Рефрактометр (рис.2а) предназначен для измерения коэффициента преломления растворов различных веществ. Принцип действия рефрактометра при измерении показателя преломления прозрачных растворов состоит в измерении предельного угла преломления на границе исследуемой жидкости и стеклянной призмы с известным коэффициентом преломления. Рефрактометр состоит из двух призм: вспомогательной откидной призмы (1) с матовой; гранью (2) и измерительной призмы (3). Между ними имеется тонкий зазор толщиной 0,1 мм, в который помещается несколько капель исследуемой жидкости (4). Измеряется предельный угол преломления на границе жидкость - измерительная призма. Встроенный в прибор компенсатор позволяет сделать границу свет - тень черно-белой при освещении белым светом. Отсчеты производятся глазом (7).

Рефрактометр работает следующим образом. Луч света проходит через вспомогательную откидную призму (1) и рассеивается на нижней грани (2). При этом рассеянные лучи распространяются во всех направлениях, в том числе и параллельно поверхности измерительной призмы (3) (рис. 26).

Далее эти лучи преломляются на границе жидкость (4) - измерительная призма (3), и, пройдя сквозь эту призму (3), попадают в устройство (5). Если граница свет - тень оказалась окрашенной и размытой, надо с помощью компенсатора (6) добиться резкой черно-белой белой границы. Конструкция отсчетного устройства позволяет при повороте специального рычага совместить границу свет - тень с маркером отсчетного устройства. При этом маркер показывает на встроенной шкале непосредственно значения коэффициента преломления .

Рис. 2.а, б- блок-схема рефрактометра: 1 - вспомогательная откидная при­зма с матовой нижней гранью (2); 3 - измерительная призма; 4 - исследуемая жидкость; 5 - отсчетное устройство; 6 - компенсатор; 7 - глаз; б - схема рас­сеяния света матовой нижней гранью (2) откидной призмы



Устройство и назначение эндоскопа

Эндоскопия -- вра­чебный метод исследования полостных органов тела (например, моче­вого пузыря, пищевода, желудка) при непосредственном осмотре их с помощью введения в них специальных инструментов - так назы­ваемых эндоскопов. Эндоскоп фактически представляет собой мик­роскоп с небольшим увеличением, приспособленный для введения в полость, то есть имеющий малый диаметр при большой длине тубуса.

Рис. 3. Распространение луча в световоде

В настоящее время широко используются гибкие эндоскопы, в которых для передачи изображения используется не система линз, а световоды - стеклянные нити диаметром 10-50 мкм.

В основу уст­ройств гибких световодов положено явление полного внутреннего отражения света. Стеклянная нить в световоде окружена оболочкой из другого вещества с меньшим показателем преломления (рис.3а). Вследствие этого лучи, падающие на поверхность раздела двух сред под углом, а > а пво распространяются по сердцевине волокна, не выходя за нее (рис.36). Тем самым, световод позволяет передавать свет на значительные расстояния, как по прямолинейному, так и по криволинейному пути.

С помощью отдельного световода диаметром 5-20 мкм удобно освещать полости, но неудобно получать изображение предметов. Поэтому, как правило, изображение предметов переносится с помо­щью стекловолоконного жгута, составленного из отдельных волокон.

– это оптический инструмент, предназначенный для измерения концентрации растворов с помощью явления преломления света. Термин «рефракция » (от лат. refractus - преломленный и греч. metreo - измеряю) был введен в науку Ньютоном в начале 18-го века.


Типы рефрактометров

Среди современных рефрактометров можно выделить промышленные, лабораторные и портативные.

Промышленные и лабораторные рефрактометры предназначены для исследования веществ в научных лабораториях и контроля технологических процессов на производстве. Они имеют высокую точность измерений и сравнительно большие размеры.

Портативные рефрактометры предназначены для оперативного контроля веществ в лаборатории, на производстве или в полевых условиях. В свою очередь, портативные рефрактометры делятся на цифровые и ручные.

