Реферат на тему:

Введение

Круговорот биологический – явление непрерывного характера, циклического, закономерного, но не равномерного во времени и пространстве перераспределения веществ, энергии и информации в пределах экологических систем различного иерархического уровня организации – от биогеоценоза до биосферы. Круговорот веществ в масштабах всей биосферы называют большим кругом, а в пределах конкретного биогеоценоза – малым кругом биотического обмена.

Академик В.И. Вернадский первым постулировал тезис о важнейшей роли живых организмов в формировании и поддержании основных физико-химических свойств оболочек Земли. В его концепции биосфера рассматривается не просто как пространство, занятое жизнью, а как целостная функциональная система, на уровне которой реализуется неразрывная связь геологических и биологических процессов. Основные свойства жизни, обеспечивающие эту связь, - высокая химическая активность живых организмов, их подвижность и способность к самовоспроизведению и эволюции. В поддержании жизни как планетарного явления важнейшие значение имеет разнообразие ее форм, отличающихся набором потребляемых веществ и выделяемых в окружающую среду продуктов жизнедеятельности. Биологическое разнообразие – основа формирования устойчивых биогеохимических циклов вещества и энергии в биосфере Земле.

Вопросы о роли живых организмов в малом круговороте рассматривали такие ученые, педагоги как Николайкин Н.И., Шилов И.А., МелеховаО.П. и др.


1. Роль живых организмов в биологическом круговороте

Специфическое свойство жизни – обмен веществ со средой. Любой организм должен получать из внешней среды определенные вещества как источники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводят наружу. Таким образом, каждый организм или множество одинаковых организмов в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса – поддержания жизненных условий или даже их улучшения, - определяется тем, что биосферу населяют разные организмы с разным типом обмена веществ.

В простейшем виде набор качественных форм жизни представлен продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот (основные элементы, мигрирующие по цепям биологического круговорота, - углерод, водород, кислород, калий. Фосфор, сера и т.д.).

Продуценты - это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. (Отметим, что получение энергии извне - общее условие жизнедеятельности всех организмов; по энергии все биологические системы - открытые) их называют также автотрофами, поскольку они сами снабжают себя органическим веществом. В природных сообществах продуценты выполняют функцию производителей органического вещества, накапливаемого в тканях этих организмов. Органическое вещество служит и источником энергии для процессов жизнедеятельности; внешняя энергия используется лишь для первичного синтеза.

Все продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоавтотрофов. Первые используют для синтеза энергию солнечного излучения в части спектра с длиной волны 380-710 нм. Эго главным образом зеленые растения, но к фотосинтезу способны и представители некоторых других царств органического мира. Среди них особое значение имеют цианобактерии (сине-зеленые «водоросли»), которые, по-видимому, были первыми фотосинтетиками в эволюции жизни на Земле. Способны к фотосинтезу также многие бактерии, которые, правда, используют особый пигмент - бактериохлорин - и не выделяют при фотосинтезе кислород. Основные исходные вещества, используемые для фотосинтеза,- диоксид углерода и вода (основа для синтеза углеводов), а также азот, фосфор, калий и другие элементы минерального питания.

Создавая органические вещества на основе фотосинтеза, фотоавтотрофы, таким образом, связывают использованную солнечную энергию, как бы запасая ее. Последующее разрушение химических связей ведет к высвобождению такой «запасенной» энергии. Это относятся не только к использованию органического топлива; «запасенная» в тканях растений энергия передается в виде пищи по трофическим цепям и служит основой потоков энергии, сопровождающих биогенный круговорот веществ.

Хемоавтотрофы в процессах синтеза органического вещества используют энергию химических связей. К этой группе относятся только прокариоты: бактерии, архебактерии и отчасти сине-зеленные. Химическая энергия высвобождается в процессах окисления минеральных веществ. Экзотермические окислительные процессы используются нитрифицирующими бактериями (окисляют аммиак до нитритов, а затем до нитратов), железобактериями (окисление закисного железа до окисного), серобактериями (сероводород до сульфатов). Как субстрат для окисления используется также метан, СО и некоторые другие вещества.

При всем многообразия конкретных форм продуцентов-автотрофов их общая биосферная функция едина и заключается в вовлечении элементов неживой природы в состав тканей организмов и таким образом в общий биологический круговорот. Суммарная масса автотрофов-продуцентов составляет более 95 % массы всех живых организмов в биосфере.

