития одного поколения. Другими словами, от стадии яйца и до момента, когда потомки, вышедшие из яйца, развиваются до взрослых особей способных размножаться. Постэмбриональное развитие насекомых сопровождается превращением, или метаморфозом. Сущность метаморфоза состоит в том, что развивающаяся особь претерпевает в течение жизни значительную перестройку своей морфологической организации и биологических особенностей. В связи с этим возникает разделение постэмбрионального развития не мене, чем на две фазы - личиночную и взрослую, иначе называемую имагинальной. В фазе личинки происходит рост и развитие особи, в фазе имаго- размножение и расселение. В ряде случаев между этими двумя фазами возникает промежуточная фаза- куколка. В соответствии с общим числом фаз развития различают два основных типа метаморфоза - неполное и полное превращение. Неполное превращение, или гемиметаболия характеризуется прохождением трёх фаз - яйца, личинки, имаго. Полное превращение имеет четыре фазы- яйцо, личинка, куколка, имаго.

4) Жизненный цикл насекомых. Весь период развития насекомого или его жизненный цикл, начиная с фазы яйца и заканчивая взрослой половозрелой фазой, обозначается понятием поколение или генерация. Продолжительность генерации, а значит и количество поколений в году изменяется в значительных пределах у разных видов насекомых. Этот показатель зависит от двух основных факторов – наследственности и внешних условий. Некоторые виды успевают в течение года дать 2-3 и более последовательных поколений. В соответствии с этим различают насекомых с двойной, тройной или многократной генерацией. Такие виды обозначаются как дву- или трёхгенерационные (би или тривольтинные) или многогенерационные(многовольтинные). Многие виды в течение года, вне зависимости от внешних условий дают только одно поколение, это одногенерационные (моновольтинные) виды.К их числу относятся различные представители из группы мелких прыгающих листоедов, большинство саранчовых клопы- черепашки и др. Нередко одна генерация на севере своего ареала бывает у таких видов, которые в южных областях дают 2-3 и более поколений. Например, яблонная плодожорка и капустная белянка в северной зоне России имеют всего одно поколение, а в наших условиях 2-3, тогда как южнее 4-5 поколений в году. Этот пример показывает, насколько сильным может быть влияние внешних условий. Существуют виды, развитие которых не укладывается в один год; обычно это наблюдается у видов, личинки которых живут в почве. Так, генерация хлебного жука-кузьки двухгодичная, а у майского хруща и жуков-щелкунов трёх- четырёхгодичная. Иногда весь жизненный цикл охватывает и больший период. Североамериканские певчие цикады развиваются в течение 13 и иногда 17 лет. Если после откладки яиц родители быстро погибают, а сам период кладки непродолжителен, то даже при нескольких поколениях каждое из них чётко ограничено от предыдущей. Но очень часто продолжительность жизни имаго может быть значительной, а период яйцекладки растянутым; тогда поколения налегают друг на друга и их разграничение затрудняется.

Сезонное развитие и годичный цикл Существенной стороной жизненного цикла является сезонное прохождение фаз развития. Период активной жизни вида может приходиться на различные сезоны года - весну, лето, осень, в зависимости от зимующей фазы и числа поколений. Существенное влияние могут оказать и внешние условия. Особенности сезонного развития и зимующей фазы вида насекомого определяют специфику его жизненного цикла в году. Следовательно, каждый вид можно характеризовать свойственным ему годичным циклом развития. Годичный цикл и сезонное развитие того или иного вида насекомых определяются двумя основными причинами: наследственными свойствами и внешними условиями. Среди факторов внешней среды решающее значение в регулировании годичного цикла имеют температура, влажность и в особенности длина дня. Годичный цикл это по своей сути приспособление вида к местным условиям существования. Это приспособление достигается, в большинстве случаев, с помощью диапаузы. Диапауза -это временная задержка развития насекомого и она является главным регулирующим механизмом годичного цикла насекомых. В конечном итоге годичный цикл каждого вида имеет свои особенности и может быть охарактеризован числом поколений в году, зимующей фазой и фазами активной жизни, способами размножения, сменой поколений, диапаузой. В результате годичного цикла появление и развитие отдельных фаз насекомого в природе оказывается привязанным к определённому времени. Поэтому познание годичного цикла является важнейшим этапом в исследовании биологии вида. Без этого знания не может быть и речи о разработке эффективных мероприятий борьбы с вредными видами и мер использования полезных видов насекомых. Многолетние наблюдения за годичным циклом видов позволяют установить крайние и средние даты появления и развития отдельных фаз и связать их с наступлением ряда природных явлений - сроками цветения, плодоношения, развития отдельных видов растений, средних температур воздуха, показателей длины светового дня и прочее. Такие ежегодные наблюдения называются фенологическими. Они позволяют установить конкретные, ежегодно повторяющиеся явления в жизни насекомых в зависимости от условий внешней среды или другими словами, фенологию вида. Для наглядного изображения годичного жизненного цикла вида насекомого применяются графические схемы (таблицы) с условными обозначениями отдельных фаз развития. Такие схемы получили названия - фенологический календарь. Эти календари, составленные по многолетним данным, применяются для прогноза сроков появления и развития вредных и полезных насекомых. На этой основе составляются планы и мероприятия по защите растений от вредителей.

