Интерес к вопросу о том, как в далеком прошлом возникла жизнь, появился в основном после того, как в 1862 г. были опубликованы результаты знаменитых экспериментов Пастера , разрушивших всякую веру в возможность спонтанного зарождения жизни в наше время. Наряду с другими эта проблема «биопоэза» обсуждалась физиком-экспериментатором Тиндалем в 1874 г. . Сейчас мало знают об идеях Больцмана, который был не только физиком-теоретиком, но и горячим сторонником Дарвина относительно ранней истории живой материи. В 1886 г. он писал :

«Мы предполагаем, что развились комплексы атомов, которые были способны размножаться, образуя вокруг себя такие же комплексы. Из возникавших таким образом более крупных масс более жизнеспособными были те, которые смогли размножаться делением, затем те, которые обладали тенденцией двигаться в сторону более благоприятных жизненных условий. Этой тенденции сильно способствовала чувствительность к внешним воздействиям - химическому составу и движению окружающей среды, к свету и тени и т. д.».

В 1904 г. в споре с Оствальдом по поводу счастливой случайности (!) он писал: «Для нас в данном случае безразлично, где миллионы лет тому назад возникла первая протоплазма: зародилась ли она на Земле «случайно», в толще воды или в илистом дне первобытного океана, или же яйцеклетки, споры или другие подобные зародыши попали когда-то на Землю из космического пространства в виде пыли или внутри метеоритов. Более высокоразвитые особи вряд ли могли упасть с неба. Итак, сначала имелись только совсем простые организмы, простые клетки или комочки протоплазмы. Как известно, всем мелким тельцам свойственно постоянное, так называемое броуновское движение; вполне также можно себе представить их чисто механический рост и размножение посредством всасывания соответствующих составных частей из среды и последующего деления. Столь же легко понять, что внешняя среда влияла на их быстрые движения,

изменяя его. Те комочки, у которых это изменение приводило к тому, что они в среднем (преимущественно) двигались туда, где были более подходящие для всасывания вещества (лучшее питание), лучше росли, чаще делились и вскоре вытеснили всех остальных».

Но тогда было слишком мало физиологических и биохимических данных для успешной работы в этом направлении, и интерес к проблеме пропал. Обсуждение возобновилось только после публикации первых основополагающих работ Опарина и Холдейна . Оно расширилось после появления классического труда Опарина «Происхождение жизни» сначала на русском , а затем на английском языках .

В основе идей Опарина и Холдейна лежит дарвиновский подход к событиям на недавно возникшей Земле. Мы не можем здесь обсудить подробнее эти новые идеи, сейчас ставшие общепринятыми, и отсылаем читателя к соответствующим монографиям и статьям . Можно рекомендовать также популярную книгу Поннамперумы с прекрасными иллюстрациями .

Наиболее полно разработанной, аргументированной и имеющей широкое признание следует признать гипотезу происхождения жизни путем биохимической эволюции, или «гипотеза Опарина-Холдейна ».

А. И. Опарин, русский биохимик, академик, еще в 1924 г. опубликовал свою первую книгу по данной проблеме. Дж. Холдейн, английский генетик и биохимик, с 1929 г. развивал идеи, созвучные представлениям А. И. Опарина.

Она постулирует, что жизнь возникла на Земле именно из неживой материи, в условиях, имевших место на планете миллиарды лет назад. Эти условия включали наличие источников энергии, определенного температурного режима, воды и других неорганических веществ - предшественников органических соединений. Атмосфера тогда была бескислородной (источником кислорода в настоящее время являются растения, а тогда их не было).

В рамках данной теории можно выделить пять основных этапов на пути к возникновению жизни, которые приведены в табл. 1.

