Наклонная плоскость представляет собой плоскую поверхность, расположенную под тем или иным углом к горизонтали. Она позволяет поднять груз с меньшей силой, чем если бы этот груз поднимался вертикально вверх. На наклонной плоскости груз поднимается вдоль этой плоскости. При этом он преодолевает большее расстояние, чем если бы поднимался вертикально.

Примечание 1

Причем во сколько раз происходит выигрыш в силе, во столько раз будет больше расстояние, которое преодолеет груз.

Рисунок 1. Наклонная плоскость

Если высота, на которую надо поднять груз, равна $h$, и при этом затрачивалась бы сила $F_h$, а длина наклонной плоскости $l$, и при этом затрачивается сила $F_l$, то $l$ так относится к $h$, как $F_h$ относится к $F_l$: $l/h = F_h/F_l$... Однако $F_h$ - это вес груза ($P$). Поэтому обычно записывают так: $l/h = P/F$, где $F$ - сила, поднимающая груз.

Величина силы $F$, которую надо приложить к грузу весом $Р$, чтобы тело находилось в равновесии на наклонной плоскости, равна $F_1 = Р_h/l = Рsin{\mathbf \alpha }$, если сила $Р$ приложена параллельно наклонной плоскости (рис.2, а), и $F_2$ = $Р_h/l = Рtg{\mathbf \alpha }$, если сила $Р$ приложена параллельно основанию наклонной плоскости (рис.2, б).

Рисунок 2. Движение груза по наклонной плоскости

а) сила параллельна плоскости б) сила параллельна основанию

Наклонная плоскость дает выигрыш в силе, с ее помощью можно легче поднять груз на высоту. Чем меньше угол $\alpha $, тем больше выигрыш в силе. Если угол $\alpha $ меньше угла трения, то груз самопроизвольно не будет двигаться, и нужно усилие, чтобы тянуть его вниз.

Если учесть силы трения между грузом и наклонной плоскостью, то для $F_1$ и $F_2$ получаются следующие значения: $F_1=Рsin($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)/cos${\mathbf \varphi }$; $F_2=Рtg($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)

Знак плюс относится к передвижению вверх, знак минус - к опусканию груза. Коэффициент полезного действия наклонной плоскости ${\mathbf \eta }$1=sin${\mathbf \alpha }$cos${\mathbf \alpha }$/sin(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно плоскости, и ${\mathbf \eta }$2=tg${\mathbf \alpha }$/tg(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно основанию наклонной плоскости.

Наклонная плоскость подчиняется «золотому правилу механики». Чем меньше угол между поверхностью и наклонной плоскостью (т. е. чем она более пологая, не круто поднимающаяся вверх), тем меньше надо прикладывать сил для подъема груза, но и большее расстояние необходимо будет преодолеть.

При отсутствии сил трения выигрыш в силе $K = P/F = 1/sin$$\alpha = l/h$. В реальных условиях из-за действия силы трения КПД наклонной плоскости меньше 1, выигрыш в силе меньше отношения $l/h$.

Пример 1

Груз массой 40 кг поднимают по наклонной плоскости на высоту 10 м при этом прикладывая силу 200 Н (рис.3). Какова длина наклонной плоскости? Трением пренебречь.

${\mathbf \eta }$ = 1

При движении тела по наклонной плоскости отношение прилагаемой силы к весу тела равно отношению длины наклонной плоскости к её высоте: $\frac{F}{P}=\frac{l}{h}=\frac{1}{{sin {\mathbf \alpha }\ }}$. Следовательно, $l=\frac{Fh}{mg}=\ \frac{200\cdot 10}{40\cdot 9,8}=5,1\ м$.

Ответ: Длина наклонной плоскости 5,1 м

Пример 2

Два тела с массами $m_1$ = 10 г и $m_2$ = 15 г связаны нитью, перекинутой через неподвижный блок, установленный на наклонной плоскости (рис. 4). Плоскость образует с горизонтом угол $\alpha $ = 30${}^\circ$. Найти ускорение, с которым будут двигаться эти тела.

${\mathbf \alpha }$ = 30 градусов

$g$ = 9.8 $м/c_2$

Направим ось ОХ вдоль наклонной плоскости, а ось ОY - перпендикулярно ей, и спроектируем на эти оси вектора $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$. Как видно из рисунка, равнодействующая сил, приложенных к каждому из тел, равна разности проекций векторов $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$ на ось ОХ:

\[\left|\overrightarrow{R}\right|=\left|P_{2x}-P_{1x}\right|=\left|m_2g{sin \alpha \ }-m_1g{sin \alpha \ }\right|=g{sin \alpha \left|m_2-m_1\right|\ }\] \[\left|\overrightarrow{R}\right|=9.8\cdot {sin 30{}^\circ \ }\cdot \left|0.015-0.01\right|=0.0245\ H\] \

Ответ: Ускорения тел $a_1=2,45\frac{м}{с^2};\ \ \ \ \ \ a_2=1,63\ м/с^2$

Она позволяет поднимать груз вверх, прикладывая к нему усилие, заметно меньшее, чем сила тяжести , действующая на этот груз.

