Вы бродите по супермаркету, разыскивая стиральный порошок без фосфатов. Естественно, для того чтобы узнать, какое средство из целого арсенала бытовой химии вам подходит, берете в руки каждую упаковку с нужной классификацией и смотрите состав содержащегося в ней продукта. Наконец, выбрали подходящее средство, но в процессе изучения всех стиральных порошков магазина заметили странную закономерность: на каждой коробке или пачке было написано что-нибудь типа: "В состав продукта входит карбонат натрия". В каждом человеке присутствует малая толика любопытства, и вы не являетесь исключением. Захотелось узнать, что это за вещество, не так ли? Сегодняшняя статья пополнит объм ваших знаний некоторыми сведениями об этом соединении.

Определение

Карбонат натрия (формула Na 2 CO 3) является натриевой солью угольной кислоты. В разных источниках его могут называть по-разному: и углекислым натрием, и динатрия триоксокарбонатом, и кальцинированной содой. Кстати, о последнем названии. Обсуждаемое сейчас химическое соединение в чистом виде - это не та пищевая сода, которую добавляют в различные продукты. Ее название - гидрокарбонат натрия. Вещества с присутствием карбоната натрия (да и сам он тоже) зовутся содами. Исключение составляет каустическая сода, научное название которой - гидроксид одноименного металла. Однако гидрокарбонат натрия реагирует с этим веществом, образуя обсуждаемое сейчас соединение. Все остальные соды - сам карбонат с водой или водородом в одной формуле. Сегодня рассматриваются свойства, получение и применение только чистой натриевой соли угольной кислоты.

Карбонат натрия: физические свойства

Это вещество в безводном состоянии имеет вид бесцветного кристаллического порошка (фото выше). Строение его кристаллической рещетки зависит от температуры окружения: если последняя не меньше 350, но ниже 479 о С, то она является моноклинной, если температура выше - гексагональной.

Карбонат натрия: химические свойства

Если опустить его в сильную кислоту, то угольная, получившаяся в ходе реакции и являющаяся крайне нестойкой, распадется на газообразный оксид четырехвалентного углерода и воду. Второй продукт реакции - натриевая соль соответствующей кислоты (например, при бросании кристаллов обсуждаемого сейчас карбоната в серную кислоту, получатся углекислый газ, вода, и сульфат натрия). В воде данное соединение будет гидролизоваться, благодаря этому нейтральная среда становится щелочной

Получение

Его можно получить несколькими способами, все они разные, но в этой статье будет рассказано лишь об одном. Необходимо смешать мел и древесный уголь с сульфатом натрия, а потом запечь эту смесь при температуре около 1000 о С. Уголь будет восстанавливать последний до сульфида, который при реакции с карбонатом кальция образует расплав сернистого кальция и искомого вещества. Его необходимо обработать водой, затем отфильтровать ненужный сульфид и упарить получившийся раствор. Образовавшийся сырой карбонат натрия очищается посредством перекристаллизации, а затем обезвоживается с помощью кальцинирования. Данный метод называется способом Леблана.

Применение

Отрасли, производящие стекло, стиральные порошки, мыло и эмали не обходятся без карбоната натрия, где его используют, чтобы получить ультрамарин. Также с помощью него устраняют жесткость воды, обезжиривают металлы и проводят десульфатизацию, объектом которой является доменный чугун. Карбонат натрия является хорошим окислителем и регулятором кислотности, его содержат моющие посуду средства, сигареты и пестициды. Также он известен как пищевая добавка E500, не дающая ингредиентам комковаться и слёживаться. Обсуждаемое сейчас вещество необходимо и для того, чтобы приготовить проявитель фотографий.

Заключение

Вот для чего полезен карбонат натрия. В чистом виде он, может быть, многим никогда и не встречался, однако его кристаллогидраты (это все соды, кроме каустической) используются человеком почти везде. Это одно из веществ, соединения которых с водой применяются в промышленности гораздо чаще, чем они сами в чистом виде.

Материал для учащихся 9

«Палеонтология и карбонат кальция»

Карбонат кальция

Карбонат кальция (углекислый кальций) - неорганическое химическое соединение, соль угольной кислоты и кальция.

Химическая формула - CaCO 3 .

