Числовые неравенства и их свойства

В презентации подробно изложены содержание тем ЧИСЛОВЫЕ НЕРАВЕНСТВА и СВОЙСТВА ЧИСЛОВЫХ НЕРАВЕНСТВ, приведены примеры на доказательство числовых неравенств. (Алгебра 8 класс, автор Макарычев Ю.Н.)

Просмотр содержимого документа
«Числовые неравенства и их свойства»

Числовые неравенства

и их свойства

учитель математики МОУ «Упшинская ООШ»

Оршанского района Республики Марий Эл

(К учебнику Ю.А.Макарычева Алгебра 8


Числовые неравенства

Результат сравнения двух и более чисел записывают в виде неравенств, используя знаки , , =

Сравнение чисел мы осуществляем, пользуясь различными правилами (способами). Удобно иметь обобщенный способ сравнения, который охватывает все случаи.


Определение:

Число а больше числа b, если разность ( a – b) – положительное число.

Число а меньше числа b, если разность ( a – b) – отрицательное число.

Число а равно числу b, если разность ( a – b) – равна нулю


Обобщенный способ сравнения чисел

Пример 1.


Применение обобщенного способа сравнения чисел для доказательства неравенств

Пример 2. Доказать, что среднее арифметическое двух положительных чисел не меньше среднего геометрического этих чисел.





Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.

Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.





Р = 3а

Умножим на 3 обе части каждого из неравенств

54,2 ∙ 3 а ∙ 3

162,6

Применение свойств числовых неравенств

Урок и презентация на тему: "Основные свойства числовых неравенств и способы их решения."

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Комбинаторика и теория вероятностей Уравнения и неравенства

Введение в числовые неравенства

Ребята, с неравенствами мы уже сталкивались, например, когда начинали знакомиться с понятием корня квадратного . Интуитивно понятно, что с помощью неравенств можно оценить, какое из данных чисел больше или меньше. Для математического описания достаточно добавить специальный символ, который будет означать либо больше, либо меньше.

Запись выражения $a>b$ на математическом языка означает, что число $a$ больше числа $b$. В свою очередь, это значит, что $a-b$ - положительное число.
Запись выражения $a

Как и практически все математические объекты неравенства имеют некоторые свойства. Изучением этих свойств мы и займемся на этом уроке.

Свойство 1.
Если $a>b$ и $b>c$, то $a>c$.

Доказательство.
Очевидно, что $10>5$, и $5>2$, и конечно $10>2$. Но математика любит строгие доказательства для самого общего случая.
Если $a>b$, то $a-b$ - положительное число. Если $b>c$, то $b-c$ - положительное число. Давайте сложим два полученных положительных числа.
$a-b+b-c=a-c$.
Сумма двух положительных чисел есть положительное число, но тогда $a-c$ также положительное число. Из чего следует, что $a>c$. Свойство доказано.

Более наглядно данное свойство можно показать, используя числовую прямую. Если $a>b$, то число $a$ на числовой прямой будет лежать правее $b$. Соответственно, если $b>c$, то число $b$ будет лежать правее числа $с$.
Как видно из рисунка точка $a$ в нашем случае находится правее точки $c$, а это означает, что $a>c$.

Свойство 2.
Если $a>b$, то $a+c>b+c$.
Иначе говоря, если число $a$ больше числа $b$, то какое бы мы число не прибавили (положительное или отрицательное) к этим числам, знак неравенства будет также сохраняться. Доказывается данное свойство очень легко. Нужно выполнить вычитание. Та переменная, которую прибавляли, исчезнет и получится верное исходное неравенство.

Свойство 3.
а) Если обе части неравенства умножить на положительное число, то знак неравенства сохраняется.
Если $a>b$ и $c>0$, тогда $ac>bc$.
б) Если обе части неравенства умножить на отрицательное число, то знак неравенства следует поменять на противоположный.
Если $a>b$ и $c Если $abc$.