Консументы. Живые существа, не способные строить свое тело на базе использования неорганических веществ, требующие поступления органического вещества извне, в составе пищи, относятся к группе гетеротрофных организмов, живущих за счет продуктов, синтезированных фото- или хемоситетиками. Пища, извлекаемая тем или иным способом из внешней среды, используется гетеротрофами на построение собственного тела и как источник энергии для различных форм жизнедеятельности. Таким образом, гетеротрофы используют энергию, запасенную автотрофами в виде химических связей синтезированных ими органических веществ. В потоке веществ по ходу круговорота они занимают уровень потребителей, облигатно связанных с автотрофами организмами (консументы 1 порядка) или с другими гетеротрофами, которыми они питаются (консументы II порядка).

Общее значение консументов в круговороте веществ своеобразно и неоднозначно. Они не обязательны в прямом процессе круговорота: искусственные замкнутые модельные системы, составленные из зеленых растений и почвенных микроорганизмов, при наличии влаги и минеральных солей могут существовать неопределенно долгое время за счет фотосинтеза, деструкции растительных остатков и вовлечения высвобожденных элементов в новый круговорот. Но это возможно лишь в стабильных лабораторных условиях. В природной обстановке возрастает вероятность гибели таких простых систем от многих причин. «Гарантами» устойчивости круговорота и оказываются в первую очередь консументы.

В процессе собственного метаболизма гетеротрофы разлагают полученные в составе пищи органические вещества и на этой основе строят вещества собственного тела. Трансформация первично продуцированных автотрофами веществ в организмах консументов ведет к увеличению разнообразия живого вещества. Разнообразие же необходимое условие устойчивости любой кибернетической системы на фоне внешних и внутренних возмущений. Живые системы - от организма до биосферы в целом - функционируют по кибернетическому принципу обратных связей.

Животные, составляющие основную часть организмов-консументов, отличаются подвижностью, способностью к активному перемещению в пространстве. Этим они эффективно участвуют в миграции живого вещества, дисперсии его по поверхности планеты, что, с одной стороны, стимулирует пространственное расселение жизни, а с другой служит своеобразным «гарантийным Механизмом» на случай уничтожения жизни в каком-либо месте в силу тех или иных причин.

Примером такой «пространственной гарантии может служить широко известная катастрофа на о. Кракатау: в результате извержения вулкана в 1883 г. жизнь на острове была полностью уничтожена, но в течение всего 50 лет восстановилась - было зарегистрировано порядка 1200 видов. Заселение шло главным образом за счет не затронутых извержением Явы, Суматры и соседних островов, откуда разными путями растения и животные вновь заселили покрытый пеплом и застывшими потоками лавы остров. При этом первыми (уже через 3 года) на вулканическом туфе и пепле появились пленки цианобактерий. Процесс становления устойчивых сообществ на острове продолжается; лесные ценозы еще находятся на ранних стадиях сукцессии и сильно упрощены по структуре.

Наконец, чрезвычайно важна роль консументов, в первую очередь животных, как регуляторов интенсивности потоков вещества и энергии по трофическим цепям. Способность к активной авторегуляции био- массы и темпов ее изменения на уровне экосистем и популяций отдельных видов в конечном итоге реализуется в виде поддержания соответствия темпов создания и разрушения органического вещества в глобальных системах круговорота. Участвуют в такой регуляторной системе не только консументы, но последние (особенно животные) отличаются наиболее активной и быстрой реакцией на любые возмущении баланса биомассы смежных трофических уровней.

В принципе система регулирования потоков вещества в биогенном круговороте, основанная на комплементарности составляющих эту систему экологических категорий живых организмов, работает по принципу безотходного производства. Однако в идеале этот принцип соблюден быть не может в силу большой сложности взаимодействующих процессов и влияющих на них факторов. Результатом нарушения полноты круговорота явились отложения нефти, каменного угля, торфа, сапропелей. Все эти вещества несут в себе энергию, первоначально запасенную в процессе фотосинтеза. Использование их человеком - как бы «отставленное во времени» завершение циклов биологического круговорота.

Редуценты. К этой экологической категории относятся организмы-гетеротрофы, которые, используя в качестве пищи мертвое органическое вещество (трупы, фекалия, растительный опад и пр.), в процессе метаболизма разлагают его до неорганических составляющих.