Примерами наклонных плоскостей служат пандусы и трапы . Принцип наклонной плоскости можно видеть также в таких колющих и режущих инструментах, как стамеска , топор , плуг , клин , винт .

Энциклопедичный YouTube

    1 / 3

    ✪ Наклонная плоскость - Физика в опытах и экспериментах

    ✪ Урок 87. Движение по наклонной плоскости (ч.1)

    Простые механизмы. Наклонная плоскость

    Субтитры

История

Пандусы и трапы широко применялись при строительстве ранних каменных сооружений, дорог и акведуков, при штурме военных укреплений.

Мысленные и реальные эксперименты с наклонными плоскостями, которые на заре Нового времени делали Леонардо да Винчи , Симон Стевин , Галилео Галилей и другие физики, привели к познанию законов природы, связанных с силой тяжести, массой , инерцией .

Первое доказательство условия равновесия на наклонной плоскости без трения дал Стевин ; это доказательство опиралось на постулат о невозможности вечного двигателя.

Движение по наклонной плоскости

здесь μ {\displaystyle \mu } - коэффициент трения тела о поверхность, α {\displaystyle \alpha } - угол наклона плоскости.

Предельным является случай, когда угол наклона плоскости равен 90°, α = g {\displaystyle \alpha =g} , и тело падает вдоль стены. Другим предельным случаем является ситуация, когда угол наклона плоскости равен 0°, и плоскость параллельна земле. В этом случае тело не может двигаться без приложения внешней силы.

Характер движения тела, лежащего на наклонной плоскости, зависит от величины критического угла. Тело покоится, если угол наклона плоскости меньше критического угла, покоится или движется равномерно, если угол наклона плоскости равен критическому углу, и движется равноускоренно, если угол наклона плоскости больше критического угла.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Простые машины - Под этим именем подразумеваются следующие механизмы, описание и объяснение действия которых можно найти во всех элементарных курсах физики и механики: рычаг, блоки, полиспасты, ворот, наклонная плоскость, клин и винт. Блоки и ворот основаны на принципе рычага, клин и винт - на принципе наклонной плоскости.

Рыча́г - простейшее механическое устройство, представляющее собой твёрдое тело (перекладину), вращающееся вокруг точки опоры. Стороны перекладины по бокам от точки опоры называются плечами рычага.

Рычаг используется для получения большего усилия на коротком плече с помощью меньшего усилия на длинном плече (или для получения большего перемещения на длинном плече с помощью меньшего перемещения на коротком плече). Сделав плечо рычага достаточно длинным, теоретически, можно развить любое усилие.

Частными случаями рычага являются также два других простейших механизма: ворот и блок. Принцип работы рычага является прямым следствием закона сохранения энергии. Для рычагов, как и для других механизмов, вводят характеристику, показывающую механический эффект, который можно получить за счёт рычага. Такой характеристикой является передаточное отношение, оно показывает, как соотносятся нагрузка и приложенная сила:

Различают рычаги 1 рода, в которых точка опоры располагается между точками приложения сил, и рычаги 2 рода, в которых точки приложения сил располагаются по одну сторону от опоры.

Блок - простое механическое устройство, позволяющее регулировать силу, ось которого закреплена при подъеме грузов, не поднимается и не опускается. Представляет собой колесо с желобом по окружности, вращающееся вокруг своей оси. Жёлоб предназначен для каната, цепи,ремня и т. п. Ось блока помещается в обоймах, прикреплённых на балке или стене, такой блок называется неподвижным; если же к этим обоймам прикрепляется груз, и блок вместе с ними может двигаться, то такой блок называется подвижным.

Неподвижный блок употребляется для подъёма небольших грузов или для изменения направления силы.

Условие равновесия блока:

F - прилагаемое внешнее усилие, m - масса груза, g - ускорение силы тяжести, f - коэффициент сопротивления в блоке (для цепей примерно 1.05, а для веревок - 1.1). При отсутствии трения для подъема нужна сила, равная весу груза.

Подвижный блок имеет свободную ось и предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом; отсюда, если веревки параллельны (то есть когда дуга, обхватываемая веревкой, равна полуокружности), то для подъёма груза потребуется сила вдвое меньше, чем вес груза, то есть:

При этом груз пройдёт расстояние, вдвое меньшее пройденного точкой приложения силы F, соответственно, выигрыш в силе подвижного блока равен 2.