При делении следует действовать тем же образом (делим на положительное число - знак сохраняется, делим на отрицательно число - знак меняется).

Свойство 4.
Если $a>b$ и $c>d$, то $a+c>b+d$.

Доказательство.
Из условия: $a-b$ - положительное число и $c-d$ - положительное число.
Тогда сумма $(a-b)+(c-d)$ - тоже положительное число.
Поменяем местами некоторые слагаемые $(a+с)-(b+d)$.
От перемены мест слагаемых сумма не изменяется.
Значит $(a+с)-(b+d)$ - положительное число и $a+c>b+d$.
Свойство доказано.

Свойство 5.
Если $a, b ,c, d$ - положительные числа и $a>b$, $c>d$, то $ac>bd$.

Доказательство.
Так как $a>b$ и $c>0$, то, используя свойство 3, имеем $ac>bc$.
Так как $c>d$ и $b>0$, то, используя свойство 3, имеем $cb>bd$.
Итак, $ac>bc$ и $bc >bd$.
Тогда, используя свойство 1, получаем $ac>bd$. Что и требовалось доказать.

Определение.
Неравенства вида $a>b$ и $c>d$ ($a Неравенства вида $a>b$ и $cd$) называются неравенствами противоположного смысла.

Тогда свойство 5 можно перефразировать. При умножение неравенств одного смысла, у которых левые и правые части положительные, получается неравенство того же смысла.

Свойство 6.
Если $a>b$ ($a>0$, $b>0$), то $a^n>b^n$, где $n$ – любое натуральное число.
Если обе части неравенства положительные числа и их возвести в одну и ту же натуральную степень, то получится неравенство того же смысла.
Заметим: если $n$ – нечетное число, то для любых по знаку чисел $a$ и $b$ свойство 6 выполняется.

Свойство 7.
Если $a>b$ ($a>0$, $b>0$), то $\frac{1}{a}

Доказательство.
Чтобы доказать данное свойство, необходимо при вычитании $\frac{1}{a}-\frac{1}{b}$ получить отрицательное число.
$\frac{1}{a}-\frac{1}{b}=\frac{b-a}{ab}=\frac{-(a-b)}{ab}$.

Мы знаем, что $a-b$ - положительное число, и произведение двух положительных чисел - тоже положительное число, т.е. $ab>0$.
Тогда $\frac{-(a-b)}{ab}$ - отрицательное число. Свойство доказано.

Свойство 8.
Если $a>0$, то выполняется неравенство: $a+\frac{1}{a}≥2$.

Доказательство.
Рассмотрим разность.
$a+\frac{1}{a}-2=\frac{a^2-2a+1}{a}=\frac{(a-1)^2}{a}$ - неотрицательное число.
Свойство доказано.

Свойство 9. Неравенство Коши (среднее арифметическое больше либо равно среднего геометрического).
Если $a$ и $b$ - неотрицательные числа, то выполняется неравенство: $\frac{a+b}{2}≥\sqrt{ab}$.

Доказательство.
Рассмотрим разность:
$\frac{a+b}{2}-\sqrt{ab}=\frac{a-2\sqrt{ab}+b}{2}=\frac{(\sqrt{a}-\sqrt{b})^2}{2}$ - неотрицательное число.
Свойство доказано.

Примеры решения неравенств

Пример 1.
Известно, что $-1.5 а) $3a$.
б) $-2b$.
в) $a+b$.
г) $a-b$.
д) $b^2$.
е) $a^3$.
ж) $\frac{1}{b}$.

Решение.
а) Воспользуемся свойством 3. Умножим на положительное число, значит знак неравенства не меняется.
$-1.5*3 $-4.5<3a<6.3$.