Карбонат кальция в природе

Карбонат кальция основа большинства природных минералов кальция (мел, мрамор, известняк, ракушечник, кальцит, исландский шпат). В чистом виде вещество белого цвета или бесцветные кристаллы. Соединения кальция - известняк, мрамор, гипс (а также известь - продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым веществом. В 1789 году А. Лавуазье предположил, что известь , магнезия, барит, глинозём и кремнезём - вещества сложные.

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Соединения кальция находятся практически во всех животных и растительных тканях. Значительное количество кальция входит в состав живых организмов. Из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция - около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Химические свойства карбоната кальция


  1. Карбонат кальция при нагревании разлагается на соответствующий оксид и углекислый газ.
CaCO 3 → CaO + CO 2

  1. С водой, содержащей растворенный диоксид углерода, карбонат кальция реагирует, образуя растворы гидрокарбонатов:
CaCO 3 + CO 2 + H 2 O = Ca 2 + + 2HCO 3 -

При нагревании и даже при попытке выделить гидрокарбонат из раствора , удаляя воду при комнатной температуре, он разлагается по обратной реакции:

Ca 2 + + 2HCO 3 - = CaCO 3 + CO 2 + H 2 O.


  1. Карбонат кальция взаимодействует с кислотами с выделением углекислого газа
CaCO 3 ( мрамор ) + 2HCl CaCl 2 + H 2 O + CO 2

  1. Карбонат кальция не растворим в воде и этаноле.
Кальцит

Кальцит, известковый шпат - минерал, одна из природных форм карбоната кальция. Исключительно широко распространён на поверхности Земли, породообразующий минерал. Кальцитом сложены известняки, меловые породы, мергели, карбонатиты. Кальцит - самый распространённый биоминерал: он входит в состав раковин и эндоскелета большинства беспозвоночных, а также покровных структур некоторых одноклеточных организмов.

Название предложено Гайдингером в 1845 году и происходит , как и название химического элемента, от лат. calx (род.п. calcis) - известь.

В чистом виде кальцит белый или бесцветный, прозрачный (исландский шпат) или просвечивающий, - в зависимости от степени совершенства кристаллической структуры. Примеси окрашивают его в разные цвета.



Кальцит относится к тригональной сингонии. Кристаллы очень разнообразны, но чаще ромбоэдрические (острый, основной и тупой ромбоэдры). Кальцит слагает горную породу мрамор, является главной составной частью известняков. Нередко образует псевдоморфозы по органическим остаткам, замещает раковины древних моллюсков и кораллы («окаменелости»).

Известняк

Известняк - осадочная горная порода органического происхождения, состоящая преимущественно из кристаллов кальцита различного размера и образующаяся при участии живых организмов в морских бассейнах.

Известняк, состоящий преимущественно из раковин морских животных и их обломков, называется ракушечником. При метаморфизме известняк перекристаллизуется и образует мрамор.

Название разновидности известняка отражает присутствие в нём остатков породообразующих организмов, район распространения , структуру (например, оолитовые известняки), примесей (железистые), характер залегания (плитняковые), геологический возраст (триасовые).

Из известняков сложены целые горные цепи в Альпах, широко распространён известняк и в других местах. У известняка нет блеска, он обычно светло-серого цвета, но может быть белым или тёмным, почти чёрным, голубоватым, желтоватым или розовым, в зависимости от состава примесей.

Мрамор

Мрамор (др.-греч. μάρμαρος - «белый или блестящий камень») - метаморфическая горная порода, состоящая только из кальцита , а также органических соединений. Мраморы появляются путем метаморфизма при средних температурах и давлениях из преимущественно карбонатных осадочных пород. При этих условиях очень мелкие зерна карбоната кальция и магния осадочных пород испытывают «бластез» - укрупнение кристаллов.

В мире разведано огромное количество месторождений мрамора. Самые известные - Каррарское в Италии, Паросское и Пенделиконское в Греции. В России это Кибик-Кордонское в Красноярском крае, Буровщина в Забайкалье, Уфалейское на Урале, Рускеальское и Белогорское в Карелии. Окраска мрамора также зависит от примесей.


Палеонтология

Палеонтология (от др.-греч. παλαιοντολογία) - наука об организмах, существовавших в прошлые геологические периоды и сохранившихся в виде ископаемых останков, а также следов их жизнедеятельности.