Таблица 1

Этапы развития жизни на Земле по гипотезе Опарина-Холдейна

Охлаждение планеты (ниже температуры +100 °С на ее поверхности); конденсация паров воды; образование первичного океана; растворение в его воде газов и минеральных веществ; мощные грозы

Синтез простых органических соединений - аминокислот, сахаров, азотистых оснований - в результате действия мощных электрических разрядов (молний) и ультрафиолетовой радиации

Образование простейших белков, нуклеиновых кислот, полисахаридов, жиров; коацерватов

3 млрд лет тому назад

Образование протобионтов, способных к самовоспроизведению и регулируемому обмену веществ, в результате возникновения мембран с избирательной проницаемостью и взаимодействий нуклеиновых кислот и белков

3 млрд лет тому назад

Возникновение организмов, имеющих клеточное строение (первичных прокариот-бактерий)

Идеи о формировании и составе первичной атмосферы Земли базируются на объективных данных разных наук, на изучении газовых оболочек других планет Солнечной системы. Весьма убедительные доказательства возможности осуществления 2-го и 3-го этапов развития жизни получены в результате многочисленных экспериментов по искусственному синтезу биологических мономеров. Так, впервые в 1953 г. С. Миллер (США) создал достаточно простую установку, на которой ему удалось из смеси газов и паров воды под действием ультрафиолетового облучения и электрических разрядов синтезировать ряд аминокислот и других органических соединений (рис. 1).

Рис. 1. Установка Стэнли Миллера, в которой он синтезировал аминокислоты из газов, создав условия, предположительно существовавшие в атмосфере первобытной Земли. Газы и водяные пары, циркулировавшие в установке под высоким давлением, подвергали в течение недели воздействию высокого напряжения. После этого вещества, собранные в «ловушке», исследовали методом хроматографии на бумаге. В общей сложности было выделено 15 аминокислот, в том числе глицин, аланин и аспарагиновая кислота

В опыте С. Миллера в его установке были воспроизведены условия, существовавшие на Земле в предполагаемое время. В приборе присутствовала смесь газов: водорода, аммиака, метана и пары воды. В одну из камер были введены электроды для получения разрядов, имитировавших молнии, как возможный источник энергии для химических реакций. В другой камере была налита вода, и эта камера подогревалась (для насыщения газовой смеси парами воды). Еще одна камера подвергалась охлаждению, и здесь вода конденсировалась («дождевые осадки»). Уже через неделю в конденсате и были обнаружены различные органические вещества.

В последующие десятилетия во многих лабораториях мира был осуществлен искусственный синтез разных аминокислот, нуклеотидов, простых сахаров, а затем и более сложных органических соединений. Все это подтверждает возможность образования органических веществ на Земле в отдаленные времена без участия живых организмов. При отсутствии свободного кислорода (который разрушал бы их) и живых организмов (которые могли бы использовать их в виде пищи) эти вещества накапливались в первичном океане в высоких концентрациях.

На следующем этапе происходило образование более сложных соединений - белковоподобных веществ (цепочки из аминокислот) и коротких полинуклеотидных молекул. Вероятность этого многократно подтверждена: сегодня подобное получают экспериментально. При достижении определенной концентрации органических веществ в первичном океане могли возникать сложные агрегаты разнообразных соединений - коацерваты , мелкие шаровидные образования.

Изучение искусственно создаваемых коацерватов (очень широко исследованных А. И. Опариным и его сотрудниками) показало, что они проявляют некоторые свойства живых систем. Имея уплотненный наружный слой, некое подобие клеточной мембраны, коацерваты способны избирательно поглощать разные вещества из окружающей среды, которые участвуют в химических реакциях внутри коацерватных капель, а часть продуктов этих реакций выделяется обратно в среду. Накапливая вещества, коацерваты «растут» и, увеличившись в размерах, могут распадаться на несколько частей - «размножаться».

Коацерваты, различные по своему составу, характеризуются разной степенью устойчивости. Более устойчивые сохраняются, прочие исчезают, разрушаются.

Эти наблюдения дали основание А. И. Опарину предположить возможность действия естественного отбора (см. ниже) уже на этой стадии становления живого.

Тем не менее коацерваты при всей сложности их организации не могут считаться живыми существами прежде всего потому, что у них нет стабильного самовоспроизведения.

На следующем этапе в коацерватах образовались взаимосвязи нуклеиновых кислот и белков. Синтез белков определенного состава стал осуществляться на основе информации, заключенной в нуклеиновых кислотах.

Возникает способность нуклеиновых кислот к самовоспроизведению при участии специфических белков - ферментов. То есть можно говорить уже о появлении протобионтов - первичных форм жизни, не имеющих еще клеточной организации, но способных к самовоспроизведению и обмену веществ.

