Возрастание и убывание функции

функция y = f (x ) называется возрастающей на отрезке [a , b ], если для любой пары точек х и х" , а ≤ х выполняется неравенство f (x ) f (x" ), и строго возрастающей - если выполняется неравенство f (x ) f (x" ). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х 2 (рис. , а) строго возрастает на отрезке , а

(рис. , б) строго убывает на этом отрезке. Возрастающие функции обозначаются f (x ), а убывающие f (x )↓. Для того чтобы дифференцируемая функция f (x ) была возрастающей на отрезке [а , b ], необходимо и достаточно, чтобы её производная f "(x ) была неотрицательной на [а , b ].

Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x ) называется возрастающей в точке x 0 , если найдётся такой интервал (α, β), содержащий точку x 0 , что для любой точки х из (α, β), х> x 0 , выполняется неравенство f (x 0) f (x ), и для любой точки х из (α, β), х 0 , выполняется неравенство f (x ) ≤ f (x 0). Аналогично определяется строгое возрастание функции в точке x 0 . Если f "(x 0) > 0, то функция f (x ) строго возрастает в точке x 0 . Если f (x ) возрастает в каждой точке интервала (a , b ), то она возрастает на этом интервале.

С. Б. Стечкин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Возрастание и убывание функции" в других словарях:

    Понятия математического анализа. Функция f(x) называется возрастающей на отрезке ВОЗРАСТНАЯ СТРУКТУРА НАСЕЛЕНИЯ соотношение численности разных возрастных групп населения. Зависит от уровней рождаемости и смертности, продолжительности жизни людей … Большой Энциклопедический словарь

    Понятия математического анализа. Функция f(х) называется возрастающей на отрезке , если для любой пары точек x1 и x2, a≤x1 … Энциклопедический словарь

    Понятия матем. анализа. Ф ция f(x) наз. возрастающей на отрезке [а, b], если для любой пары точек х1 и x2, а<или=х1 <х<или=b, выполняется неравенство f(x1)Естествознание. Энциклопедический словарь

    Раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 … Большая советская энциклопедия

    Раздел математики, в к ром изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Развитие Д. и. тесно связано с развитием интегрального исчисления. Неразрывно и их содержание. Вместе они составляют основу… … Математическая энциклопедия

    У этого термина существуют и другие значения, см. функция. Запрос «Отображение» перенаправляется сюда; см. также другие значения … Википедия

    Аристотель и перипатетики - Аристотелевский вопрос Жизнь Аристотеля Аристотель родился в 384/383 гг. до н. э. в Стагире, на границе с Македонией. Его отец по имени Никомах был врачом на службе у македонского царя Аминта, отца Филиппа. Вместе с семьей молодой Аристотель… … Западная философия от истоков до наших дней

    - (КХД), квантовополевая теория сильного вз ствия кварков и глюонов, построенная по образу квант. электродинамики (КЭД) на основе «цветовой» калибровочной симметрии. В отличие от КЭД, фермионы в КХД имеют дополнит. степень свободы квант. число,… … Физическая энциклопедия

    I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия

    Жизнь растения, как и всякого другого живого организма, представляет сложную совокупность взаимосвязанных процессов; наиболее существенный из них, как известно, обмен веществ с окружающей средой. Среда является тем источником, откуда… … Биологическая энциклопедия

1. Найти область определения функции

2.Найти производную функции

3. Приравнять производную к нулю и найти критические точки функции

4. Отметить критические точки на области определения

5. Вычислить знак производной в каждом из полученных интервалов

6. Выяснить поведение функции в каждом интервале.

Пример: Найдите промежутки возрастания и убывания функции f (x ) = и число нулей данной функции на промежутке .

Решение:

1. D(f ) = R

2. f "(x ) =

D(f ") = D(f ) = R

3. Найдём критические точки функции, решив уравнение f "(x ) = 0.

x (x – 10) = 0

критические точки функции x = 0 и x = 10.