Б) Воспользуемся свойством 3. Умножим на отрицательное число, значит знак неравенства меняется.
$-2*3.1>-2*b>-2*5.3$.
$-10.3
в) Сложив неравенства одинакового смысла, получим неравенство того же смысла.
$-1.5+3.1 $1.6

Г) Умножим все части неравенства $3.1 $-5.3<-b<-3.1$.
Теперь выполним операцию сложения.
$-1.5-5.3 $-6.8

Д) Все части неравенства положительны, возведя их в квадрат, получим неравенство того же смысла.
${3.1}^2 $9.61

Е) Степень неравенства нечетная, тогда можно смело возводить в степень и не менять знак.
${(-1.5)}^3 $-3.375

Ж) Воспользуемся свойством 7.
$\frac{1}{5.3}<\frac{1}{b}<\frac{1}{3.1}$.
$\frac{10}{53}<\frac{1}{b}<\frac{10}{31}$.

Пример 2.
Сравните числа:
а) $\sqrt{5}+\sqrt{7}$ и $2+\sqrt{8}$.
б) $π+\sqrt{8}$ и $4+\sqrt{10}$.

Решение.
а) Возведем каждое из чисел в квадрат.
$(\sqrt{5}+\sqrt{7})^2=5+2\sqrt{35}+7=12+\sqrt{140}$.
$(2+\sqrt{8})^2=4+4\sqrt{8}+8=12+\sqrt{128}$.
Вычислим разность квадратов этих квадратов.
$(\sqrt{5}+\sqrt{7})^2-(2+\sqrt{8})^2=12+\sqrt{140}-12-\sqrt{128}=\sqrt{140}-\sqrt{128}$.
Очевидно, получили положительное число, что означает:
$(\sqrt{5}+\sqrt{7})^2>(2+\sqrt{8})^2$.
Так как оба числа положительных, то:
$\sqrt{5}+\sqrt{7}>2+\sqrt{8}$.

Задачи для самостоятельного решения

1. Известно, что $-2.2Найти оценки чисел.
а) $4a$.
б) $-3b$.
в) $a+b$.
г) $a-b$.
д) $b^4$.
е) $a^3$.
ж) $\frac{1}{b}$.
2. Сравните числа:
а) $\sqrt{6}+\sqrt{10}$ и $3+\sqrt{7}$.
б) $π+\sqrt{5}$ и $2+\sqrt{3}$.

Представлены основные виды неравенств, включая неравенства Бернулли, Коши - Буняковского, Минковского, Чебышева. Рассмотрены свойства неравенств и действия над ними. Даны основные методы решения неравенств.

Формулы основных неравенств

Формулы универсальных неравенств

Универсальные неравенства выполняются при любых значениях входящих в них величин. Ниже перечислены основные виды универсальных неравенств.

1) | a ± b | ≤ |a| + |b| ; | a 1 ± a 2 ± ... ± a n | ≤ |a 1 | + |a 2 | + ... + |a n |

2) |a| + |b| ≥ | a - b | ≥ | |a| - |b| |

3)
Равенство имеет место только при a 1 = a 2 = ... = a n .

4) Неравенство Коши - Буняковского

Равенство имеет место тогда и только тогда, когда α a k = β b k для всех k = 1, 2, ..., n и некоторых α, β, |α| + |β| > 0 .

5) Неравенство Минковского , при p ≥ 1

Формулы выполнимых неравенств

Выполнимые неравенства выполняются при определенных значениях входящих в них величин.

1) Неравенство Бернулли:
.
В более общем виде:
,
где , числа одного знака и больше, чем -1 : .
Лемма Бернулли:
.
См. «Доказательства неравенств и леммы Бернулли ».

2)
при a i ≥ 0 (i = 1, 2, ..., n) .

3) Неравенство Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

4) Обобщенные неравенства Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n и k натуральном
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

Свойства неравенств

Свойства неравенств - это набор тех правил, которые выполняются при их преобразовании. Ниже представлены свойства неравенств. Подразумевается, что исходные неравенства выполняются при значениях x i (i = 1, 2, 3, 4) , принадлежащих некоторому, заранее определенному, интервалу.