Дальнейшее развитие протобионтов, усложнение их организации привели к появлению организмов, обладающих клеточным строением, - первичных прокариот , бактерий. С этого момента начинается биологическая эволюция. По-видимому, первоначально существовали гетеротрофные организмы (поскольку в первичном океане содержалось много различных органических веществ). По мере увеличения их числа происходило уменьшение пищевых ресурсов и между ними возрастала конкуренция. Это привело к появлению автотрофов - организмов, синтезирующих необходимые им органические вещества из неорганических.

Вначале появились организмы, которые использовали энергию, полученную в результате окисления минеральных веществ. Этот процесс известен как хемосинтез , а организмы получили название хемосинтетиков . Затем, в ходе последующих эволюционных преобразований, возникли автотрофные организмы, использующие энергию солнечного света, - это фотосинтезирующие организмы (фотосинтетики ). Дальнейшая биологическая эволюция обусловила формирование того многообразного мира живой природы, который мы и видим сегодня.

Разнообразие видов как результат биологической эволю ции. Эволюционное учение (теория эволюции) - биологическая дисциплина, исследующая причины и движущие силы, закономерности и механизмы развития живых организмов.

Под биологической эволюцией понимают необратимый и закономерный процесс исторического развития живого от простого к более сложному начиная с момента возникновения первых живых организмов на Земле.

В ходе эволюции одни виды сменялись другими, происходило усложнение и повышение организации живых организмов, увеличивалось их разнообразие, появился человек.

Велико мировоззренческое значение эволюционного учения: оно утверждает идею единства происхождения всего живого, объясняет причины многообразия видов, обитающих на Земле, целесообразность организации живых существ (т. е. соответствие строения и функционирования всех их систем и органов условиям существования), одновременное наличие в природе и простых, и высокоорганизованных организмов.

Эволюционное учение служит теоретической основой современной биологии, объединяя, обобщая результаты, полученные многочисленными частными биологическими науками.

Очевидно его значение и для человека при решении проблем взаимодействия с биосферой.

Наконец, знание законов и механизмов эволюции - база для развития селекции - науки, разрабатывающей методы создания и улучшения сортов культурных растений и пород домашних животных.

История развития представлений о естественном происхождении жизни и эволюции организмов может быть подразделена на три этапа: додарвиновский, дарвиновский и последарвиновский (современный).

Первую научную теорию относительно происхождения живых организмов на Земле создал советский биохимик А. И. Опарин (г.р. 1894). В 1924 г. он опубликовал работы, в которых изложил представления о том, как могла возникнуть жизнь на Земле. Согласно этой теории, жизнь возникла в специфических условиях древней Земли и рассматривается Опариным как закономерный результат химической эволюции соединений углерода во Вселенной.

По Опарину, процесс, приведший к возникновению жизни на Земле, может быть разделен на три этапа:

1. Возникновение органических веществ.

2. Образование из более простых органических веществ биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов и др.).

3. Возникновение примитивных самовоспроизводящихся организмов.

Теория биохимической эволюции имеет наибольшее количество сторонников среди современных учёных. Земля возникла около пяти миллиардов лет назад; первоначально температура её поверхности была очень высокой (4000 – 80000С). По мере её остывания образовались твёрдая поверхность (земная кора - литосфера). Атмосфера, первоначально состоявшая из лёгких газов (водород, гелий), не могла эффективно удерживаться недостаточно плотной Землёй, и эти газы заменялись более тяжёлыми: водяным паром, углекислым газом, аммиаком и метаном. Когда температура Земли опустилась ниже 1000C, водяной пар начал конденсироваться, образуя мировой океан. В это время, в соответствии с представлениями А. И. Опарина, состоялся абиогенный синтез, то есть в первоначальных земных океанах, насыщенных разными простыми химическими соединениями, «в первичном бульоне» под влиянием вулканического тепла, разрядов молний, интенсивной ультрафиолетовой радиации и других факторов среды начался синтез более сложных органических соединений, а затем и биополимеров. Образованию органических веществ способствовало отсутствие живых организмов – потребителей органики – и главного…окислителя…–…кислорода. Сложные молекулы аминокислот случайно объединялись в пептиды, которые, в свою очередь, создали первоначальные белки. Из этих белков синтезировались первичные живые существа микроскопических размеров.