Развитие насекомых

Индивидуальное развитие насекомых (онтогенез) складывается из эмбрионального развития, протекающего на фазе яйца, и постэмбрионального - после выхода личинки из яйца до достижения взрослой фазы - имаго.

Эмбриональное развитие . Яйца насекомых разнообразны по форме в связи с приспособлениями к среде, в которой они развиваются. Например, у жуков яйца преимущественно овальные и развиваются чаще в закрытом субстрате; у клопов - бочонковидные, прикрепленные к субстрату; у бабочек - башенковидные или бутылковидные; у сетчатокрылых (золотоглазок) яйца со стебельком. Часто яйца откладываются группами. Кладки яиц могут быть открытыми или закрытыми. Примером открытой кладки могут служить яйца колорадского жука, приклеенные самкой на нижнюю сторону листьев картофеля. К закрытым кладкам относятся кубышки саранчовых, образованные из частиц почвы, сцементированных выделениями придаточных желез самок. Тараканы откладывают яйца в оотеках - яйцевых капсулах, образующихся в половых путях самки.

Яйца насекомых снаружи покрыты оболочкой - хорионом, защищающим их от высыхания (рис. 337). На поверхности оболочки имеется микропиле - маленькое отверстие со сложной "пробкой" с канальцем внутри для проникновения сперматозоидов при оплодотворении. Под хорионом находится тонкая желточная оболочка, а под ней плотный слой цитоплазмы. Центральная часть цитоплазмы переполнена желтком. В цитоплазме расположены ядро и полярные тельца.

Дробление поверхностное. Вначале ядро многократно делится, дочерние ядра с участками цитоплазмы мигрируют к периферии яйца, покрываются мембраной и образуется поверхностный слой клеток - бластодерма, а в центре яйца остается желток. На брюшной поверхности бластодермы клетки более высокие и образуют утолщение - зародышевую полоску. Эта стадия эмбрионального развития насекомых соответствует бластуле.

Деление клеток зародышевой полоски ведет к развитию зародыша. Зародышевая полоска постепенно погружается, образуя брюшную борозду.

Рис. 337. Строение яйца насекомого (из Бей-Биенко): 1 - микропиле, 2 - хорион, 3 - желточная оболочка, 4 - ядро, 5 - полярные тельца, 6 - желток

Складки бластодермы над бороздой смыкаются, и образуются зародышевые оболочки: сероза и амнион (рис. 338). Здесь проявляются конвергенция с высшими позвоночными животными, у которых также имеются подобные оболочки. Благодаря образующейся амниотической полости зародыш оказывается во взвешенном состоянии внутри яйца, что надежно защищает его от механических повреждений Кроме того, жидкость, заполняющая амниотическую полость, облегчает обменные процессы зародыша.

Зародышевая полоска в дальнейшем дифференцируется на два слоя: нижний - эктодерму и верхний - энтомезодерму. Энтомезодерма у разных видов насекомых может образовываться по-разному: путем инвагинации или иммиграции клеток.

На следующем этапе развития эктодермальный слой полоски начинает по бокам загибаться вверх, а затем смыкается на спине, образуя замкнутую стенку зародыша. При смыкании стенок тела на спине часть желтка и желточных клеток попадает внутрь тела зародыша. Одновременно с образованием стенок тела зародыша в энтомезодерме обособляются две группы клеток на переднем и заднем концах тела. Это два зачатка средней кишки. В дальнейшем из этих двух зачатков начинают формироваться передний и задний участки средней кишки, которые потом смыкаются. Одновременно на переднем и заднем концах тела зародыша образуются глубокие впячивания эктодермы, из которых формируются передний и задний отделы кишки. Потом все три отдела соединяются, образуя сквозную кишечную трубку.

Мезодермальная полоска распадается на парные метамерные зачатки целомических мешков. Но в дальнейшем они распадаются, и из мезодермы образуются мускулатура зародыша, соматический листок целомического эпителия, сердце, жировое тело и гонады. Висцеральный листок целомического эпителия у насекомых не образуется, а полость тела становится смешанной - миксоцелью. Целомические зачатки сливаются с первичной полостью тела.