1) При изменении порядка следования сторон, знак неравенства меняется на противоположный.
Если x 1 < x 2 , то x 2 > x 1 .
Если x 1 ≤ x 2 , то x 2 ≥ x 1 .
Если x 1 ≥ x 2 , то x 2 ≤ x 1 .
Если x 1 > x 2 , то x 2 < x 1 .

2) Одно равенство эквивалентно двум нестрогим неравенствам разного знака.
Если x 1 = x 2 , то x 1 ≤ x 2 и x 1 ≥ x 2 .
Если x 1 ≤ x 2 и x 1 ≥ x 2 , то x 1 = x 2 .

3) Свойство транзитивности
Если x 1 < x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 < x 2 и x 2 ≤ x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 ≤ x 3 , то x 1 ≤ x 3 .

4) К обеим частям неравенства можно прибавить (вычесть) одно и то же число.
Если x 1 < x 2 , то x 1 + A < x 2 + A .
Если x 1 ≤ x 2 , то x 1 + A ≤ x 2 + A .
Если x 1 ≥ x 2 , то x 1 + A ≥ x 2 + A .
Если x 1 > x 2 , то x 1 + A > x 2 + A .

5) Если есть два или более неравенств со знаком одного направления, то их левые и правые части можно сложить.
Если x 1 < x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , то x 1 + x 3 ≤ x 2 + x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при сложении получается строгое неравенство.

6) Обе части неравенства можно умножить (разделить) на положительное число.
Если x 1 < x 2 и A > 0 , то A · x 1 < A · x 2 .
Если x 1 ≤ x 2 и A > 0 , то A · x 1 ≤ A · x 2 .
Если x 1 ≥ x 2 и A > 0 , то A · x 1 ≥ A · x 2 .
Если x 1 > x 2 и A > 0 , то A · x 1 > A · x 2 .

7) Обе части неравенства можно умножить (разделить) на отрицательное число. При этом знак неравенства изменится на противоположный.
Если x 1 < x 2 и A < 0 , то A · x 1 > A · x 2 .
Если x 1 ≤ x 2 и A < 0 , то A · x 1 ≥ A · x 2 .
Если x 1 ≥ x 2 и A < 0 , то A · x 1 ≤ A · x 2 .
Если x 1 > x 2 и A < 0 , то A · x 1 < A · x 2 .

8) Если есть два или более неравенств с положительными членами, со знаком одного направления, то их левые и правые части можно умножить друг на друга.
Если x 1 < x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 ≤ x 2 · x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при умножении получается строгое неравенство.

9) Пусть f(x) - монотонно возрастающая функция. То есть при любых x 1 > x 2 , f(x 1) > f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства не изменится.
Если x 1 < x 2 , то f(x 1) < f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 > x 2 , то f(x 1) > f(x 2) .

10) Пусть f(x) - монотонно убывающая функция, То есть при любых x 1 > x 2 , f(x 1) < f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства изменится на противоположный.
Если x 1 < x 2 , то f(x 1) > f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 > x 2 , то f(x 1) < f(x 2) .

Методы решения неравенств

Решение неравенств методом интервалов

Метод интервалов применим, если в неравенство входит одна переменная, которую обозначим как x , и оно имеет вид:
f(x) > 0
где f(x) - непрерывная функция, имеющая конечное число точек разрывов. Знак неравенства может быть любым: >, ≥, <, ≤ .

Метод интервалов заключается в следующем.

1) Находим область определения функции f(x) и отмечаем ее интервалами на числовой оси.

2) Находим точки разрыва функции f(x) . Например, если это дробь, то находим точки, в которых знаменатель обращается в нуль. Отмечаем эти точки на числовой оси.

3) Решаем уравнение
f(x) = 0 .
Корни этого уравнения отмечаем на числовой оси.