Наиболее сложной проблемой в современной теории эволюции является превращение сложных органических веществ в простые живые организмы. Опарин полагал, что решающая роль в превращении неживого в живое принадлежит белкам. По-видимому, белковые молекулы, притягивая молекулы воды, образовывали коллоидные гидрофильные комплексы. Дальнейшее слияние таких комплексов друг с другом приводило к отделению коллоидов от водной среды (коацервация). На границе между коацерватом (от лат. coacervus – сгусток, куча) и средой выстраивались молекулы липидов – примитивная клеточная мембрана. Предполагается, что коллоиды могли обмениваться молекулами с окружающей средой (прообраз гетеротрофного питания) и накапливать определённые вещества. Ещё один тип молекул обеспечивал способность к самовоспроизведению.

Система взглядов А. И. Опарина получила название «коацерватная гипотеза».

Теория была обоснована, кроме одной проблемы, на которую долго закрывали глаза почти все специалисты в области происхождения жизни. Если спонтанно, путем случайных безматричных синтезов в коацервате возникали единичные удачные конструкции белковых молекул (например, эффективные катализаторы, обеспечивающие преимущество данному коацервату в росте и размножении), то как они могли копироваться для распространения внутри коацервата, а тем более для передачи коацерватам-потомкам? Теория оказалась неспособной предложить решение проблемы точного воспроизведения - внутри коацервата и в поколениях - единичных, случайно появившихся эффективных белковых структур.

Статьи и публикации:

Систематическое положение, образ жизни, внешнее и внутреннее строение тела, размножение и развитие паука-крестовика
Паук-крестовик является одним из самых крупных представителей у паукообразных. Эти пауки распространены по всему миру. Свое имя он получил благодаря характерному кресту на задней части тела. Окраска паука-крестовика часто приспособлена к...

Становление и развитие эволюционных идей
Эволюция означает постепенный, закономерный переход от одного состояния в другое. Под биологической эволюцией понимают изменение популяций растений и животных в ряду поколений, направляемое естественным отбором. В течение многих миллионов...

Легкие
Легкие – парный орган. Расположены они в грудной полости, по обе стороны от средостения, в котором расположены: сердце с крупными сосудами, вилочковая железа, трахея, начальные отделы главных бронхов, пищевод, аорта, грудной проток, лимфа...

Теория происхождения жизни на Зем-ле , предложенная в 1924 г. выдающимся российским учёным, впоследствии академиком А. И. Опариным (1894— 1980; рис. 78) получила широкую извест-ность.

Первый этап , согласно этой теории, состоял в образовании органи-ческих веществ из неорганических. Реальность этого этапа экспери-ментально подтвердили американские учёные С. Миллер (1930—2007) и Г. Юри (1893—1981) в 1953 г. Воздействуя электрическими заря-дами на вещества, характерные для ранней атмосферы Земли, они по-лучили целую смесь из нескольких десятков органических соедине-ний — органических кислот (в том числе аминокислот), азотистых оснований, углеводов и др. Ещё активней стимулировало синтез орга-нических веществ из неорганических ультрафиолетовое излучение. В результате Мировой океан ранней Земли стал представлять собой «первичный бульон», т. е. раствор органических веществ в воде. Одна-ко сами эти вещества — ещё не жизнь. Её химическую основу, напом-ним, составляют биополимеры — белки, нуклеиновые кислоты, поли-сахариды и их производные, которые слагаются из аминокислот, ну-клеотидов и моносахаридов. Для того чтобы возникли биополимеры, необходимы процессы, идущие с затратой энергии (например, при участии АТФ), а также ДНК, РНК и ферменты, которые сами являют-ся продуктами такого процесса.