Частично минерализация органических веществ идет у всех живых организмов. Так, в процессе дыхания выделяется СО2, из организма выводятся вода, минеральные соли, аммиак и т.д. Истинными редуцентами, завершающий цикл разрушения органических веществ, следует поэтому считать лишь такие организмы, которые выделяют во внешнюю среду только неорганические вещества, готовые к вовлечению в новый цикл.

В категорию редуцентов входят многие виды бактерий и грибов. По характеру метаболизма это организмы-восстановители. Так, девитрифицирующие бактерии восстанавливают азот до элементарного состояния, сулъфатредуцирующие бактерия - серу до сероводорода. Конечные продукты разложения органических веществ - диоксид углерода, вода, аммиак, минеральные соли. В анаэробных условиях разложение идет дальше - до водорода; образуются также углеводороды.

Полный цикл редукции органического вещества более сложен и вовлекает большее число участников. Он состоит из ряда последовательных звеньев, в череде которых разные организмы-разрушители поэтапно превращают органические вещества сначала в более простые формы и только после этого в неорганические составляющие действием бактерий и грибов.

Уровни организации живой материи. Совместная деятельность продуцентов, консументов и редуцентов определяет непрерывное поддержание глобального биологического круговорота веществ в биосфере Земли. Этот процесс поддерживается закономерными взаимоотношениями составляющих биосферу пространственно-функциональных частей и обеспечивается особой системой связей, выступающих как механизм гомеостазирования биосферы - поддержания ее устойчивого функционирования на фоне изменчивых внешних и внутренних факторов. Поэтому биосферу можно рассматривать как глобальную экологическую систему, обеспечивающую устойчивое поддержание жизни в ее планетарном проявлении.

Любая биологическая (в том числе и экологическая) система характеризуется специфической функцией, упорядоченными взаимоотношениями составляющих систему частей (субсистем) и основывающимися на этих взаимодействиях регуляторными механизмами, определяющими целостность и устойчивость системы на фоне колеблющихся внешних условий. Из сказанного выше ясно, что биосфера в ее структуре и функции соответствует понятию биологической (экологической) системы.

На уровне биосферы как целого осуществляется всеобщая функциональная связь живого вещества с неживой природой. Ее структурно-функциональными составляющими (подсистемами), на уровне которых осуществляются конкретные циклы биологического круговорота, являются биогеоценозы (экосистемы).


2. Малый круговорот веществ в биосфере

Биологический (биогеохимический) круговорот (малый круговорот веществ в биосфере) – круговорот веществ, движущей силой которого является деятельность живых организмов. Биогеохимический круговорот веществ совершается в пределах биосферы. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. В экосистеме органические вещества синтезируют автотрофами из неорганических веществ. Затем он потребляются гетеротрофами. В результате выделения в процессе жизнедеятельности или после гибели организмов органические вещества подвергаются минерализации, т.е. превращению в неорганические вещества. Эти неорганические могут быть вновь использованы для синтеза автотрофами органических веществ.

В биогеохимических круговоротах следует различать две части:

1. резервный фонд – это часть вещества, не связанная с живыми организмами;

2. обменный фонд – значительно меньшая часть вещества, которая связана прямым обменом между организмами и их непосредственным окружением.

В зависимости от расположения резервного фонда биогеохимические круговороты можно разделить на два типа:

1. круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота);

2. круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и д.р.).

Круговороты газового типа совершенны, т.к. обладают большим обменным фондом, а значит способы к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, т.к. основная масса вещества содержится в резервном фонде земной коре в «недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом. Однако извлечь нужные живым организмам вещества из земной коры гораздо сложнее, чем из атмосферы.

Интенсивность биологического круговорота в первую очередь определяется температурой окружающей среды и количеством воды. Так, например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре. Кроме того, в тундре биологические процессы протекают только в теплое время года.

Продуценты, консументы, детритофаги и редуценты экосистемы, поглощая и выделяя различные вещества, взаимодействуют между собой четко и согласованно. Органические вещества и кислород, образуемые фотосинтезирующими растениями, - важнейшие продукты питания и дыхания консументов. В то же время выделяемые консументами диоксид углерода и минеральные вещества навоза и мочи являются биогенами, столь необходимыми продуцентами. Поэтому вещества в экосистемах совершают практически полный круговорот, попадая сначала в живые организмы, затем в абиотическую среду и вновь возвращаясь в живое. Вот один из основных принципов функционирования экосистем: получение ресурсов и переработка отходов происходят в процессе круговорота всех элементов.

Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов. К малому биогеохимическому круговороту биогенных элементов относятся: углерод, азот, фосфор, сера и др.

2.1 Круговорот углерода

Углерод существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента, - диоксид углерода (СО 2). В природе СО 2 входит в состав атмосферы, а также находится в растворенном состоянии в гидросфере. Включение углерода в состав органических веществ происходит в процессе фотосинтеза, в результате которого на основе СО 2 и Н 2 О образуются сахара. В дальнейшем другие процессы биосинтеза преобразуют эти углероды в более сложные, а также в протеиды, липиды. Все эти соединения не только формируют ткани фотосинтезирующих организмов, но и служат источником органических веществ для животных и незеленных растений.

В процессе дыхания все организмы окисляют сложные органические вещества; конечный продукт этого процесса, СО 2 , выводится во внешнюю среду, где вновь может вовлекаться в процесс фотосинтеза.

При определенных условиях в почве разложение накапливающихся мертвых остатков идет замедленным темпом – через образование сапрофагами гумуса, минерализация которого воздействием грибов и бактерий может идти с различной, в том числе и с низкой, скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность сапрофагов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и круговорот приостанавливается. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля и нефти.

В гидросфере приостановка круговорота углерода связана с включением СО 2 в состав СаСО 3 в виде известняков, мела, кораллов. В этом случае углерод выключается из круговорота на целые геологические эпохи. Лишь поднятие органогенных пород над уровнем моря приводит к возобновлению круговорота через выщелачивание известняков атмосферными осадками. А также биогенным путем – действием лишайников, корней растений.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд тонн этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода приводит в возрастанию содержания СО 2 в атмосфере и развитию парникового эффекта.

Скорость круговорота СО 2 , т.е. время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

2.2 Круговорот азота

Главный источник азота органических соединений – молекулярный азот в составе атмосферы. Переход его в доступные живым организмам соединения может осуществляться разными путями. Так, электрические разряды при грозах синтезируют из азота и кислорода воздуха оксида азота, которые с дождевыми водами попадают в почву в форме селитры или азотной кислоты. Имеет место и фотохимическая фиксация азота.

Более важной формой усвоения азота является деятельность азот-фиксирующих микроорганизмов, синтезирующих сложные протеиды. Отмирая, они обогащают почву органическим азотом, который быстро минерализируются. Таким путем в почву ежегодно поступает около 25 кг азота на 1 га.

Наиболее эффективная фиксация азота осуществляется бактериями, формирующими симбиотические связи с бобовыми растениями. Образуемый ими органический азот диффундирует в ризосферу, а также включается в наземные органы растения-хозяина. Таким путем в наземных и подземных органах растений на 1 га накапливается за год 150-400 кг азота.

Существуют азотфиксирующие микроорганизмы, образующие симбиоз и другими растениями. В водной среде и на очень влажной почве непосредственную фиксацию атмосферного азота осуществляют цианобактерии. Во всех этих случаях азот попадает в растения в форме нитратов. Эти соединения через корни и проводящие пути доставляются в листья, где используются для синтеза протеинов; последние служат основой для азотного питания животных.

Экскреты и мертвые организмы составляют базу цепей питания организмов-сапрофагов, разлагающих органические соединения с постепенным превращением органических азотсодержащих веществ в неорганические. Конечным звеном этой редукционной цепи оказываются аммонифицирующие организмы, образующие аммиак, который затем может войти в цикл нитрификации. Таким образом цикл азота может быть продолжен.

В то же время происходит постоянное возвращение азота в атмосферу действием бактерий-денитрификаторов, которые разлагают нитраты до N 2 . Эти бактерии активны в почвах, богатых азотом и углеродом. Благодаря их деятельности ежегодно с 1 га почвы улетучиваются до 50-60 кг азота.

Азот может выключаться из круговорота путем аккумуляции в глубоководных осадках океана. В известной мере это компенсируется выделением молекулярного N 2 в составе вулканических газов.

2.3 Круговорот фосфора

Из всех макроэлементов (элементов, необходимых для всего живого в больших количествах) фосфор – один из самых редких в доступных резервуарах на поверхности Земли. В природе фосфор в больших количествах содержится в ряде горных пород. В процессе разрушения этих пород он попадает в наземные экосистемы или выщелачивается осадками и в конце концов оказывается в гидросфере. В обоих случаях этот элемент вступает в пищевые цепи. В большинстве случаев организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и таким образом снова вовлекаются в круговорот.