Позднее из эктодермы формируется нервная система и трахейная система. Из стенок задней кишки образуются мальпигиевы сосуды.

В процессе развития зародыш насекомого претерпевает сегментацию, которая вначале проявляется в передней части, а потом в задней части тела. В головном отделе закладываются акрон с глазными, губными и

антеннальными лопастями, интеркалярный сегмент и три челюстных сегмента. Затем оформляются три грудных и десять брюшных сегментов и анальная лопасть.

У многих насекомых зародыш проходит три стадии, характеризующиеся разным составом зачатков конечностей: протоподную, полиподную и олигоподную (рис. 339).

Для эмбрионального развития насекомых характерно явление бластокинеза. Это изменение положения тела зародыша в яйце, при котором наиболее полно используются запасы желтка.

Два типа бластокинеза для насекомых описаны А. Г. Шаровым. У насекомых с неполным превращением вначале зародыш располагается спиной вверх и головой к переднему концу яйца, а затем при образовании амниотической полости зародыш переворачивается брюшной стороной вверх, а голова соответственно оказывается в задней части яйца.

По-другому происходит бластокинез у большинства насекомых с полным превращением и у прямокрылых, у которых зародыш погружается в желток, не меняя положения тела в яйце.

В эмбриональном развитии насекомых проявляются приспособления к жизни на суше: защитные оболочки (хорион, сероза, амнион), запас питательных веществ (много желтка), амниотическая полость, заполненная жидкостью.

Перед вылуплением сформировавшаяся личинка насекомого заглатывает жидкость из амниотической полости, за счет чего усиливается тургор тела. Личинка прорывает хорион головой, на которой часто имеются яйцевые зубчики или шип.

Постэмбриональное развитие . В период постэмбрионального развития насекомых после выхода из яйца происходит рост молодого животного путем последовательных линек и прохождения качественно различных фаз развития. В течение онтогенеза, или индивидуального развития, насекомые линяют от 3-4 до 30 раз. В среднем число линек составляет 5-6. Промежуток между линьками называют стадией, а состояние развития - возрастом. Морфологические изменения в процессе развития от личинки до взрослого насекомого называются метаморфозом. У всех насекомых, кроме низших бескрылых форм, после достижения взрослого состояния - имаго рост и линьки прекращаются. Поэтому, например, вариации в размерах жуков одного вида нельзя относить к разным возрастным группам, а следует считать лишь проявлением индивидуальной изменчивости.

Различают три основных типа постэмбрионального развития насекомых: 1) прямое развитие без метаморфоза - аметаболия, или протометаболия; 2) развитие с неполным превращением, или с постепенным метаморфозом, - гемиметаболия; 3) развитие с полным превращением, т.е. с резко выраженным метаморфозом, - голометаболия.

Аметаболия , или прямое развитие, наблюдается только у первично-бескрылых насекомых из отряда щетинкохвостых (Thysanura), к которым относится часто встречающаяся чешуйница (Lepisma). Такой же тип развития наблюдается у Entognatha: коллембол (Collembola) и двухвосток (Diplura).

При аметаболии из яйца выходит личинка, похожая на имаго. Отличия касаются лишь размеров, пропорций тела и степени развития гонад. В отличие от крылатых насекомых, у них линьки продолжаются и в имагинальном состоянии.

Гемиметаболия - неполное превращение, или развитие с постепенным метаморфозом. Характерно для многих крылатых насекомых, например для тараканов, кузнечиков, саранчи, клопов, цикад и др.

При гемиметаболии из яйца выходит личинка, похожая на имаго, но с зачаточными крыльями и недоразвитыми гонадами. Такие имагоподобные личинки с зачатками крыльев называются нимфами. Это название заимствовано из древнегреческой мифологии и относится к божественным крылатым существам в облике девушек. Нимфы насекомых несколько раз линяют, и с каждой линькой зачатки крыльев у них увеличиваются. Нимфа старшего возраста линяет, и из нее выходит крылатое имаго. На рисунке 340 показаны фазы развития саранчи (яйцо, нимфы 1-5-го возрастов и имаго) как пример неполного превращения. Такое типичное неполное превращение называют гемиметаморфозом.

Среди насекомых с неполным превращением имеются случаи развития, когда нимфы заметно отличаются от имаго наличием особых личиночных приспособлений - провизорных органов. Такое развитие наблюдается у стрекоз, поденок, веснянок. Нимфы этих насекомых живут в воде, и их потому называют


Рис. 340. Развитие с неполным превращением у саранчи Locusta migratoria (по Холодковскому): 1 - переднефудь, 2 - среднегрудь с зачатками крыльев, 3 - заднегрудь с зачатками крыльев

наядами (водными нимфами). У них имеются такие провизорные органы, как трахейные жабры, исчезающие у сухопутных имаго. А у личинок стрекоз еще имеется "маска" - видоизмененная нижняя губа, служащая для схватывания добычи.