Второй этап , по теории Опарина, — это этап возникновения жизни. Так, он показал, что в растворах органических соединений образуются коацерваты — маленькие капельки, ограниченные полупроницаемой оболочкой — первичной мембраной. В коацерватах могут концентри-роваться органические вещества, в них быстрее идут реакции и обмен веществ с окружающей средой. Они способны даже делиться, как бак-терии. Экспериментально это предположение Опарина было подтверж-дено американским исследователем С. Фоксом (1912—1998), который назвал эти капельки микросферами. Материал с сайта

Третий этап , по мнению Опарина, состоял в том, что в коацерватах мог сформироваться первичный ген, несущий информацию о первом белке. Вероятно, таким капелькам-коацерватам были присущи свой-ства наследственности и даже естественного отбора, потому что выжи-вали более приспособленные и усовершенствованные из них. В резуль-тате такого отбора жизнь на Земле выбрала асимметрические органические молекулы аминокислот и сахаров. Такие молекулы называют также хиральными. Они похожи друг на друга, как правая рука чело-века на левую (рис. 79), т. е. являются зер-кальными отражениями друг друга. Их так и назвали — правыми и левыми. Аминокисло-ты, из которых состоят белки земных орга-низмов, всегда левые, а углеводы (рибоза и дезоксирибоза), входящие в состав нуклеиновых кислот, всегда правые. Экспериментально доказано, что коацерваты-микросферы из асимме-тричных биополимеров росли быстрее симметричных и вытесняли их. Однако, как подчеркнул А. Эйнштейн, то, что аминокислоты у нас ле-вые, а углеводы правые, можно объяснить простой случайностью.

Нетрудно заметить, что предположение о первых этапах возникно-вения жизни на Земле, по теории Опарина, доказано эксперименталь-но, а вот последний этап носит гипотетический характер. На заключи-тельном этапе возник биосинтез белка — процесс, который характерен даже для самых примитивных микроорганизмов. Механизм его не ме-нялся за всю историю Земли.

На этой странице материал по темам:

  • Примеры необратимых и обратимых процессов из разных областей естествознания

  • О докладе опарина о возникновении жизни на земле кратко

  • Как организованы белки полисахариды с ьочки зрения асиметрии

  • Теория академика опарина. кратко

  • Теория опарина доклад кратко

Вопросы по этому материалу:

Известно, что научные журналы стараются не принимать к публикации статьи, посвященные проблемам, привлекающим всеобщее внимание, но не имеющим четкого решения, - серьезное издание по физике не будет публиковать проект вечного двигателя. Такой темой стало происхождение жизни на Земле. Вопрос о возникновении живой природы, о появлении человека волнует думающих людей многие тысячелетия, а однозначный ответ нашли для себя только креационисты - сторонники божественного происхождения всего сущего, но научной эта теория не является как не подлежащая проверке.

Взгляды древних

О появлении живых существ из воды и гниющих остатков повествуют древнекитайские и древнеиндийские рукописи, о рождении земноводных существ в илистых отложениях больших рек написано древнеегипетскими иероглифами и клинописью Древнего Вавилона. Гипотезы происхождения жизни на Земле путем самозарождения для мудрецов далекого прошлого были очевидны.

Античные философы также приводили примеры появления животных из неживой материи, но их теоретические обоснования имели разную природу: материалистическую и идеалистическую. Демокрит (460-370 до н. э.) находил причину возникновения жизни в особом взаимодействии мельчайших, вечных и неделимых частиц - атомов. Платон (428-347 до н. э.) и Аристотель (384-322 до н. э.) происхождение жизни на Земле объясняли чудесным воздействием на безжизненную материю высшего начала, вселяющего душу в объекты природы.

Идея о существовании некой «жизненной силы», способствующей появлению живых существ, оказалась очень стойкой. Она формировала взгляды на происхождение жизни на Земле у многих ученых, живших в средние века и позднее, вплоть до конца XIX века.

Теория самозарождения

Антони ван Левенгук (1632-1723 гг.) с изобретением микроскопа сделал открытые им мельчайшие микроорганизмы главным предметом спора между учеными, разделявшими две основные теории происхождения жизни на Земле - биогенез и абиогенез. Первые считали, что все живое может быть порождением только живого, вторые полагали возможным самозарождение органической материи в растворах, помещенных в особые условия. Суть этого спора не изменилась до сих пор.

Эксперименты одних натуралистов доказывали возможность самопроизвольного возникновения простейших микроорганизмов, сторонники биогенеза полностью отрицали такую вероятность. Луи Пастер (1822-1895 гг.) строго научными методами, высокой корректностью своих опытов доказал отсутствие мифической жизненной силы, передающейся по воздуху и порождающей живые бактерии. Однако в своих работах он допускал возможность самозарождения в каких-то особых условиях, выяснить которые предстояло ученым будущих поколений.