Палеонтологи исследуют не только останки собственно животных и растений, но и их окаменевшие следы, отброшенные оболочки и другие свидетельства их существования. В палеонтологии также используются методы палеоэкологии и палеоклиматологии с целью воспроизведения среды жизнедеятельности организмов , сопоставления современной среды обитания организмов, предположения местообитаний вымерших и т. д.

Ископаемые останки или окаменелости человек использовал, начиная с палеолита. Об этом свидетельствуют находки ожерелий из фрагментов вымерших кораллов и морских ежей, использовавшихся в ритуалах погребения, и другие археологические находки. Различные ископаемые упоминаются в преданиях, мифах и сказках. Так, белемниты называют «чёртовы пальцы» и в восточных сказках их рассматривают как ногти джинов, раковины фораминифер – нуммулитид в сказаниях о битвах Александра Македонского описывают как окаменевшие монетки.

Первые научные письменные документы об ископаемых организмах принадлежат древнегреческим естествоиспытателям и философам. Успехи естествознания древних греков были обобщены в трудах Аристотеля , жившего в 384–322 гг. до новой эры, – великого мыслителя своего времени, который создал основы классификации животных, зачатки сравнительной анатомии и эмбриологии. Окаменелости он считал остатками морских животных. Спустя много столетий в XV–XVI вв. такой взгляд на окаменелости поддерживал Леонардо да Винчи (1452–1519), хотя в то время существовали иные точки зрения, в частности, что окаменелости – это объекты, созданные богом после потопа.

В XVII–XVIII вв. начинаются интенсивные исследования в различных отраслях естествознания. Это привело не только к накоплению огромного фактического материала , но и к появлению различных идей, гипотез. Большое значение в развитии палеонтологии имели труды шведского учёного Карла Линнея (1707–1778 гг.) – основоположника классификации и систематики. Он разделил всю природу на три царства: минералов, растений и животных. Одновременно с Линнеем работали блестящие учёные: во Франции Жорж Бюффон (1707–1788) и в России – Михаил Ломоносов (1711–1765).

Бюффон, рассматривая происхождение и развитие жизни, историю животного и растительного мира, подчёркивал единый план строения животных, говорил о наличии промежуточных форм между разными группами животных и считал, что история развития Земли насчитывает до 75 000 лет.

М. Ломоносов в своей книге «О слоях земных» объяснял происхождение осадочных горных пород образованием их в морских бассейнах. Ископаемые моллюски , встреченные в этих породах, обязаны своим происхождением морям, существовавшим в прошедшие геологические эпохи. Ломоносов представлял себе смену различных периодов жизни на Земле как последовательное чередование наступления и отступления морей, объясняя эти явления медленными колебаниями суши. Область распространения живых существ на Земле образует особую оболочку, называемую биосферой. Биосфера возникла с появлением на Земле живых существ: она занимает всю поверхность суши, все водоёмы Земли (океаны, моря, озёра, реки), проникает в атмосферу – большинство организмов поднимается в воздух более чем на 50 – 70 м, а споры бактерий и грибов заносятся на высоту до 22 км. Жизнь проникается в литосферу, где она концентрируется в основном в поверхности слоёв на глубине до 6-8 м, но некоторые бактерии найдены в слоях на глубине до 2-3 км.

В 90-х годах XVIII века и начале XIX века геодезист и горный инженер Уильям Смит активно использовал окаменелости , чтобы установить связь между горными пластами в разных местах. Он установил принцип последовательности фаун, согласно которому каждый пласт осадочной породы содержит определенный тип окаменелостей, которые следуют друг за другом в предсказуемом порядке даже в пластах, разделенных огромным расстоянием.

Новый этап в развитии палеонтологии начинается с появлением в 1859 году наиболее завершённой на тот момент теории эволюции Чарльза Дарвина, оказавшей определяющее влияние на всё дальнейшее развитие естествознания. Современная эволюционная палеонтология была основана Владимиром Ковалевским. Именно благодаря исследованиям Ковалевского и его находкам дарвинизм приобрёл палеонтологически обоснованную базу.