4. Определим знак производной.

f "(x ) + – +


f (x ) 0 10 x

в промежутках (-∞; 0) и (10; +∞) производная функции положительна и в точках x = 0 и x = 10 функция f (x ) непрерывна, следовательно, данная функция возрастает на промежутках: (-∞; 0]; .

Определим знак значений функции на концах отрезка.

f (0) = 3, f (0) > 0

f (10) = , f (10) < 0.

Так как на отрезке функция убывает и знак значений функции изменяется, то на этом отрезке один нуль функции.

Ответ: функция f(x) возрастает на промежутках: (-∞; 0]; ;

на промежутке функция имеет один нуль функции.

2. Точки экстремума функции: точки максимума и точки минимума. Необходимое и достаточное условия существования экстремума функции. Правило исследования функции на экстремум .

Определение 1: Точки, в которых производная равна нулю, называются критическими или стационарными.

Определение 2 . Точка называется точкой минимума (максимума) функции , если значение функции в этой точке меньше (больше) ближайших значений функии.

Следует иметь в виду, что максимум и минимум в данном случае являются локальными.

На рис. 1. изображены локальные максимумы и минимумы.

Максимум и минимум функции объединены общим названием: экстремум функции.

Теорема 1. (необходимый признак существования экстремума функции). Если дифференцируемая в точке функция имеет в этой точке максимум или минимум, то ее производная при обращается в нуль, .

Теорема 2. (достаточный признак существования экстремума функции). Если непрерывная функция имеет производную во всех точках некоторого интервала, содержащего критическую точку (за исключением может быть самой этой точки), и если производная при переходе аргумента слева направо через критическую точку меняет знак с плюса на минус, то функция в этой точке имеет максимум, а при переходе знака с минуса на плюс – минимум.

Пусть на некоторой плоскости задана прямоугольная система координат. Графиком некоторой функции , (X- область определения) называется множество точек этой плоскости с координатами, где .

Для построения графика нужно изобразить на плоскости множество точек, координаты которых (x;y) связаны соотношением .

Чаще всего графиком функции является некоторая кривая.

Самый простой способ построения графика - построение по точкам.

Составляется таблица, в которой в одной ячейке стоит значение аргумента, а в противоположной ей значение функции от этого аргумента. Затем полученные точки отмечаются на плоскости, и через них проводится кривая.

Пример построения по точкам графика функции :

Построим таблицу.

Теперь строим график.

Но таким способом не всегда возможно построить достаточно точный график - для точности нужно брать очень много точек. Поэтому используют различные методы исследования функции.

С полной схемой исследования функции знакомятся в высших учебных заведениях. Одним из пунктов исследования функции является нахождение промежутков возрастания (убывания) функции.

Функция называется возрастающей (убывающей) на некотором промежутке, если , для любых x 2 и x 1 из этого промежутка, таких, что x 2 >x 1 .

Например, функция, график которой изображен на следующем рисунке, на промежутках возрастает, а на промежутке (-5;3) убывает. То есть, на промежутках график идет «в гору». А на промежутке (-5;3) «под гору».

Еще одним из пунктов исследования функции является исследование функции на периодичность.

Функция называется периодичной, если существует такое число T, что .

Число T называют периодом функции. Например, функция периодична, здесь период равен 2П, так

Примеры графиков периодичных функций:

Период первой функции равен 3, а второй – 4.

Функция называется четной, если Пример четной функции y=x 2 .

Функция называется нечетной, если Пример нечетной функции y=x 3 .

График четной функции симметричен относительно оси ОУ (осевая симметрия).

График нечетной функции симметричен относительно начала координат (центральная симметрия).

Примеры графиков четной (слева) и нечетной (справа) функции.

Для понимая данной темы, рассмотрим функцию, изображенную на графике // Покажем, как график функции позволяет определить ее свойства.

Разбираем свойства функции на примере

Областью определения функции явл. промежуток [ 3,5; 5,5].

Областью значений функции явл. промежуток [ 1; 3].

1. При x = -3, x =- 1, x = 1,5, х=4,5 значение функции равно нулю.