Цифровые портативные рефрактометры имеют жидкокристаллический экран, на котором отображается результат измерений. Обычно они также обладают дополнительными функциями, такими как одновременное измерение плотности и коэффициента преломления раствора, преобразование результатов в различные единицы измерения, поддержание температуры образца и прочее.

Имеют компактные размеры и не содержат никаких электронных схем и элементов питания, что позволяет с легкостью использовать их для измерений как на производстве, так и в домашних условиях. Сегодня такие рефрактометры очень популярны, благодаря своей точности, удобству эксплуатации, портативности и приемлемой цены.

Принцип действия ручных рефрактометров

Принцип действия рефрактометра базируется на использовании явления преломления света. При переходе из одного вещества в другое луч света отклоняется от прямолинейного направления на некоторый угол. Соотношение угла вхождения луча света в вещество и угла преломления его на границе раздела двух сред называется коэффициентом (показателем) преломления.

Строение рефрактометра схематически изображено на рисунке ниже. Основным оптическим элементом рефрактометра является главная призма, на которую наносится исследуемое вещество. Главная призма состоит из материала с высоким показателем преломления.

Благодаря этому, падающий свет, проходя через вещество и призму, преломляется под достаточно большим углом. Далее, через систему оптических линз, свет попадает на шкалу рефрактометра (проградуированную окружность). В зависимости от угла преломления луч света оказывается выше или ниже на шкале прибора. Освещенная часть шкалы при этом будет светлой; та часть, на которую луч света не попадет окажется темной. Величина угла преломления света зависит от состава раствора и его концентрации. Таким образом, по положению границы раздела между светом и тенью можно однозначно определить коэффициент преломления или оптическую плотность исследуемого раствора.


Нужно, однако, иметь ввиду, что показатель преломления вещества также зависит от температуры. Некоторые модели ручных рефрактометров учитывают влияние температуры с помощью функции ATC (Automatic Temperature Compensation System – система автоматической компенсации температуры). Внутри их корпуса находится биметаллическая пластина. Она сжимается или растягивается в зависимости от перепадов температуры. Биметаллическая пластина соединена с оптической системой рефрактометра, плавно передвигая ее при изменениях температуры. Величина сдвигов рассчитана так, что влияние температуры на коэффициент преломления вещества полностью компенсируется. При покупке рефрактометра обязательно обращайте внимание на наличие в нем функции АТС. В случае ее отсутствия, необходимо пользоваться специальными таблицами для пересчета полученных значений в зависимости от температуры окружающей среды.

Проведение измерений

Перед проведением измерений ручной рефрактометр необходимо откалибровать. Для калибровки большинства рефрактометров используется дистиллированная вода. На главную призму с помощью пипетки наносится несколько капель воды, затем закрывается защитное стекло. При этом нужно следить, чтобы вода под защитным стеклом равномерно покрыла поверхность призмы, не оставляя пузырьков воздуха. Далее с помощью калибровочного винта на шкале прибора выставляется значение 0,0. После калибровки призму нужно аккуратно протереть мягкой тряпочкой. Теперь рефрактометр готов к измерениям.

Для проведения измерений производятся те же действия, что и при калибровке, но вместо дистиллированной воды на призму прибора наносится исследуемый раствор. Калибровочный винт при этом остается в своем первоначальном положении. После нанесения раствора необходимо подождать 30 секунд для того, чтобы температура раствора сравнялась с температурой прибора. Затем рефрактометр направляют на источник света (дневной свет или лампа накаливания) и снимают показания.

После проведения измерений призму снова нужно протереть мягкой тряпочкой. Ручной рефрактометр нельзя опускать в воду; это может привести к попаданию воды внутрь прибора и затуманиванию шкалы. Не измеряйте рефрактометром жесткие или коррозийные вещества, так как они могут повредить покрытие призмы.