Голометаболия - полное превращение. Фазами развития при голометаболии являются: яйцо - личинка - куколка - имаго (рис. 341). Такое развитие характерно для жуков, бабочек, двукрылых, перепончатокрылых, ручейников и сетчатокрылых.


Рис. 341. Развитие с полным превращением у тутового шелкопряда Bombyx топ (по Лейнесу): А - самец, Б - самка, В - гусеница, Г- кокон, Д - куколка из кокона

Личинки насекомых с полным превращением не похожи на имаго и часто отличаются экологически. Так, например, личинки майских жуков живут в почве, а имаго - на деревьях. Личинки многих мух развиваются в почве, гниющем субстрате, а имаго летают и посещают цветы, питаясь нектаром. Личинки таких насекомых несколько раз линяют и затем превращаются в куколку. На фазе куколки происходит гистолиз - разрушение личиночных органов и гистогенез - формирование организации взрослого насекомого. Из куколки выходит крылатое насекомое - имаго.

Таким образом, у насекомых наблюдаются следующие типы постэмбрионального развития: аметаболия, или протоморфоз (яйцо - личинка (похожая на имаго) - имаго); гемиметаболия - неполное превращение (яйцо - нимфа - имаго): гемиметаморфоз - типичный вариант, гипоморфоз - пониженный метаморфоз, гиперморфоз - повышенный метаморфоз; голометаболия - полное превращение (яйцо - личинка - куколка - имаго): голометаморфоз - типичный вариант, гиперметаморфоз - с несколькими типами личинок.

Типы личинок насекомых с полным превращением . Личинки голометаболических насекомых имеют более упрощенное строение по сравнению с имаго. У них нет сложных глаз, зачатков крыльев; ротовой аппарат грызущего типа, усики и ноги короткие. По развитости конечностей различают четыре типа личинок: протоподные, олигоподные, полиподные и аподные (рис. 342). Протоподные личинки характерны для пчел, ос. У них имеются лишь зачатки грудных ног. Эти личинки малоподвижны, развиваются в сотах с заботой со стороны рабочих особей. Олигоподные личинки встречаются чаще других, для них характерно нормальное развитие трех пар ходильных ног. К олигоподным относятся личинки жуков, сетчатокрылых. Полиподные личинки, или гусеницы, обладают, кроме трех пар грудных ног, еще несколькими парами ложных ножек на брюшке. Брюшные ножки представляют выступы брюшной

стенки тела и несут крючочки и шипики на подошве. Гусеницы характерны для бабочек и пилильщиков Аподные, или безногие, личинки наблюдаются в отряде двукрылых, а также у некоторых жуков (личинки усачей, златок), бабочек.


Рис. 342.Личинки насекомых с полным превращением (из Барнса): А - протоподная, Б, В - олигоподные, Г- полиподная, Д, Е, Ж - аподные

По способам движения личинки насекомых с полным превращением подразделяются на камподеовидные с длинным, гибким телом, бегательными ногами и чувствующими церками, эруковидные с мясистым, слабоизогнутым телом с конечностями или без них, проволочниковые - с жестким телом, круглым в поперечнике, с опорными церками - урогомфами и червеобразные - безногие.

Камподеовидные личинки характерны для многих хищных жуков - жужелиц, стафилинов. Они передвигаются по скважинам в почве. Типичной эруковидной личинкой является личинка майского жука, навозников, бронзовок. Это роющие личинки. Проволочники характерны для жуков-щелкунов и чернотелок, личинки которых активно прокладывают ходы в почве. Червеобразных личинок множество. Они передвигаются в почве, тканях растений. К ним относятся не только личинки двукрылых, но и некоторых жуков, бабочек, пилильщиков, развивающихся, например, в тканях растений.

Типы куколок. Куколки бывают свободные, покрытые и скрытые (рис 343). У свободных куколок зачатки крыльев, конечностей хорошо видны и свободно отделены от тела, например у жуков. У покрытых куколок все зачатки плотно прирастают к телу, например у бабочек. Покровы у свободных куколок тонкие, мягкие, а у покрытых - сильно склеротизированные Еще выделяют тип скрытых куколок, покрытых затвердевшей несброшенной


Рис. 343. Типы куколок у насекомых (из Вебера): А - свободная жука, Б - покрытая бабочки, В - скрытая мухи; 1 - антенна, 2 - зачатки крыльев, 3 - нога, 4 - дыхальца

личиночной шкуркой, которая образует ложный кокон - пупарий. Внутри пупария находится открытая куколка. Поэтому скрытая куколка представляет собой лишь вариант свободной. Пупарий характерны для многих мух.