Значение аргумента, при котором значение функции равно нулю, называют нулем функции.

//т.е. для данной функции числа -3;-1;1,5; 4,5 являются нулями.

2. На промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] график функции f расположен над осью абсцисс, а на промежутках (-3; -1) и (1,5; 4,5) под осью абсцисс, это объясняется так -на промежутках [ 4,5; 3) и (1; 1,5) и (4,5;5,5] функция принимает положительные значения, а на промежутках (-3; -1) и (1,5; 4,5) отрицательные.

Каждый из указанных промежутков (там где функция принимает значения одного и того же знака) называют промежутком знакопостоянства функции f.//т.е. например, если взять промежуток (0; 3), то он не является промежутком знакопостоянства данной функции.

В математике принято при поиске промежутков знакопостоянства функции указывать промежутки максимальной длины. //Т.е. промежуток (2; 3) является промежутком знакопостоянства функции f, но в ответ следует включить промежуток [ 4,5; 3), содержащий промежуток (2; 3).

3. Если перемещаться по оси абсцисс от 4,5 до 2, то можно заметить, что график функции идет вниз, то есть значения функции уменьшаются. //В математике принято говорить, что на промежутке [ 4,5; 2] функция убывает.

С увеличением x от 2 до 0 график функции идет вверх, т.е. значения функции увеличиваются. //В математике принято говорить, что на промежутке [ 2; 0] функция возрастает.

Функцию f называют , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f (x2) > f (x1). // или Функцию называют возрастающей на некотором промежутке , если для любых значений аргумента из этого промежутка большему значению аргумента соответствует большее значение функции.//т.е. чем больше х, тем больше у.

Функцию f называют убывающей на некотором промежутке , если для любых двух значений аргумента x1 и x2 из этого промежутка таких, что x2 > x1, выполняется неравенство f(x2)убывающей на некотором промежутке, если для любых значений аргумента из этого промежутка большему значению аргумента соответствует меньшее значение функции. //т.е. чем больше х, тем меньше у.

Если функция возрастает на всей области определения, то ее называют возрастающей .

Если функция убывает на всей области определения, то ее называют убывающей .

Пример 1. график возрастающей и убывающей функций соотвественно.

Пример 2.

Определить явл. ли линейная функция f (x) = 3x + 5 возрастающей или убывающей?

Доказательство. Воспрользуемся определениями. Пусть х1 и x2 произвольные значения аргумента, причем x1 < x2., например х1=1, х2=7

Экстремумы функции

Определение 2

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.

Определение 3

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.

Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.

Определение 4

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ - внутренняя точка области определения;

2) $f"\left(x_0\right)=0$ или не существует.

Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.

Теорема 2

Достаточное условие экстремума

Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:

1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)

2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.

3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)

Данная теорема проиллюстрирована на рисунке 1.

Рисунок 1. Достаточное условие существования экстремумов

Примеры экстремумов (Рис. 2).

Рисунок 2. Примеры точек экстремумов

Правило исследования функции на экстремум

2) Найти производную $f"(x)$;

7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.

Возрастание и убывание функции

Введем, для начала, определения возрастающей и убывающей функций.

Определение 5

Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1

Определение 6

Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.

Исследование функции на возрастание и убывание

Исследовать функции на возрастание и убывание можно с помощью производной.

Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:

1) Найти область определения функции $f(x)$;

2) Найти производную $f"(x)$;

3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;

4) Найти точки, в которых $f"(x)$ не существует;

5) Отметить на координатной прямой все найденные точки и область определения данной функции;

6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;

7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.

Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов

Пример 1

Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$

Так как первые 6 пунктов совпадают, проведем для начала их.

1) Область определения - все действительные числа;

2) $f"\left(x\right)=6x^2-30x+36$;

3) $f"\left(x\right)=0$;

\ \ \

4) $f"(x)$ существует во всех точках области определения;

5) Координатная прямая:

Рисунок 3.

6) Определить знак производной $f"(x)$ на каждом промежутке:

\ \}