Условия существования на земле очень разнообразны и определяются факторами как неорганического, так и органического порядка. К неорганическим факторам относятся: температура, влажность , солёность воды, глубина бассейна, давление. К органическим факторам относятся те взаимоотношения, в которые вступают организмы между собой. Эти взаимоотношения в первую очередь выражаются пищевыми связями. Каждый вид обладает своим ареалом, занимая различные части земной поверхности. Все организмы на земле живут сообществами, называемыми биоценозами. Организмы, входящие в состав биоценоза, по-разному реагируют на колебания того или иного фактора среды – солёности, температуры , давления. Одни могут существовать при широких колебаниях одного из факторов среды и тогда прибавляется приставка «эври»; другие не переносят даже незначительного изменения этого фактора и тогда прибавляется приставка «стено». Если это глубина – эврибатный, стенобатный; солёность – эвригалинный, стеногалинный; температура – эвритермный, стенотермный.

Аммониты – вымерший подкласс головоногих моллюсков, существовавших с девона по мел. Свое название аммониты получили в честь древнеегипетского божества Амона со спиральными рогами. Большинство аммонитов относится к экологической группе нектона , то есть свободно плавающих в толще воды организмов. Некоторые гетероморфные формы были представителями бентосного (донного) сообщества. Лучшими пловцами среди аммонитов были формы с чётко выраженным килем. Многие палеонтологи считают, что сложная лопастная линия - это приспособление к широкому распространению по вертикали в толще воды (эврибатности), так как сложная лопастная линия имеет большую площадь, лучше упрочняет раковину. Аммониты - крайне важная для стратиграфии группа морских ископаемых. Эта группа важна для определения относительного геологического возраста осадочных горных пород и для расчленения отложений юрской и меловой системы.

Наутилусы - род головоногих моллюсков. Это единственный современный род подкласса наутилоидей и единственные среди современных головоногих, имеющие наружную камерную раковину. Этот подкласс появился в кембрии, и в течение палеозоя был очень разнообразным. Спиральная раковина диаметром 15-23 см разделена на 35-39 камер, последовательно соединённых длинным сифоном. Моллюск живёт в передней, самой большой камере. Раковина используется как поплавок и балласт. Нагнетая в камеры раковины биогаз или откачивая его из них, наутилус способен всплывать к поверхности воды или погружаться в её толщу.

Белемниты - представители отряда вымерших беспозвоночных животных класса головоногих моллюсков , относятся к внутрираковинным головоногим моллюскам, так как все части их раковины располагались внутри тела. Белемниты обитали с каменноугольного по меловой период, наиболее широко распространились с триаса, вымерли в конце мезозоя. Лучше всего в ископаемом состоянии сохраняется ростр белемнита - прочное коническое образование, находившееся на заднем конце тела.

Брахиоподы - тип морских беспозвоночных животных. Известны с раннего кембрия; наибольшего расцвета достигли в девоне. На рубеже раннего и позднего палеозоя часть отрядов вымерла; в каменноугольном и пермском периодах господствовали отряды продуктид и спириферид. После пермско-триасового вымирания сохранились 4 отряда, дожившие до наших дней. Брахиоподы, благодаря богатству остатков и хорошей их сохранности , - ценные индексные ископаемые для установления геологического возраста содержащих их пластов и физико-географической обстановки, существовавших когда-то в данной местности.

Морские ежи - класс иглокожих. В ископаемом состоянии известны с ордовика. Тело морских ежей обычно почти сферическое, размером от 2-3 до 30 см; покрыто рядами известковых пластинок. Пластинки, как правило, соединены неподвижно и образуют плотный панцирь (скорлупу), не позволяющий ежу изменять форму.

Морские лилии - один из классов иглокожих. Ископаемые морские лилии известны с нижнего ордовика. Наибольшего расцвета достигали в среднем палеозое, когда их насчитывалось до 11 подклассов и свыше 5000 видов, но к концу пермского периода большая их часть вымерла. Окаменелые остатки морских лилий относятся к одним из наиболее распространённых ископаемых. Некоторые известняковые пласты, датируемые палеозоем и мезозоем, почти полностью сложены из них. Ископаемые членики стеблей криноидов , напоминающие зубчатые колёса, называются трохитами.