Нередко личинка последнего возраста перед окукливанием плетет кокон. Так, например, гусеница бабочек-шелкопрядов выделяет из шелкоотделительных желез шелк, из которого она свивает плотный кокон. Внутри такого кокона находится покрытая куколка. А у некоторых перепончатокрылых - муравьев, а также у сетчатокрылых внутри кокона находится открытая, или свободная, куколка. У личинок сетчатокрылых, например у золотоглазки, нити для кокона продуцируются мальпигиевыми сосудами и выделяются из анального отверстия.

Физиология метаморфоза . В процессе метаморфоза происходят два взаимосвязанных процесса: гистолиз и гистогенез. Гистолиз - это распад тканей личиночных органов, а гистогенез - образование органов взрослого насекомого. У насекомых с неполным превращением эти процессы протекают постепенно на фазе нимфы, а у насекомых с полным превращением - на фазе куколки.

Гистолиз происходит за счет деятельности фагоцитов и ферментов. При этом прежде всего разрушаются жировое тело, личиночные мышцы и некоторые другие органы, которые превращаются в питательный субстрат, расходуемый развивающимися тканями.

Гистогенез, или формирование органов взрослого насекомого, происходит главным образом за счет развития имагинальных дисков - зачатков из недифференцированных клеток. Имагинальные диски закладываются еще на личиночной фазе и даже в эмбриогенезе и представляют собой внутренние зачатки. Из имагинальных дисков развиваются глаза, крылья, ротовой аппарат, ноги, а также внутренние органы: мускулатура, гонады. Пищеварительная система, мальпигиевы сосуды, трахеи не разрушаются, а сильно дифференцируются в процессе метаморфоза. Менее всего метаморфизируется сердце и нервная система. Однако при метаморфозе в нервной системе часто наблюдается процесс олигомеризации (слияния) ганглиев.

Процесс метаморфоза контролируется железами внутренней секреции (рис. 329). Нейросекреторные клетки мозга выделяют гормоны, активизирующие деятельность кардиалъных тел , гормоны которых через гемолимфу стимулируют проторакалъные (переднегрудные) железы, выделяющие линочный гормон - экдизон . Экдизон способствует процессу линьки: частичному растворению и отслаиванию старой кутикулы, а также формированию новой.

В процессе метаморфоза существенное значение имеет также деятельность прилежащих тел , продуцирующих ювенильный гормон. При высокой его концентрации линька личинки приводит к образованию личинки

следующего возраста. По мере роста личинок деятельность прилежащих тел ослабевает и падает концентрация ювенильного гормона, а переднегрудные железы постепенно дегенерируют. Это приводит к тому, что личинки линяют в фазу куколки, а затем имаго.

Искусственная пересадка прилежащих тел, например в нимфу саранчовых последнего возраста, способствует тому, что она линяет не во взрослую фазу, а в более крупную личинку дополнительного возраста. На фазе имаго ювенильный гормон контролирует развитие гонад, а гормон экдизон уже не вырабатывается в связи с редукцией переднегрудных желез.

Происхождение метаморфоза . Существует несколько гипотез о происхождении метаморфоза у насекомых. Долгое время велись споры, какие насекомые в большей мере эволюционно продвинуты - с полным или неполным превращением. С одной стороны, нимфы насекомых с неполным превращением более прогрессивно развиты, чем личинки насекомых с полным превращением, с другой стороны, у последних имеется продвинутая фаза куколки.

В настоящее время это противоречие снято гипотезой о происхождении метаморфоза Г. С. Гилярова, А. А. Захваткина и А. Г. Шарова. Согласно этой гипотезе, обе формы метаморфоза у насекомых развивались независимо от более простого типа развития - протоморфоза, наблюдаемого у первичнобескрылых насекомых, например у щетинкохвостых (Thysanura).

При протоморфозе развитие прямое, при этом наблюдается множество линек на фазе личинок, а затем и в имагинальном состоянии. Все фазы развития этих насекомых протекают в одной и той же среде.

Предполагается, что в процессе эволюции насекомые переходили от полускрытого существования в верхнем слое почвы к обитанию на ее поверхности и на растениях. Этот переход в новую среду обитания увенчался крупным ароморфозом - развитием крыльев и полета.

Освоение открытых местообитаний отразилось на эволюции индивидуального развития насекомых. Эволюция онтогенеза насекомых, по-видимому, шла по двум основным направлениям.

В одном случае шел процесс эмбрионизации развития, приводивший к вылуплению насекомых из яиц, богатых желтком, на более поздних фазах развития. Это привело к имагинизации личинок с образованием нимф. Так развились насекомые с неполным превращением. Этот путь эволюции привел к прогрессивному развитию личинок, ведущих сходный образ жизни с имаго.