Применение рефрактометров

Широко используются в различных областях человеческой деятельности. Ниже перечислены некоторые из применений рефрактометров:

    В пищевой промышленности:
  • контроль качества пива, вина и других алкогольных напитков;
  • определение массовой доли растворимых сухих веществ в продуктах переработки плодов и овощей;
  • определение концентрации сахара в напитках, сиропах, консервах;
  • измерение процентного содержания жира в твердых продуктах питания;
  • измерение массовой доли белков и сухих обезжиренных веществ в молоке;
  • определение влажности меда.
    В медицине:
  • определение белка в сыворотке крови;
  • определение плотности мочи, субретинальной жидкости глаза;
  • определение концентрации лекарств.
    В фармацевтической промышленности:
  • исследование концентрации растворов различных лекарственных препаратов.
    При обслуживании автомобилей, тракторов, судов:
  • определение сорта моторных топлив, охлаждающих жидкостей.

В следующих статьях про рефрактометры мы будем рассматривать их применение в разных отраслях, для решения конкретных задач.


Публикация данного материала в других источниках и его перепечатка без прямой ссылки на первоисточник (сайт ЭкоЮнит Украина) строго запрещена.

В данной работе используется рефрактометр Аббе, действие которого основано на измерении предельного угла преломления. Оптическая схема рефрактометра приведена на рис. 4. Исследуемый раствор помещают между плоскостями двух призм - осветительной 3 и измерительной 4 , изготовленных из стекла с большим показателем преломления (n = 1.9 ). Большой показатель преломления измерительной призмы позволяет сохранять условиеn p < n ст для большого диапазона плотностей измеряемых жидкостей. Шкала прибора проградуирована до значения n p =1.7 .От источника 1 пучок света направляется конденсором 2 на входную грань осветительной призмы. Пройдя осветительную призму 3, свет падает на матовую гипотенузную грань АВ данной призмы, граничащую с тонким слоем исследуемой жидкости. Матовая поверхность имеет неровности, размеры которых составляют несколько длин волн. Свет рассеивается на этих неровностях по всей поверхности и, пройдя через тонкий слой раствора, падает на границу раздела “раствор-стекло” под всевозможными углами падения, т.е. угол падения изменяется в пределах от 0 0 до 90 0 .

На зеркальной гипотенузной граниCD измерительной призмы 4 свет преломляется (размеры неровностей на этой грани меньше длины волны). Вследствие того, чтоn p < n ст , угол преломления изменяется в пределах отнуля до γ пр . Под угламиγ > γ пр излучение не наблюдается. Таким образом, при угле преломления, равном γ пр , возникает граница свет – тень. Величина n p определяется из соотношения sin γ пр = n p / n ст , где величина n ст известна.

Ход лучей света при выходе его из измерительной призмы легко учитывается при градуировке прибора т. к. преломление света происходит на границе “стекло-воздух”, причем показатели преломления обеих сред известны. Угол преломления света на этой границе не влияет на точность измеренияn p .

Благодаря засветке всего слоя раствора граница света и тени наблюдается достаточно резко. Поэтому, настраивая прибор к работе, свет от осветителя нужно направить на призму так, чтобы он равномерно осветил всю поверхность грани АВ рассеивающей призмы. Для определения угла, под которым выходят лучи из измерительной призмы, используется зрительная труба, образованная объективом 6 и окуляром 9, свет в которую поступает через систему призм прямого зрения 5 . При этом используется то свойство зрительной трубы, что лучи, идущие к ней параллельно её оси, собираются в заднем фокусе, где помещена прозрачная пластинка 7 с нанесенным на ней перекрестием сетки. Перекрестие точно совпадает с фокусом.

Рис. 4. Ход лучей в рефрактометре при измерении показателя преломления методом скользящего луча.

Оптическая схема прибора: 1-источник света, 2-конденсор, 3-осветительная призма, 4-измерительная призма, 5-призма прямого зрения, 6-объектив зрительной трубы, 7-сетка с перекрестием, 8-шкала, 9-окуляр зрительной трубы, 10-поле зрения окуляра.