Двустворчатые или пластинчатожаберные моллюски – класс морских и пресноводных малоподвижных моллюсков, тело которых уплощено с боков и заключено в раковину из двух створок. Находки древнейших ископаемых двустворчатых моллюсков датируются началом кембрийского периода, их возраст составляет более 500 млн. лет. Общее число ныне живущих видов составляет приблизительно 9 200 (по другим данным, более 20 тысяч). Двустворчатые моллюски - класс беспозвоночных, исключительно водных и встречающихся в пресных и солёных водах по всему миру. Большинство являются бентосными организмами и живут, зарываясь в донные отложения или прикрепляясь к подводным предметам. Створки раковины у двустворчатых моллюсков чаще симметричны. Створки раковины соединены лигаментом - связкой, состоящей из утолщённого рогового слоя раковины. Стенка раковины состоит из трёх слоёв: наружного конхиолинового (периостракум), внутреннего известкового (остракум) и нижнего перламутрового (гипостракум). Минеральный компонент раковины может быть представлен исключительно кальцитом, как у устриц , или кальцитом и арагонитом. Иногда арагонит формирует также перламутровый слой. У остальных моллюсков слои арагонита и кальцита чередуются.

Карбонаты, составляющие около 1,7 % от массы земной коры, являются осадочными или гидротермальными минералами. С химической точки зрения это соли угольной кислоты – Н2СО3, общая формула АСО 3 – где А – Са, Мg, Fe и др.

Карбонаты имеют ионные кристаллические решетки; характерны малые плотности, стеклянный блеск, светлая окраска (за исключением карбонатов меди), твердость 3-5, реакция с разбавленной НСl.

Общие свойства – кристаллизуются в ромбической и тригональной сингониях (хорошие кристаллические формы и спайность по ромбу); низкая твердость 3–4, преимущественно светлая окраска, реакция с кислотами (HCl и HNO 3 ) с выделением углекислого газа.

Наиболее распространенными являются: кальцит СаСО 3 , магнезит Mg СО 3 , доломит СаМg (СО 3) 2 , сидерит Fe СО 3 .

Карбонаты с гидроксильной группой (ОН):

Малахит Cu 2 CO 3 (OH) 2 – зеленый цвет и реакция с НС l ,

Азурит Cu 3 (CO 3) 2 (OH) 2 – синий цвет, прозрачен в кристаллах.

Генезис карбонатов разнообразен – осадочный (химический и биогенный), гидротермальный, метаморфический.

При нагревании кислые карбонаты переходят в нормальные карбонаты:

При сильном нагревании нерастворимые карбонаты разлагаются на оксиды и углекислый газ:

Карбонаты реагируют с кислотами сильнее угольной (почти все известные кислоты, включая органические) с выделением углекислого газа, эти реакции являются качественными реакциями на наличие карбонатов в растворе:

Из нормальных карбонатов в воде растворимы только соли щелочных металлов, аммония и таллия. Вследствие гидролиза растворы их показывают щелочную реакцию. Малорастворимы нормальные карбонаты кальция, бария, стронция и свинца. Все кислые карбонаты хорошо растворимы в воде; кислые карбонаты сильных щелочей также имеют слабощелочную реакцию.

Это породообразующие минералы осадочных пород (известняки, доломиты и др.) и метаморфических – мрамор, скарны.

Карбонаты широко используются в черной металлургии в качестве флюса и как сырье для производства огнеупоров и извести. Используются в строительстве, оптике, металлургии, как удобрения. Малахит используется как поделочный камень. Большие скопления магнезита и сидерита – источник получения железа и магния.

Гидрокарбонаты натрия, кальция и магния встречаются в растворённом виде в минеральных водах, а также, в небольшой концентрации, во всех природных водах, кроме атмосферных осадков и ледников. Гидрокарбонаты кальция и магния обуславливают так называемую временную жёсткость воды. При сильном нагревании воды (выше 60 °C) гидрокарбонаты кальция и магния разлагаются на углекислый газ и малорастворимые карбонаты, которые выпадают в осадок на нагревательных элементах, дне и стенках посуды, внутренних поверхностях баков, бойлеров, труб, запорной арматуры и т. д., образуя накипь.

Нормальные карбонаты широко распространены в природе, например: кальцит СаСО 3 , доломит CaMg(CO 3) 2 , магнезит MgCO 3 , сидерит FeCO 3 , витерит ВаСО3, баритокальцит BaCa(CO 3) 2 и др. Существуют и минералы, представляющие собой основные карбонаты, например, малахит CuCO 3 ·Cu(ОН) 2 .