В другом случае, наоборот, происходил процесс дезэмбрионизации развития, т. е. осуществлялся выход из яиц, бедных желтком, на более ранних фазах развития. Это привело к морфоэкологическому расхождению личинок и имаго насекомых. Личинки упростились и приспособились

к обитанию в более защищенной среде, выполняя функцию питания, а имаго стали в основном выполнять функцию размножения и расселения. Кроме дезэмбрионизации развития личинок насекомых с полным превращением, у них развилось множество провизорных адаптации к различным условиям существования. Таким образом, произошел амфигенез (расхождение) в эволюции личинок и имаго у насекомых с полным превращением. Амфигенез личинок и имаго оказался очень глубоким по морфологическим адаптациям, что создавало серьезные противоречия в онтогенезе. Они благополучно были разрешены путем возникновения фазы куколки, во время которой происходит радикальная перестройка личиночной организации на имагинальную. Это позволило насекомым с полным превращением освоить более широкий спектр экологических ниш и достичь небывалого расцвета среди животных на Земле.

Размножение насекомых . Для большинства насекомых характерно обоеполое половое размножение. У многих видов выражен половой диморфизм. Например, у самцов жуков-оленей мандибулы видоизменены в рога, а у самцов жуков-носорогов имеются рог на голове и горбы на переднеспинке. Это связано с брачным поведением этих видов, сопровождающимся борьбой самцов за самку. Взаимоотношения между полами у разных видов чрезвычайно разнообразны. Самцы двукрылых семейства Dolichopodidae приносят самке "подарок" - пойманную мушку и исполняют танец с зеркальцами на ножках. Самки богомолов отличаются хищным нравом и съедают самца во время спаривания.

Большинство насекомых откладывают яйца, но нередко наблюдается и живорождение. В этом случае яйца развиваются в половых путях самки и она рождает личинок. Так, мясные мухи-саркофаги (Sarcophagidae) откладывают на мясо живых личинок, развитие которых протекает очень быстро. Недаром в древности считали, что черви в мясе самозарождаются. Можно не заметить, как мясная муха посетила открыто лежащее мясо, и неожиданно обнаружить внезапно появившихся белых личинок.

К живородящим видам относятся также муха овечья кровососка, некоторые жуки, обитающие в пещерах.

Кроме обоеполого полового размножения у ряда насекомых наблюдается партеногенез - развитие без оплодотворения. Имеется немало видов из разных отрядов насекомых, для которых характерен партеногенез. Партеногенез может быть облигатным - обязательным, тогда все особи вида только самки. Так, в высокогорных условиях, на севере и в других неблагоприятных условиях встречаются партеногенетические жуки, прямокрылые, уховертки, сетчатокрылые. Партеногенез встречается и у обоеполых видов, когда часть яиц откладывается оплодотворенными, а- часть без оплодотворения. Например, трутни у пчел развиваются из неоплодотворенных яиц.

Подобный партеногенез встречается и у других перепончатокрылых (муравьев, пилильщиков), у термитов, некоторых клопов и жуков. А у тлей, например, происходит смена поколений в жизненном цикле: обоеполого и партеногенетического. В некоторых случаях партеногенез может быть факультативным (временным), проявляющимся только при неблагоприятных условиях. Партеногенез у насекомых способствует поддержанию высокой численности популяций.

Вариантом партеногенеза является педогенез - размножение без оплодотворения на личиночной фазе развития. Это особый путь развития насекомых, когда созревание гонад опережает другие органы. Так, например, некоторые виды комариков-галлиц размножаются на личиночной фазе. Личинки старших возрастов рождают личинок младших возрастов. Педогенез отмечен для одного из видов жуков, личинки которого частично откладывают яйца, частично рождают личинок. Педогенез в дополнение к обоеполому размножению увеличивает численность вида.

Жизненные циклы насекомых . В отличие от онтогенеза, или индивидуального развития насекомых, жизненный цикл - это развитие вида, включающее, как правило, несколько типов онтогенезов. Онтогенез ограничивается жизнью одной особи от яйца до наступления полового созревания и затем естественного отмирания. Жизненный цикл - это повторяющаяся часть непрерывного процесса развития вида. Так, в наиболее типичном случае у насекомых жизненный цикл складывается из двух сопряженных и отличающихся между собой морфофизиологически онтогенезов самцов и самок, размножающихся половым путем и воспроизводящих себе подобных. А у партеногенетических видов жизненный цикл характеризуется лишь одним типом онтогенеза самок.

Жизненные циклы насекомых разнообразны по типам размножения, составу поколений и их чередованию. Можно выделить следующие типы жизненных циклов насекомых.