Теория эволюции

Труды великого Чарльза Дарвина (1809-1882 гг.) потрясли основы многих естественных наук. Провозглашенное им появление огромного многообразия биологических видов от одного общего предка опять сделало происхождение жизни на Земле важнейшим вопросом науки. Теория естественного отбора и в начале с трудом находила своих сторонников, и теперь подвергается критическим атакам, которые выглядят достаточно обоснованно, но именно дарвинизм лежит в основе современных естественных наук.

После Дарвина происхождение жизни на Земле биология не могла рассматривать с прежних позиций. Ученые многих отраслей биологической науки убеждались в истинности эволюционного пути развития организмов. Пусть во многом изменились современные взгляды на общего предка, помещенного Дарвиным в основание Древа жизни, но истинность общей концепции незыблема.

Теория стационарного состояния

Лабораторное опровержение спонтанного самозарождения бактерий и других микроорганизмов, осознание сложного биохимического строения клетки вместе с идеями дарвинизма оказали особое влияние на появление альтернативных вариантов теории происхождения жизни на Земле. В 1880 году одно из новых суждений предложил Вильям Прейер (1841-1897 гг.). Он считал, что нет необходимости говорить о рождении жизни на нашей планете, так как она существует вечно, и у неё не было начала как такового, она неизменна и постоянно готова к возрождению в любых подходящих условиях.

Идеи Прейера и его последователей представляют собой только чисто исторический и философский интерес, потому что в дальнейшем астрономы и физики рассчитали сроки конечного существования планетарных систем, зафиксировали постоянное, но неуклонное расширение Вселенной, т. е. она никогда не была ни вечной, ни постоянной.

Стремление рассматривать мир как единую глобальную живую сущность перекликалось со взглядами великого ученого и философа из России - Владимира Ивановича Вернадского (1863-1945 гг.), также имевшего своё представление о происхождении жизни на Земле. Оно основывалось на понимании жизни как неотъемлемой характеристики Вселенной, космоса. По мнению Вернадского, то, что наука не смогла найти пластов, не содержавших следов органических веществ, говорило о геологической вечности жизни. Одним из способов, которым жизнь появилась на молодой планете, Вернадский называл её контакты с космическими объектами - кометами, астероидами и метеоритами. Тут его теория смыкалась с другой версией, объяснявшей происхождение жизни на Земле методом панспермии.

Колыбель жизни - космос

Панспермия (греч. - "семенная смесь", "семена повсюду") считает жизнь фундаментальным свойством материи и не объясняет способов её возникновения, но называет космос источником зародышей жизни, которые попадают на небесные тела с подходящими для их «прорастания» условиями.

Первое упоминание об основных концепциях панспермии можно найти в сочинениях древнегреческого философа Анаксагора (500-428 до н. э.), а в XVIII веке о ней высказывался французский дипломат и геолог Бенуа де Майе (1656-1738 гг.). Реанимировали эти идеи Сванте Август Аррениус (1859-1927 гг.), лорд Кельвин Уильям Томсон (1824-1907 гг.) и Герман фон Гельмгольц (1821-1894 гг.).

Исследование жестокого влияния на живые организмы космического излучения и температурных условий межпланетного пространства сделало подобные гипотезы происхождения жизни на Земле не слишком актуальными, но с началом космической эры интерес к панспермии усилился.

В 1973 году нобелевский лауреат Френсис Крик (1916-2004 гг.) высказал мысль о внеземном производстве молекулярных живых систем и попадании их на Землю с метеоритами и кометами. При этом шансы абиогенеза на нашей планете им оценивались как очень низкие. Происхождение и развитие жизни на Земле методом самосборки органического вещества высокого уровня видный ученый не считал реальностью.

Окаменевшие биологические структуры находили в метеоритах по всей планете, подобные следы нашли в образцах грунта, доставленных с Луны и Марса. С другой стороны, проводятся многочисленные эксперименты по обработке биоструктур воздействиями, возможными при нахождении их в космическом пространстве и при прохождении атмосферы, подобной земной.

Важный эксперимент был проведен в 2006 году в рамках миссии Deep Impact. Комета Темпеля была протаранена специальным зондом-импактором, выпущенным автоматическим аппаратом. Анализ кометного вещества, которое выделилось в результате удара, показал наличие в нем воды и многообразных органических соединений.