Призмы прямого зрения и зрительная труба жёстко связаны между собой и могут поворачиваться относительно измерительной призмы. Угол поворота измеряется по неподвижной шкале 8, расположенной в общей фокальной плоскости объектива и окуляра. Шкала проградуирована в значениях показателя преломления исследуемого раствора на основании формулы (6). Осуществляя поворот зрительной трубы, можно установить её ось параллельно лучам, преломившимся на граниCD под предельным углом γ пр . При этом в поле зрения окуляра будут наблюдаться светлая и тёмная области, граница между которыми будет совпадать с перекрестием. Светлая область образована лучами, преломлёнными на граниCD под углами, меньшими предельного, а тёмная область возникает из-за отсутствия лучей, идущих под углами, большими предельного. Положение границы света и тени, образованной лучами, преломлёнными под предельным углом, укажет на шкале 8 искомую величину показателя преломления раствора.

Источник света 1 не является монохроматическим. Поэтому вследствие дисперсии как исследуемого вещества, так и материала измерительной призмы, (зависимости их показателей преломления от длины волны света), граница света и тени, наблюдаемая в зрительную трубу, оказывается размытой и окрашенной. Для устранения этого эффекта используются призмы прямого зрения 5 , образующие дисперсионный компенсатор. Призмы рассчитаны так, чтобы лучи с длиной волны λ D = 589,3 нм (среднее значение длины волны натрия) не отклонялись при прохождении через них. При повороте одной призмы относительно другой их суммарная дисперсия изменяется, что позволяет скомпенсировать различие в углах выхода лучей с различными длинами волн из измерительной призмы и направить их в зрительную трубу параллельно лучам с длиной волны λ D . Граница света и тени при этом получается резкой, неокрашенной и даёт значение показателя преломления исследуемого раствора n D на длине волны λ D .

Итак, что же это за зверь такой - рефрактометр? И с чем его едят.
Обзор является логическим продолжением топика о и относится к разряду «а мужики-то не знают!»:)))
Ну-с, приступим:

Сначала лирическое отступление. Как вы уже знаете, друзья мои, я счастливый обладатель китайского самогонного аппарата. С ним в комплекте шёл набор из трёх спиртометров вместе с термометром. И всё бы хорошо, и всё бы замечательно, если бы не одно НО. Чтобы измерить процент спирта в жидкости, этой самой жидкости нужно приличное количество. По инструкции выходит аж 300 грамм! Вот оно самое главное неудобство. В рюмочке градус уже не замеришь.
«А есть ли такой прибор - спросил я сам себя - который может показать процент спирта, используя минимальное количество жидкости?» Спросил и стал искать. Оказалось - есть такой девайс! Практически почти сразу я наткнулся на прибор с таким загадочным названием - «рефрактометр». И открылись у меня глаза, и увидел я что это хорошо:)
С помощью этого чудо-прибора можно замерить процентное содержание спирта в жидкости используя всего две-три капли оной! Рефрактометров, как выяснилось - тьма-тьмущая. Рефрактометры для пива, вина, мёда, молока, антифриза, электролита, аквариума и т.д. Но, тем не менее, принцип работы у всех одинаков. Различаются они только своей шкалой и возможностью автоматической коррекцией результата в зависимости от температуры. От 0 до 30 градусов. В этом как раз такая функция присутствует. Есть наклейка ATC и он подороже стоит, чем девайс без температурной коррекции. Имеется на нём так же калибровочный винт, закрытый резиновой заглушкой и отвёртка в комплекте.
А теперь обратимся к Вики:
«Рефрактометр - прибор, измеряющий показатель преломления света в среде.
Рефрактометрия - это метод исследования веществ, основанный на определении показателя (коэффициента) преломления (рефракции) и некоторых его функций. Рефрактометрия (рефрактометрический метод) применяется для идентификации химических соединений, количественного и структурного анализа, определения физико-химических параметров веществ. Показатель преломления n представляет собой отношение скоростей света в граничащих средах»
О как! Ни много ни мало, а дёргаем за хвост саму скорость света! Прикольненько:)))
В очередной раз убеждаюсь - выпивши самогону, кого только за хвост не дёрнешь! ха-ха-ха!!!
Итак, как это работает. Берем рефрактометр. Смотрим в дырочку на свет. Наводим резкость на шкалу. Открываем верхнее стеклышко. Набираем в пипетку самогон (водку, текилу и т.д.) капаем две-три капли на нижнее стекло и закрываем с прижимом всё это дело верхним стеклом. Опять смотрим в дырочку на свет. Улыбаемся:)
Шкала с неравномерной градуировкой выглядит точь-в-точь, как и на сайте продавца. То есть вот так.