1. Жизненные циклы без чередования поколений с обоеполым половым размножением. Это наиболее распространенный тип жизненного цикла, характерный для диморфных видов, состоящих только из самцов и самок, размножающихся половым путем. Таковы циклы у большинства жуков, бабочек, клопов.

2. Жизненные циклы без чередования поколений с партеногенетическим размножением. Такие виды мономорфные, состоящие только из партеногенетических самок, откладывающих яйца без оплодотворения.

Партеногенетические виды особенно часто встречаются среди тлей, листоблошек и других равнокрылых. В высокогорных условиях распространены Партеногенетические виды жуков, клопов, кузнечиков, кокцид.

3. Редчайшим типом жизненного цикла у насекомых является цикл без чередования поколений с половым размножением гермафродитных видов.

Известен американский вид мухи, состоящий только из гермафродитных особей. На ранних фазах развития имаго функционируют как самцы, а на поздних - как самки. Поэтому все особи откладывают яйца, что повышает численность вида.

4. Жизненные циклы без чередования поколения с половым размножением и факультативным партеногенезом у полиморфных видов, например у общественных насекомых. Вид состоит из половых особей - самцов и самок и фертильных - рабочих особей, не участвующих в размножении. К таким видам относятся пчелы, муравьи, термиты. Такие жизненные циклы осложнены тем, что самки откладывают наряду с оплодотворенными яйцами и Партеногенетические, из которых, например, у пчелиных развиваются гаплоидные самцы - трутни, а из оплодотворенных - самки и рабочие особи женского пола. Подобно развиваются некоторые наездники, трипсы, кокциды.

У других видов факультативный партеногенез проявляется по-другому: из неоплодотворенных яиц развиваются не самцы, а самки. Но в этом случае у самок восстанавливается диплоидный набор хромосом путем слияния гаплоидных ядер. Такое развитие известно у некоторых палочников, саранчовых, пилильщиков, кокцид.

5. Жизненные циклы с чередованием полового поколения и партеногенетического (гетерогония). У многих тлей и филлоксеры, кроме полового поколения крылатых самцов и самок, имеется несколько сменяющихся поколений партеногенетических самок, крылатых или бескрылых.

6. Жизненные циклы с чередованием полового поколения и нескольких поколений с педогенезом. Например, у некоторых комариков-галлиц после полового размножения, в котором участвуют самцы и самки, происходит партеногенетическое размножение личинок (педогенез). После нескольких поколений размножающихся личинок, отмирающих после живорождения себе подобных, последнее поколение личинок окукливается и дает крылатых самок и самцов.

7. Жизненные циклы с чередованием полового поколения (самцов и самок) с бесполым. После полового размножения самки откладывают оплодотворенные яйца, которые претерпевают полиэмбрионию. Это бесполое размножение на фазе зародыша. Яйцо претерпевает дробление, и зародыш на фазе морулы начинает размножаться путем почкования. Из одного яйца может образоваться несколько десятков зародышей. Такие

Таким образом, классификацию жизненных циклов можно представить следующим образом.

I. Без чередования поколений :

  • 1) с обоеполым половым размножением (майский жук);
  • 2) с партеногенетическим размножением (высокогорные жуки, кузнечики);
  • 3) с половым размножением гермафродитных особей (американская муха);
  • 4) с половым размножением и частичным партеногенезом у полиморфных видов (пчелы).

II. С чередованием поколений :

  • 1) гетерогония: чередование полового поколения и нескольких партеногенетических (тли, филлоксера);
  • 2) гетерогония: чередование полового поколения и нескольких педогенетических поколений (некоторые галлицы);
  • 3) метагенез: чередование полового поколения с полиэмбрионией (наездники).

Сезонные циклы насекомых . Если под жизненным циклом понимается циклически повторяющаяся часть морфогенеза вида от одной фазы развития до одноименной, то под сезонным циклом развития понимается характеристика развития вида в течение сезонов одного года (от зимы до зимы).

Так, например, жизненный цикл майского жука протекает в течение 4-5 лет (от яйца до половозрелых имаго), а для сезонного цикла этого вида характерно, что весной перезимовавшие личинки окукливаются и молодые жуки размножаются. Летом, осенью и зимой встречаются их личинки разных возрастов. Число поколений, развивающихся в течение года, называется вольтинностью.

Различаются виды, дающие несколько поколений в год. Это поливольтинные виды. Например, комнатная муха может давать 2-3 поколения за сезон и зимует в фазе имаго. Большинство насекомых моновольтинные, дающие одно поколение за год.

Сезонные циклы насекомых в природе характеризуются календарными сроками встречаемости различных фаз развития. Важными особенностями сезонных циклов видов являются сроки их активной жизни и диапаузы (временной задержки развития) зимней или летней. Регуляцию жизненных циклов видов в соответствии с местными сезонными явлениями обеспечивают факторы среды и нейрогуморальная система организма.