Вывод: со времени появления теория панспермии значительно изменилась. Современная наука по-другому трактует те первичные элементы жизни, которые могли быть доставлены на нашу молодую планету космическими объектами. Исследования и эксперименты доказывают жизнестойкость живых клеток в условиях межпланетного путешествия. Всё это делает идею внеземного происхождения земной жизни актуальной. Основными концепциями происхождения жизни на Земле являются теории, в которые панспермия входит или как главная часть, или как способ доставки на Землю компонентов для создания живой материи.

Теория биохимической эволюции Опарина-Холдейна

Идея самозарождения живых организмов из неорганических веществ всегда оставалась чуть ли не единственной альтернативой креационизму, и в 1924 году вышла монография из 70 страниц, придавшая этой идее силу проработанной и обоснованной теории. Эта работа называлась «Происхождение жизни», автором её был русский ученый - Александр Иванович Опарин (1894-1980 гг.). В 1929 году, когда труды Опарина еще не были переведены на английский язык, похожие концепции происхождения жизни на Земле высказал английский биолог Джон Холдейн (1860-1936 гг.).

Опарин предположил, что, если примитивная атмосфера молодой планеты Земля была восстановительной (то есть не содержащей кислорода), мощный всплеск энергии (например, молния или ультрафиолетовое излучение) мог способствовать синтезу органических соединений из неорганического вещества. В дальнейшем такие молекулы могли образовывать сгустки и скопления - коацерватные капли, представляющие собой протоорганизмы, вокруг которых образуются водные рубашки - зачатки оболочки-мембраны, происходит расслоение, порождающее разность зарядов, значит, движение - начало обмена веществ, зачатки метаболизма и т. д. Коацерваты считались основой для начала эволюционных процессов, которые привели к созданию первых жизненных форм.

Холдейн ввел понятие «первичного бульона» - начального земного океана, ставшего огромной химической лабораторией, подключенной к мощному источнику питания - солнечному свету. Сочетание диоксида углерода, аммиака и ультрафиолетового излучения привело к появлению концентрированной популяции органических мономеров и полимеров. Впоследствии такие образования соединялись с появлением вокруг них липидной мембраны, и их развитие привело к образованию живой клетки.

Основные этапы происхождения жизни на Земле (по Опарину-Холдейну)

Согласно теории возникновения Вселенной из сгустка энергии, Большой Взрыв произошел около 14 млрд лет назад, а около 4,6 млрд лет назад завершилось создание планет Солнечной системы.

Молодая Земля, постепенно охлаждаясь, обрела твердую оболочку, вокруг которой происходило образование атмосферы. Первичная атмосфера содержала водяные пары и газы, в дальнейшем послужившие сырьем для органического синтеза: оксид и диоксид углерода, сероводород, метан, аммиак, цианистые соединения.

Бомбардировка космическими объектами, содержащими воду в замерзшем состоянии, и конденсация водных паров в атмосфере привели к образованию Мирового океана, в котором растворялись различные химические соединения. Мощные грозы сопровождали формирование атмосферы, сквозь которую проникало сильное ультрафиолетовое излучение. В таких условиях происходил синтез аминокислот, сахаров и другой простейшей органики.

В конце первого миллиарда лет существования Земли начался процесс полимеризации в воде простейших мономеров в белки (полипептиды) и нуклеиновые кислоты (полинуклеотиды). Они начали образовывать предбиологические соединения - коацерваты (с зачатками ядра, метаболизма и мембраны).

3,5-3 млрд лет до нашей эры - этап образования протобионтов, обладающих самовоспроизведением, регулируемым обменом веществ, мембраной с изменяемой проницаемостью.

3 млрд лет до н. э. - появление клеточных организмов, нуклеиновых кислот, первичных бактерий, начало биологической эволюции.

Экспериментальные доказательства гипотезы Опарина-Холдейна

Многие ученые положительно оценили основные концепции происхождения жизни на Земле на основе абиогенеза, хотя с самого начала находили в теории Опарина-Холдейна узкие места и недоговоренности. В разных странах начались работы по проведению тестовых исследований гипотезы, из которых наиболее известен классический эксперимент, проведенный в 1953 году американскими учеными Стенли Миллером (1930-2007 гг.) и Гарольдом Юри (1893-1981 гг.).