Кальцит , СаСО 3 . Название от греч. «кальк» — жженая известь. Синоним — известковый шпат. Название предложено Гайдингером в 1845 году и происходит, как и название химического элемента, от лат. calx (род.п. calcis) - известь.

Осадочный органогенный, гидротермальный. Кристаллы в форме ромбоэдров. Совершенная спайность по ромбоэдру. Вскипает под действием разбавленной НСl на холоду. Разновидности: прозрачный, бесцветный — исландский шпат, ромбический белый — арагонит. В основном из кальцита состоят толщи осадочных пород: мела, известняка, мрамора. Из кальцита состоит и известковый туф — травертин.

В чистом виде кальцит белый или бесцветный, прозрачный (исландский шпат) или просвечивающий, - в зависимости от степени совершенства кристаллической структуры. Примеси окрашивают его в разные цвета. Ni окрашивает в зелёный; кобальтовые, марганцевые кальциты - розовые. Тонкодисперсный пирит окрашивает в синеватый и зеленоватый цвет. Кальцит с примесью железа - желтоватый, буроватый, красно-коричневый; с примесью хлорита - зелёный. Углистое вещество часто придает кальциту неравномерную чёрную окраску. Известны кристаллы с многочисленными включениями битуминозного вещества, они имеют жёлтый или бурый цвет.

Черта белая, плотность 2,6-2,8, излом ступенчатый, твёрдость по шкале Мооса 3, спайность совершенная по основному ромбоэдру, блеск стеклянный до перламутрового. Вскипает при взаимодействии с разбавленной соляной кислотой (HCl). Характерно многообразие двойников срастания и прорастания по многочисленным законам, а также деформационные двойники. Прозрачные кристаллы обладают двупреломлением света, особо хорошо наблюдаемым сквозь поверхности спайности в ромбоэдрических выколках или толстых пластинах.

Черная металлургия потребляет миллионы тонн известняка в качестве флюса. Кроме того, известняк обжигают на известь в строительной промышленности. Исландский шпат используется в оптике для изготовления поляризаторов.

Магнезит , МgСО 3 . Назван в честь греческой провинции Магнезия. Синоним: магнезиальный шпат. Облик кристаллов ромбоэдрический с совершенной спайностью по ромбоэдру. В большинстве случаев встречается в виде зернистых агрегатов снежно-белого цвета с раковистым изломом («аморфный» магнезит) и в серых удлиненных зернах. Гидротермальный.

Состав близок теоретическому. Из примесей наибольшее значение имеет Fe; меньше Mn, Ca. Кристаллы редки. Обычно плотные разной зернистости агрегаты вплоть до фарфоровидных. Фарфоровидный магнезит часто содержит примеси опала и силикатов магния. Хрупок. Твердость 4-4,5 у фарфоровидного — до 7 (за счёт тонкодисперсной примеси опала). Цвет белый, серый, реже желтоватый Встречается в гидротермальных месторождениях или в качестве продукта выветривания ультраосновных горных пород.

С разбавленными кислотами магнезит реагирует без вскипания, чем отличается от похожего на него кальцита. Реакция с HCl только в порошке при нагревании.

Магнезит используют для производства огнеупоров и вяжущих материалов, в химической промышленности. Применяется для производства огнеупорного кирпича. Также является рудой магния и его солей.

Важное сырье для производства огнеупорного кирпича и заправочных порошков. Использование доломитизированного известняка улучшает качество агломерата, окатышей и снижает вязкость доменных шлаков. Месторождения: Саткинское (Россия), Вейч (Австрия), Ляо Тун и Шен-Кин (Сев. вост. Китай), Квебекское (Канада).

Малахит , CuCO 3 × Cu(OH) 2 . Название от греч. «малахэ» — мальва (имеется в виду зеленый цвет листьев мальвы).

Малахи́т(от греч. тополь и мальва) - минерал, основной карбонат меди (дигидроксокарбонат меди(II)). Состав минерала почти точно выражен формулой CuCO 3 ·Cu(ОН) 2 , но более верное современное написание кристаллохимической формулы малахита Cu 2 (CO 3)(OH) 2 . Устаревший синоним — медная зелень углекислая.

Сингония моноклинная. Двойники по (100). Твёрдость 3,5-4,0; плотность 3,7-4,1 г/см³. Цвет зелёный разных оттенков; блеск различный, смотря по сложению: стеклянный у кристаллов или шелковистый у тонковолокнистых агрегатов и кусков.