Фактически, любой блок представляет собой рычаг, в случае неподвижного блока - равноплечий, в случае подвижного - с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: Во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии. Иными словами, работа, совершаемая при перемещении груза на какое-либо расстояние без использования блока, равна работе, затрачиваемой при перемещении груза на то же самое расстояние с применением блока при условии отсутствия трения. В реальном блоке всегда присутствуют некоторые потери.

Наклонная плоскость - это плоская поверхность, установленная под углом, отличным от прямого и/или нулевого, к горизонтальной поверхности. Наклонная плоскость позволяет преодолевать значительное сопротивление, прилагая сравнительно малую силу на большем расстоянии, чем то, на которое нужно поднять груз.

Наклонная плоскость - один из широко известных простых механизмов. Примерами наклонных плоскостей служат:

  • пандусы и трапы;
  • инструменты: стамеска, топор, молоток, плуг, клин и так далее;

Наиболее канонический пример наклонной плоскости - наклонная поверхность, например, въезд на мост с перепадом высоты.

§ тр - где m - масса тела, - вектор ускорения, - сила реакции (воздействия) опоры, - вектор ускорения свободного падения, тр - сила трения.

§ a = g (sin α + μcos α) - при подъеме по наклонной плоскости и отсутствии дополнительных сил;

§ a = g (sin α − μcos α) - при спуске с наклонной плоскости и отсутствии дополнительных сил;

здесь μ - коэффициент трения тела о поверхность, α - угол наклона плоскости.

Предельным является случай, когда угол наклона плоскости равен 90o градусам, то есть тело падает, скользя по стене. В этом случае: α = g , то есть сила трения никаким образом не влияет на тело, оно находится в свободном падении. Другим предельным случаем является ситуация, когда угол наклона плоскости равен нулю, т.е. плоскость параллельна земле; в этом случае тело не может двигаться без приложения внешней силы. Надо заметить, что, следуя из определения, в обоих ситуациях плоскость уже не будет являться наклонной - угол наклона не должен быть равен 90o или 0o.

Род передвижения тела зависит от критического угла. Тело покоится, если угол наклона плоскости меньше критического угла, покоится или движется равномерно, если угол наклона плоскости равен критическому углу, и движется равноускоренно, при условии что угол наклона плоскости больше критического угла.

§ или α < β - тело покоится;

§ или α = β - тело покоится или движется равномерно;

§ или α > β - тело движется равноускоренно;

Клин - простой механизм в виде призмы, рабочие поверхности которого сходятся под острым углом. Используется для раздвижения, разделения на части обрабатываемого предмета. Клин - одна из разновидностей механизма под названием «наклонная плоскость». При действии силы на основание призмы возникают две составляющие, перпендикулярные рабочим поверхностям. Идеальный выигрыш в силе, даваемый клином, равен отношению его длины к толщине на тупом конце - расклинивающее действие клина даёт выигрыш в силе при малом угле и большой длине клина. Реальный выигрыш клина сильно зависит от силы трения, которая меняется по мере хода клина.

; где IMA - идеальный выигрыш, W - ширина, L - длина. Принцип клина используется в таких инструментах и орудиях, как топор, зубило, нож, гвоздь, игла, кол.

Про строительные приборы ничего не нашла

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм - это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы - это рычаг и наклонная плоскость.

Рычаг.

Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 ) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда

Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7: 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок - укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).

На правом конце нити в точке закреплён груз весом . Напомним, что вес тела - это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где - радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок , ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .

В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы "перекатывается" через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3 : вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) - не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость - это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: "наклонная плоскость с углом ".

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5 ).


Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2: 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу A полн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

=A полезн/А полн.

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6 ). В направлении, противоположном перемещению, на груз действует сила трения скольжения .


Ускорения нет, поэтому силы, действующие на груз, уравновешены:

Проектируем на ось X:

. (1)

Проектируем на ось Y:

. (2)

Кроме того,

, (3)

Из (2) имеем:

Тогда из (3) :

Подставляя это в (1) , получаем:

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

A полн=.

Полезная работа, очевидно, равна:

А полезн=.

Для искомого КПД получаем.

Наклонная плоскость представляет собой плоскую поверхность, расположенную под тем или иным углом к горизонтали. Она позволяет поднять груз с меньшей силой, чем если бы этот груз поднимался вертикально вверх. На наклонной плоскости груз поднимается вдоль этой плоскости. При этом он преодолевает большее расстояние, чем если бы поднимался вертикально.