Единственный нюанс. На шкале на картинке написано ALCOHOL. У меня же написано ALCOHOLIC. Тонкий намёк однако…
Вот как выглядит полный комплект.


Рефрактометр
Пипетка
Отвёртка
Салфетка
Инструкция
Кейс

Остальные фото

Аккуратная коробочка-кейс


Компактно всё уложено


Калибровочный винт


Стекло в открытом виде


Окуляр


В руке



Сам по себе прибор изготовлен вполне себе качественно. Единственный недостаток - вылазящие из своего места штифты. Но полкапли клея решат эту проблему.


Замерял вино сухое красное Каберне-Совиньон - 13%
Настойку калгановую на самогоне - 38%
Абсент - около 70%. Точнее сказать трудно из-за того что вверху деления у шкалы слишком близко друг от друга. Да и погрешность там, я думаю, у прибора больше.
Водку магазинную нашел только недопитую. Грамм 150 в бутылке. Стоит хрен знает с каких времён - 33%
При замере присутствует один нюанс. Спирт очень летуч, поэтому нельзя жевать сопли. Нужно всё делать быстро. Из двух капель жидкости спирт испаряется очень быстро и поэтому даже простое повторное открывание-закрывание стекла ведёт к снижению дорогого нам процента. Имейте это ввиду.
И ещё. Прибор показывает наличие спирта не в объёмных, а в МАССОВЫХ долях. Поэтому, чтобы вычислить объёмную долю спирта, нужно вносить поправку в результат. Я пользуюсь программой «Калькулятор самогонщика». Скачать её можно .

Заключение.
Прибор понравился. Не смотря на мелкие косячки в изготовлении он работает вполне себе удовлетворительно. Брался мною исключительно для замера финишной черты самогоноварения. То есть когда уже пора прекращать выгонку. Всё-таки тест на горение он, согласитесь, грубоват и малоинформативен. А так же рефрактометр мне пригодится для быстрого уточнения крепости употребляемого на дому напитка.
А теперь ютубное видео (не моё):

Планирую купить +54 Добавить в избранное Обзор понравился +59 +121

На производстве и в химико-аналитических лабораториях часто есть необходимость определить концентрацию жидкой или твердой смеси. Для этой цели применяются различны методы, способы и, соответственно, специальное оборудование. Один из самых распространенных методов – измерение рефракции (анализ преломления световых лучей). А выполняется он при помощи оптических приборов, которые называются рефрактометрами.

Что такое рефрактометр?

Рефрактометры – приборы, определяющие коэффициент преломления света в анализируемой среде. В основе измерений лежит физическое явление, которое заключается в отличающихся показателях угла преломления в разных средах.

В научных кругах известно, что даже самые малые изменения содержания веществ в растворах вызывают изменения в преломлении проходящего светового луча. Благодаря чему, концентрацию смесей можно анализировать с высокой точностью.

Принцип действия . Поскольку речь идет об оптическом приборе, то и принцип его действия основан на оптических процессах. Вещество помещается на главную призму, через них (призму и вещество) проходит луч света, преломляясь под определенным углом. После чего свет переходит на шкалу устройства, разделяя ее на светлую и темную части (ниже или выше на этой шкале он окажется, зависит от угла преломления). Граница света и тени позволяет однозначно определять необходимый коэффициент.