Живорождение - это такой способ воспроизведения потомства, при котором зародыш развивается внутри материнского организма и на свет появляется особь, уже свободная от яйцевых оболочек. Живородящи некоторые кишечнополостные, ветвистоусые рачки, моллюски, многие круглые черви, некоторые иглокожие, сальпы, рыбы (акулы, скаты, а также аквариумные рыбы - гуппи, меченосцы, моллиенезии и др.), некоторые жабы, червяги, саламандры, черепахи, ящерицы, змеи, почти все млекопитающие (в том числе и человек).

Истинным живорождением часто считают лишь рождение особей у плацентарных. Такое живорождение противопоставляют яйцерождению, когда развитие зародыша и освобождение его от яйцевых оболочек происходят вне материнского организма - после откладки яиц. Оно свойственно, например, насекомым, большинству рыб, птицам, пресмыкающимся. Историческая связь между живорождением и яйцерождением доказывается случаями яйцеживорождения, когда зародыш достигает полного развития в яйце, находящемся в теле матери, и там же происходит освобождение его от яйцевых оболочек (у некоторых рыб и змей).

Развитие зародыша при живорождении может происходить в яичнике, яйцеводах или в их расширениях, преобразованных в матку. Источником питания при живорождении служат запасные питательные вещества яйца или же вещества, поступающие из материнского организма. В последнем случае часто имеется специальный орган - плацента, через который осуществляется газообмен и питание зародыша (у некоторых членистоногих, у сальп, некоторых видов акул и скатов, млекопитающих животных, кроме клоачных и сумчатых, и у человека).

Следующий предполагаемый этап возникновения жизни - протоклетки. А. И. Опарин показал, что в стоящих растворах органических веществ образуются коацерваты - микроскопические "капельки", ограниченные полупроницаемой оболочкой - первичной мембраной. В коацерватах могут концентрироваться органические вещества, в них быстрее идут реакции, обмен веществ с окружающей средой, и они даже могут делиться, как бактерии. Подобный процесс наблюдал при растворении искусственных протеиноидов Фокс, он назвал эти шарики микросферами.

Самка сурикаты с детенышем (Suricata suricatta)

В протоклетках вроде коацерватов или микросфер шли реакции полимеризации нуклеотидов, пока из них не сформировался протоген - первичный ген, способный катализировать возникновение определенной аминокислотной последовательности - первого белка. Вероятно, первым таким белком был предшественник фермента, катализирующего синтез ДНК или РНК - ДНК- или РНК-полимераза. Те протоклетки, в которых возник примитивный механизм наследственности и белкового синтеза, быстрее делились и "перекачали" в себя все органические вещества "первичного бульона". На этой стадии шел уже естественный отбор на скорость размножения; любое усовершенствование биосинтеза подхватывалось, и новые протоклетки вытесняли все предыдущие.

До сих пор остается загадочным явление асимметрии органических молекул. Дело в том, что асимметрические молекулы аминокислот, Сахаров и других веществ могут существовать в двух формах, выглядящих как зеркальные отражения друг друга. Их назвали правыми и левыми. При абиогенном синтезе они возникают в равном количестве. Но аминокислоты, слагающие белки всех земных организмов, всегда левые, а сахара (рибоза и дезоксирибоза) нуклеиновых кислот всегда правые. Причина этого явления неясна. Вероятно, асимметрия ускоряла процесс синтеза белков, нуклеиновых кислот и рост протоклеток. Это удалось воспроизвести в модельных опытах на ЭВМ: "протоклетки" из правых или левых элементов "росли" быстрее и вытесняли симметричные. То, что аминокислоты у нас левые, а сахара правые, можно объяснить случайностью.

Последние этапы возникновения жизни - происхождение рибосом и транспортных РНК, генетического кода и энергетического механизма клетки с использованием АТФ - еще не удалось воспроизвести в лаборатории. Все эти структуры и процессы имеются уже у самых примитивных микроорганизмов, и принцип их строения и функционирования не менялся за всю историю Земли. Поэтому заключительную сцену грандиозного спектакля происхождения жизни мы можем пока реконструировать только предположительно - до тех пор, пока ее не удастся воссоздать в эксперименте. Быть может, такие протоклетки существуют до сих пор на какой-либо из планет в космосе, где жизнь начала развиваться позже или развивалась медленнее.

Пока можно лишь утверждать, что на возникновение жизни в земном варианте потребовалось относительно мало времени - менее 1 млрд. лет. Уже 3,8 млрд. лет назад существовали первые микроорганизмы, от которых произошло все многообразие форм земной жизни.