Суть эксперимента заключалась в моделировании в лаборатории условий ранней Земли, в которых мог происходить синтез простейших органических соединений. В приборе циркулировала газовая смесь, аналогичная по составу первичной земной атмосфере. Конструкция прибора обеспечивала имитацию вулканической деятельности, а пропускаемые через смесь электрические разряды создавали эффект молний.

После недельного циркулирования смеси по системе был отмечен переход десятой части углерода в органические соединения, были обнаружены аминокислоты, сахара, липиды и соединения, предшествующие аминокислотам. Повторные и модифицированные опыты полностью подтвердили возможность абиогенеза в имитируемых условиях ранней Земли. В последующие годы в других лабораториях были проведены повторные опыты. К составу газовой смеси добавлялся сероводород как возможный компонент вулканических выделений, вносились другие некардинальные изменения. В большинстве случаев опыт синтеза органических соединений удавался, хотя попытки пойти дальше и получить более сложные элементы, приближающиеся по составу к живой клетке, успехом не увенчались.

Мир РНК

К концу XX века многим ученым, которых не переставала интересовать проблема происхождения жизни на Земле, стало понятно, что при всей стройности теоретических построений и отчетливом опытном подтверждении теория Опарина-Холдейна имеет явные, может быть, непреодолимые изъяны. Главным из них являлась невозможность объяснить появление у протобионтов определяющих для живого организма свойств - размножаться с сохранением наследственных признаков. С открытием генетических клеточных структур, с определением функции и строения ДНК, с развитием микробиологии появился новый кандидат на роль молекулы первожизни.

Им стала молекула рибонуклеиновой кислоты - РНК. Эта макромолекула, входящая в состав всех живых клеток, представляет собой цепь нуклеотидов - простейших органических звеньев, состоящих из атомов азота, моносахарида - рибозы и фосфатной группы. Именно последовательность нуклеотидов является кодом наследственной информации, и у вирусов, например, РНК выполняет ту роль, что у сложных клеточных структур играет ДНК.

Кроме того, учеными открыта уникальная способность некоторых молекул РНК вносить разрывы в другие цепочки или склеивать отдельные элементы РНК, а некоторые играют роль автокатализаторов - то есть способствуют быстрому самовоспроизведению. Относительно небольшие размеры макромолекулы РНК и её упрощенное, по сравнению с ДНК, строение (в одну нить) сделали рибонуклеиновую кислоту главным кандидатом на роль основного элемента добиологических систем.

Окончательно новую теорию возникновения живой материи на планете сформулировал в 1986 году Уолтер Гилберт (род. 1932 г.) - американский физик, микробиолог и биохимик. Не все специалисты были согласны с таким взглядом на происхождение жизни на Земле. Кратко названная «Мир РНК», теория строения добиологического мира нашей планеты не может ответить на простой вопрос, как появилась первая молекула РНК с заданными свойствами, даже если присутствовало огромное количество «строительного материала» в виде нуклеотидов и т. д.

Мир ПАУ

Ответ постарался найти в мае 2004 года Саймон Николас Платтс, а в 2006 году группа ученых под руководством Паскаль Эренфройнд. В качестве исходного материала для РНК с катализирующими свойствами были предложены полиароматические углеводороды.

Мир ПАУ был основан на большой распространенности этих соединений в видимом космосе (они наверняка присутствовали в «первичном бульоне» молодой Земли) и особенностях их кольцеобразного строения, способствующего быстрому соединению с азотистыми основаниями - ключевыми компонентами РНК. Теория ПАУ в очередной раз говорит о злободневности некоторых положений панспермии.

Уникальная жизнь на уникальной планете

Пока у ученых не будет возможности вернуться на 3 млрд лет назад, тайна возникновения жизни на нашей планете не будет раскрыта - к такому выводу приходят многие из тех, кто занимался этой проблемой. Основными концепциями происхождения жизни на Земле являются: теория абиогенеза и теория панспермии. Они могут во многом пересекаться, но, скорее всего, не смогут ответить: как среди огромного космоса появилась удивительно точно сбалансированная система из Земли и её спутника - Луны, как зародилась на ней жизнь…