Для чего применяются рефрактометры?

Применение рефрактометров – широчайшее. Они необходимы в самых разных сферах жизнедеятельности и производства:

– Пищепром. Для контроля качества напитков, в том числе и алкогольных (пиво, вино…), соков, сиропов, полуфабрикатов, консервов, молока, меда и т.д., а также для определения жира, белка, влажности;

– Медицина и фармацевтика. Для определения белка в сыворотке крови, плотности мочи, концентрации лекарств…;

– Нефтепереработка, СТО, доки (трактора, грузовики, легковые авто, суда). Для анализа сорта моторных топлив, охлаждающих, очищающих и моющих жидкостей.

С каждым днем увеличивается частота использования рефрактометров в домашних условиях. Уникальные функции данных приборов позволяют вычислять концентрацию сахара в напитках и сиропах собственного приготовления, анализировать состав домашних консервов и прочих продуктов.

Какие типы рефрактометров бывают?

Сегодня существует 3 основных типа устройств для измерения рефракции: ручные, портативные (лабораторные) и промышленные (стационарные).

Ручной тип – компактный, без электронных схем и элементов питания. Получил широкое применение частными лицами, благодаря удобству эксплуатации, точным показателям и низкой стоимости. Стационарные используются в лабораториях, а промышленные – непосредственно на фабриках и заводах.

Рефрактометры ручные РР-1, РР-2, РР-3 предназначены для экспрессного измерения массовой доли сахарозы в водных растворах. Данные рефрактометры могут использоваться также для определения массовой доли сухих веществ в растворах сахарозы и других растворах при условии проведения дополнительного градуировки шкалы.

Рефрактометр УРЛ-1 предназначен для непосредственного измерения показателя преломления жидких и твердых веществ, для определения концентрации растворов, и измерения средней дисперсии.
Область применения – химико-аналитические лаборатории научно-исследовательских институтов и производственных предприятий различных областей.
Работа рефрактометра основана на использовании оптического принципа полного внутреннего отражения или предельного преломления.

Лабораторный рефрактометр ИРФ-454 Б2М используется для измерения показателя преломления nD и средней дисперсии неагрессивных жидкостей и твердых тел. Прибор имеет дополнительную шкалу “Brix”.
Рефрактометр может применяться:
– В фармацевтической промышленности;
– В медицинских учреждениях;
– В пищевой промышленности;
– При обслуживании автомобилей, тракторов;
– При обслуживании авиационной техники.

Рефрактометр РПЛ-4 предназначен для измерения показателей преломления жидких и твердых веществ (кристаллы, прозрачные стекла, полимеры) и массовой доли сахарозы в химически чистых растворах сахарозы в воде. Рефрактометр РПЛ-4 может использоваться также для количественного анализа различных растворов и смесей и для определения массовой доли сухих веществ в растворах, содержащих сахарозу.
Рефрактометр применяется для контроля качества пищевых продуктов, а также для контроля технологических процессов на предприятиях пищевой, фармацевтической, перерабатывающей, химической и других отраслей промышленности. Работа рефрактометра основана на использовании оптического принципа предельного преломления или полного внутреннего отражения.

Где купить рефрактометр недорого?

Купить рефрактометры оптом и в розницу по доступной цене можно на сайте компании Система Оптимум. Каталог рефрактометров нашего предприятия состоит из многих позиций разных типов и специфики применения. В наличии профессиональные модели для всех отраслей промышленности, а также для использования в домашних условиях.

Цена рефрактометров вас приятно удивит, ведь для каждого прибора она пребывает в приемлемых пределах и полностью соответствует его качеству.

Чтобы сделать правильный выбор модели, можно ознакомиться с описаниями товара на сайте или связаться с контактными лицами для уточнения необходимой информации. Обращайтесь! Все детали – по контактному номеру.