4) В результате числовая ось окажется разбитой точками на интервалы (отрезки). Внутри каждого интервала, входящего в область определения, выбираем любую точку и в этой точке вычисляем значение функции. Если это значение больше нуля, то над отрезком (интервалом) ставим знак „+“ . Если это значение меньше нуля, то над отрезком (интервалом) ставим знак „-“ .

5) Если неравенство имеет вид: f(x) > 0 , то выбираем интервалы с знаком „+“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≥ 0 , то к решению добавляем точки, в которых f(x) = 0 . То есть часть интервалов, возможно, будут иметь закрытые границы (граница принадлежит интервалу). другая часть может иметь открытые границы (граница не принадлежит интервалу).
Аналогично, если неравенство имеет вид: f(x) < 0 , то выбираем интервалы с знаком „-“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≤ 0 , то к решению добавляем точки, в которых f(x) = 0 .

Решение неравенств, применяя их свойства

Этот метод применим для неравенств любой сложности. Он состоит в том, чтобы, применяя свойства (представленные выше), привести неравенства к более простому виду и получить решение. Вполне возможно, что при этом получится не одно, а система неравенств. Это универсальный метод. Он применим для любых неравенств.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 10 Основные свойства числовых неравенств

1. Если а > b , то b < а , и, наоборот, если а < b , то b > а .

Доказательство. Пусть а > b . По определению это означает, что число (а - b ) положительно. Если мы перед ним поставим знак минус, то полученное число - (а - b ) будет, очевидно, отрицательным. Поэтому - (а - b ) < 0, или b - а < 0. А это (опять же по определению) и означает, что b < a .

Обратное утверждение предлагаем учащимся доказать самостоятельно.

Доказанное свойство неравенств допускает простую геометрическую интерпретацию: если точка А лежит на числовой прямой правее точки В, то точка В лежит левее точки А, и наоборот (см. рис. 20).

2. Если a > b , a b > c , то а > с .

Геометрически это свойство состоит в следующем. Пусть точка А (соответствующая числу а ) лежит правее точки В (соответствующей числу b ), а точка В, в свою очередь, лежит правее точки С (соответствующей числу с ). Тогда точка А и подавно будет лежать правее точки С (рис. 21).

Приведем алгебраическое доказательство этого свойства неравенств.

Пусть а > b , a b > с . Это означает, что числа (а - b ) и (b- с ) положительны. Сумма двух положительных чисел, очевидно, положительна. Поэтому (а - b ) + (b- с ) > 0, или а - с > 0. Но это и означает, что а > с .

3. Если а > b , то для любого числа с а + с > b + с , а - c > b - с .

Иными словами, если к обеим частям числового неравенства прибавить или от обеих частей отнять одно и то же число, то неравенство не нарушится.

Доказательство. Пусть а > b . Это означает, что а - b > 0. Но а - b = (а + с ) - (b + с ). Поэтому (а + с ) - (b + с ) > 0. А по определению это и означает, что а + с > b + с . Аналогично показывается, что а - c > b - с .

Например, если к обеим частям неравенства 5 > 4 прибавить 1 1 / 2 , то получим
6 1 / 2 > 5 1 / 2 . Отнимая от обеих частей данного неравенства число 5, получим 0 > - 1.

Следствие. Любое слагаемое одной части числового неравенства можно перенести в другую часть неравенства, поменяв знак этого слагаемого на противоположный.

Пусть, например, а + b > с . Требуется доказать, что а > с - b . Для доказательства от обеих частей данного неравенства достаточно отнять число b .

4. Пусть а > b . Если с > 0 , то аc > bc . Если же с < 0 , то ас < bс .

Иными словами, если обе части числового неравенства умножить на положительное число, то неравенство не нарушится;
если обе части неравенства умножить на отрицательное число, то знак неравенства изменится на противоположный.

Короче это свойство формулируется таким образом:

Неравенство сохраняется при почленном умножении на положительное число и изменяет знак на противоположный при почленном умножении на отрицательное число.