Примечание 1

Причем во сколько раз происходит выигрыш в силе, во столько раз будет больше расстояние, которое преодолеет груз.

Рисунок 1. Наклонная плоскость

Если высота, на которую надо поднять груз, равна $h$, и при этом затрачивалась бы сила $F_h$, а длина наклонной плоскости $l$, и при этом затрачивается сила $F_l$, то $l$ так относится к $h$, как $F_h$ относится к $F_l$: $l/h = F_h/F_l$... Однако $F_h$ - это вес груза ($P$). Поэтому обычно записывают так: $l/h = P/F$, где $F$ - сила, поднимающая груз.

Величина силы $F$, которую надо приложить к грузу весом $Р$, чтобы тело находилось в равновесии на наклонной плоскости, равна $F_1 = Р_h/l = Рsin{\mathbf \alpha }$, если сила $Р$ приложена параллельно наклонной плоскости (рис.2, а), и $F_2$ = $Р_h/l = Рtg{\mathbf \alpha }$, если сила $Р$ приложена параллельно основанию наклонной плоскости (рис.2, б).

Рисунок 2. Движение груза по наклонной плоскости

а) сила параллельна плоскости б) сила параллельна основанию

Наклонная плоскость дает выигрыш в силе, с ее помощью можно легче поднять груз на высоту. Чем меньше угол $\alpha $, тем больше выигрыш в силе. Если угол $\alpha $ меньше угла трения, то груз самопроизвольно не будет двигаться, и нужно усилие, чтобы тянуть его вниз.

Если учесть силы трения между грузом и наклонной плоскостью, то для $F_1$ и $F_2$ получаются следующие значения: $F_1=Рsin($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)/cos${\mathbf \varphi }$; $F_2=Рtg($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)

Знак плюс относится к передвижению вверх, знак минус - к опусканию груза. Коэффициент полезного действия наклонной плоскости ${\mathbf \eta }$1=sin${\mathbf \alpha }$cos${\mathbf \alpha }$/sin(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно плоскости, и ${\mathbf \eta }$2=tg${\mathbf \alpha }$/tg(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно основанию наклонной плоскости.

Наклонная плоскость подчиняется «золотому правилу механики». Чем меньше угол между поверхностью и наклонной плоскостью (т. е. чем она более пологая, не круто поднимающаяся вверх), тем меньше надо прикладывать сил для подъема груза, но и большее расстояние необходимо будет преодолеть.

При отсутствии сил трения выигрыш в силе $K = P/F = 1/sin$$\alpha = l/h$. В реальных условиях из-за действия силы трения КПД наклонной плоскости меньше 1, выигрыш в силе меньше отношения $l/h$.

Пример 1

Груз массой 40 кг поднимают по наклонной плоскости на высоту 10 м при этом прикладывая силу 200 Н (рис.3). Какова длина наклонной плоскости? Трением пренебречь.

${\mathbf \eta }$ = 1

При движении тела по наклонной плоскости отношение прилагаемой силы к весу тела равно отношению длины наклонной плоскости к её высоте: $\frac{F}{P}=\frac{l}{h}=\frac{1}{{sin {\mathbf \alpha }\ }}$. Следовательно, $l=\frac{Fh}{mg}=\ \frac{200\cdot 10}{40\cdot 9,8}=5,1\ м$.

Ответ: Длина наклонной плоскости 5,1 м

Пример 2

Два тела с массами $m_1$ = 10 г и $m_2$ = 15 г связаны нитью, перекинутой через неподвижный блок, установленный на наклонной плоскости (рис. 4). Плоскость образует с горизонтом угол $\alpha $ = 30${}^\circ$. Найти ускорение, с которым будут двигаться эти тела.

${\mathbf \alpha }$ = 30 градусов

$g$ = 9.8 $м/c_2$

Направим ось ОХ вдоль наклонной плоскости, а ось ОY - перпендикулярно ей, и спроектируем на эти оси вектора $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$. Как видно из рисунка, равнодействующая сил, приложенных к каждому из тел, равна разности проекций векторов $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$ на ось ОХ:

\[\left|\overrightarrow{R}\right|=\left|P_{2x}-P_{1x}\right|=\left|m_2g{sin \alpha \ }-m_1g{sin \alpha \ }\right|=g{sin \alpha \left|m_2-m_1\right|\ }\] \[\left|\overrightarrow{R}\right|=9.8\cdot {sin 30{}^\circ \ }\cdot \left|0.015-0.01\right|=0.0245\ H\] \

Ответ: Ускорения тел $a_1=2,45\frac{м}{с^2};\ \ \ \ \ \ a_2=1,63\ м/с^2$