Габитус кристаллов призматический, пластинчатый, игольчатый. Кристаллы имеют тенденцию к расщеплению с образованием сферокристаллов, тонковолокнистых сферолитов, сфероидолитовых дендритов.

При нагревании в колбе выделяет воду, углекислый газ и становится чёрным:

Характерна растворимость малахита в кислотах с выделением углекислого газа, а также в аммиаке, который окрашивается при этом в красивый голубой цвет.

С глубокой древности известен способ получения из малахита свободной меди. В условиях неполного сгорания угля, при котором образуется угарный газ, происходит реакция:

Азурит , 2CuCO 3 × Cu(OH) 2 . Название от персидского «лазвард» — голубой. Минерал синего цвета со стеклянным блеском, хрупкий. Тв. 3,5-4. Цвет черты синевато-голубой, спайность совершенная, излом раковистый.

Один из наиболее распространённых вторичных минералов, содержащих медь. Индикатор и поисковый признак медных руд, азурит и сам является медной рудой, хотя и менее ценной, чем малахит.

Образуется в близповерхностных зонах окисления большинства медно-сульфидных месторождений, встречается во вторичных медных рудах вместе с малахитом. В условиях выветривания неустойчив и легко замещается малахитом. Нередко в породе встречаются полосчатые сращения азурита и малахита, которые иногда разрезают и полируют, - такая разновидность носит название азуро-малахита.

Натечные, землистые, концентрически скорлуповатые. Вскипает под действием разбавленной HCl. Используются как декоративные поделочные камни, руды на медь.

Сидерит , FeCO 3 . Название от греч. слова, обозначающего железо. Синоним — железный шпат. Минерал осадочного происхождения бурого цвета, растворяется в минеральных кислотах. При окислении переходит в бурый железняк. Важная руда для получения железа, так как в составе до 48 % железа и нет серы и фосфора. Агрегаты зернистые, землистые, плотные, иногда в шаровидных конкрециях.

Цвет черты — белый, блеск стеклянный, полупрозрачный, твёрдость 3,5 — 4,5, спайность совершенная, плотность 3,96 г/см³.

Происхождение: Гидротермальное - встречается в полиметаллических месторождениях как жильный минерал. Легко выветривается до лимонита.Обычно в зернистых желтовато-белых, буроватых массах. Реагирует с холодной НС1, капля которой окрашивается в зеленый цвет. Цвет: Желтовато-коричневый, коричневый, серый, желтовато-серый, зеленовато-серый.

Сидерит содержит до 48,3 % Fe и используется в качестве железной руды. Месторождения: Бакальское (Юж. Урал), Керченское (Украина).

Родохрозит , MnCO 3 . Название от греч. «родон» — роза и «хрос» – цвет. Синоним: марганцевый шпат. Обычно в виде зернистых агрегатов розового, малинового цвета, черта белая. Реагирует с холодной HCl.

Существуют изоморфные ряды MnCO 3 - СаCO 3 и MnCO 3 - FeCO 3 . Марганец частично замещается магнием и цинком. Железосодержащие разновидности: понит и феррородохрозит. Сингония тригональная. Кристаллы толстотаблитчатые, призматические, ромбоэдрические, скаленоэдрические. Двойники по {0112} редки. Спайность совершенная по {1011}. Агрегаты: зернистые, плотные, столбчатые, шаровидные, скорлуповатые, корки. Цвет: розовый, красный, желтовато-серый, коричневый. Блеск стеклянный. Твёрдость 3,5-4. Удельный вес 3,7.

Гидротермальный минерал средне- и низкотемпературных месторождений свинца, цинка, серебра и меди, в ассоциации с сидеритом, флюоритом, баритом, алабандином и др. Встречается в высокотемпературных месторождениях с родонитом, гранатом, брайнитом, тефроитом и в пегматитах с литиофиллитом.

В осадочных марганцевых месторождениях ассоциирует с марказитом, кальцитом, опалом и др. В этом случае имеет промышленную ценность. В коре выветривания марганцевых и железо-марганцевых месторождений. В метаморфизованных первично-осадочных марганцевых месторождениях.

Используется в качестве марганцевой руды. Месторождения: Чиатурское (Грузия), Полуночное (Сев. Урал), Оброчище (г. Варна, Болгария).