Например, умножив неравенство 5 > 1 почленно на 7, получим 35 > 7. Почленное умножение того же неравенства на - 7 дает - 35 < - 7.

Доказательство 4-го свойства.

Пусть а > b . Это означает, что число а - b положительно. Произведение двух положительных чисел а - b и с , очевидно, также положительно, т. е. (а - b ) с > 0, или
ас - bс > 0. Поэтому ас > bс .

Аналогично рассматривается случай, когда число с отрицательно. Произведение положительного числа а - b на отрицательное число с , очевидно, отрицательно, т. е.
(а - b) с < 0; поэтому ас - bс < 0, откуда ас < bс .

Следствие. Знак неравенства сохраняется при почленном делении на положительное число и изменяется на противоположный при почленном делении на отрицательное число.

Это вытекает из того, что деление на число с =/= 0 равносильно умножению на число 1 / c .

Упражнения

81. Можно ли неравенство 2 > 1 умножить почленно на

а) а 2 + 1; б) | а |; в) а ; г) 1 - 2а +а 2

так чтобы знак неравенства сохранился?

82. Всегда ли 5х больше 4х , а - у меньше у ?

83. Каким может быть число х , если известно, что -х > 7?

84. Расположить в порядке возрастания числа: a) а 2 , 5а 2 , 2а 2 ; б) 5а , 2а ; в) а , а 2 , а 3 . 85. Расположить в порядке убывания числа

а - b , а - 2b , а - 3b .

86. Дать геометрическую интерпретацию третьему свойству числовых неравенств.

§ 1 Универсальный способ сравнения чисел

Познакомимся с основными свойствами числовых неравенств, а также рассмотрим универсальный способ сравнения чисел.

Результат сравнения чисел можно записать с помощью равенства или неравенства. Неравенство может быть строгим и нестрогим. Например, а>3 - это строгое неравенство; а≥3 - это нестрогое неравенство. Способ сравнения чисел зависит от вида сравниваемых чисел. Например, если надо сравнить десятичные дроби, то мы сравниваем их поразрядно; если необходимо сравнить обыкновенные дроби с разными знаменателями, то надо привести их к общему знаменателю и сравнить числители. Но существует универсальный способ сравнения чисел. Он состоит в следующем: находят разность чисел a и b; если a - b > 0, то есть положительное число, то a > b; если a - b < 0, то есть отрицательное число, то a < b; если a - b = 0, то a = b. Этот способ удобно использовать для доказательства неравенств. Например, доказать неравенство:

2b2 - 6b + 1 > 2b(b- 3)

Воспользуемся универсальным способом сравнения. Найдем разность выражений 2b2 - 6b + 1и 2b(b - 3);

2b2 - 6b + 1- 2b(b-3)= 2b2 - 6b + 1 - 2b2 + 6b; приведем подобные слагаемые и получим 1. Так как 1 больше нуля, положительное число, то 2b2 - 6b+1 > 2b(b-3).

§ 2 Cвойства числовых неравенств

Свойство 1. Если a> b, b > c, то a> c.

Доказательство. Если a > b, то значит, разность a - b > 0, то есть положительное число. Если b >c, значит, разность b - c > 0, положительное число. Сложим положительные числа a - b и b - c, раскроем скобки и приведем подобные слагаемые, получим (a - b) +(b - c) = a- b +b - c= a - c. Так как сумма положительных чисел - число положительное, значит, a - c положительное число. Следовательно, a > c, что и требовалось доказать.

Свойство 2. Если a < b, c- любое число, то a + с < b+ с. Это свойство можно трактовать так: «К обеим частям верного неравенства можно прибавить одно и то же число, при этом знак неравенства не изменится».

Доказательство. Найдем разность выражений a + с и b+ с, раскроем скобки и приведем подобные слагаемые, получим (a + с) - (b+ с) = a + с - b - с = a - b. По условию a < b, тогда разность a - b- отрицательное число. Значит, и разность (a + с) -(b+ с) отрицательна. Следовательно, a + с < b+ с, что и требовалось доказать.

Свойство 3. Если a < b, c - положительное число, то aс < bс.

Если a < b, c- отрицательное число, то aс > bс.

Доказательство. Найдем разность выражений aс и bс, вынесем за скобки с, тогда имеем aс-bс = с(a-b). Но так как a

Если отрицательное число a-b умножим на положительное число с, то произведение с(a-b) отрицательно, следовательно, разность aс-bс отрицательна, а значит, aс

Если же отрицательное число a-b умножить на отрицательное число с, то произведение с(a-b) будет положительно, следовательно, и разность aс-bс будет положительна, значит, aс>bс. Что и требовалось доказать.

Например, a-7b.

Так как деление можно заменить умножением на число обратное, = n∙, то доказанное свойство можно применить и для деления. Таким образом, смысл этого свойства в следующем: «Обе части неравенства можно умножить или разделить на одно и то же положительное число, при этом знак неравенства не изменится. Обе части неравенства можно умножить или разделить на отрицательное число, при этом необходимо поменять знак неравенства на противоположный знак».

Рассмотрим следствие к свойству 3.

Следствие. Если a

Доказательство. Разделим обе части неравенства a

сократим дроби и получим

Утверждение доказано.

Действительно, например, 2 < 3, но

Свойство 4. Если a > b и c > d, то a + c > b+ d.

Доказательство. Так как a>b и c >d, то разности a-b и c-d - положительные числа. Тогда сумма этих чисел также положительное число (a-b)+(c-d). Раскроем скобки и сгруппируем (a-b)+(c-d) = a-b+ c-d= (a+с)-(b+ d). В виду этого равенства полученное выражение (a+с)-(b+ d) будет положительным числом. Следовательно, a+ c> b+ d.

Неравенства вида a>b, c >d или a < b, c< d называют неравенствами одинакового смысла, а неравенства a>b , c

Свойство 5. Если a > b, c > d, то ac> bd, где a, b, c , d- положительные числа.

Доказательство. Так как a>b и с - положительное число, то, используя свойство 3, получим aс > bс. Так как c >d и b- положительное число, то bc > bd. Следовательно, по первому свойству ac > bd. Смысл доказанного свойства в следующем: «Если умножить почленно неравенства одинакового смысла, у которых левая и правая части - положительные числа, то получим неравенство того же смысла»

Например, 6 < a < 7, 4 < b< 5 тогда, 24 < ab < 35.

Свойство 6. Если a < b, a и b - положительные числа, то an< bn, где n- натуральное число.

Доказательство. Если почленно перемножить n данных неравенств a < b, то, согласно утверждению свойства 5, получим an< bn. Прочесть доказанное утверждение можно так: «Если обе части неравенства - положительные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства».

§ 3 Применение свойств

Рассмотрим пример на применение рассмотренных нами свойств.

Пусть 33 < a < 34, 3 < b< 4. Оценить сумму a + b, разность a - b, произведение a ∙ b и частное a: b.

1) Оценим сумму a + b. Используя свойство 4, получим 33 + 3< a + b < 34 + 4 или

36 < a+ b <38.

2) Оценим разность a - b. Так как нет свойства на вычитание, то разность a - b заменим суммой a +(-b). Сначала оценим (- b). Для этого, используя свойство 3, обе части неравенства 3 < b< 4 умножим на -1, при этом меняем знак неравенства на противоположный знак 3 ∙ (-1) > b∙ (-1) > 4 ∙ (-1). Получим -4< -b< -3. Теперь можно сложить два неравенства одного знака 33< a < 34 и -4< -b< -3. Имеем 2 9< a - b <31.

3) Оценим произведение a ∙ b. По свойству 5 перемножим неравенства одного знака