В океане часть фосфатов с отмершими органическими остатками попадает в глубинные осадки и накапливается там, выключаясь из круговорота. Процесс естественного круговорота фосфора в современных условиях интенсифицируется применением в сельском хозяйстве фосфорных удобрений, источником которых служат залежи минеральных фосфатов. Это может быть поводом для тревоги, поскольку соли фосфора при таком использовании быстро выщелачиваются, а масштабы эксплуатации минеральных ресурсов все время растут. Составляя в настоящее время около 2 млн. тонн в год.

2.4 Круговорот серы

Основной резерв фонд серы находится в отложении и почве, но в отличие от фосфора имеется резервный фонд и в атмосфере. Главная роль в вовлечение серы в биогеохимический круговорот принадлежит микроорганизмами. Одни из них восстановители, другие – окислители.

В горных породах сера встречается в виде сульфидов, в растворах – в форме иона, в газообразной фазе в виде сероводорода или сернистого газа. В некоторых организмах сера накапливается в чистом виде (S) и при их отмирании на дне морей образуются залежи самородной серы.

В наземных экосистемах сера поступает в растения из почвы в основном в виде сульфатов. В живых организмах сера содержится в белках, в виде ионов и т.д. После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до HS, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводорода улетучивается в атмосферу, там окисляется и возвращается в почву с осадками.

Сжигание человеком ископаемого топлива, а также выбросы химической промышленности, приводит к накоплению в атмосфере сернистого газа (SO), который реагируя с парами воды, выпадает на землю в виде кислотных дождей.

Биогеохимические циклы в значительной степени подвержены влиянию человека. Хозяйственная деятельность нарушает их замкнутость, они становятся ацикличными.


Заключение

Сложные взаимоотношения, поддерживающие устойчивый круговорот веществ, а с ним и существование жизни как глобального явления нашей планеты, сформировались на протяжении длительной истории Земли.

Совместная деятельность различных живых организмов определяет закономерный круговорот отдельных элементов и химических соединений, включающий введение их в состав живых клеток, преобразования химических веществ в процессах метаболизма, выделение в окружающую среду и деструкцию органических веществ, в результате которой высвобождаются минеральные вещества, вновь включающиеся в биологические циклы.

Таким образом, процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом. А совместная деятельность качественных форм жизни обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот (основные элементы, мигрирующие по цепям биологического круговорота, - углерод, водород, азот, калий, кальций и др.).

Список литературы

1. Колесников С.И. Экология. – Ростов на Дону: «Феникс», 2003.

2. Петров К.М. Общая экология: Взаимодействие общества и природы: Учебн. пособие. 2-е изд.- СПб.; Химия, 1998.

3. Николайкин Н.И. Экология.: Учеб. для вузов/ Николайкин Н.Н., Николайкина Н.Е., Мелехина О.П. – 2-е изд., перераб. и доп.- М.: Дрофа, 2003.

4. Хотунцев Ю.Л. Экология и экологическая безопасность: Учеб. пособие для студ. высш. пед. учеб. заведений. – М.: Издательский центр «Академия», 2002.

5. Шилов И.А. Экология: Учеб. для биол. и мед. спец. вузов И.А. Шилов.-4-е изд., испр.- М.: Высшая школа, 2003.

Вопрос 1. В чем заключается влияние живых организмов на биосферу?

Живые существа способствуют переносу и круговороту веществ в природе. Благодаря деятельности фотосинтетиков в атмосфере снизилось количество углекислого газа, появился кислород и сформировался защитный озоновый слой. Деятельность живых организмов определяет состав и структуру почвы (переработка редуцентами органических остатков), предохраняет ее от эрозии. В значительной мере животные и растения определяют также содержание различных веществ в гидросфере (особенно в небольших по размеру водоемах). Некоторые организмы способны избирательно поглощать и накапливать определенные химические элементы - кремний, кальций, иод, серу и т. д. Результатом активности живых существ являются отложения известняков, железных и марганцевых руд, запасов нефти, угля, газа.

Вопрос 2. Расскажите о круговороте воды в природе.

Круговорот воды имеет огромное значение для существования биосферы. Вода испаряется в первую очередь с поверхности океанов. Далее она в качестве водяного пара частично переносится ветрами и выпадает в виде осадков над сушей. Обратно в океан вода возвращается через реки и грунтовые воды.

В круговороте воды участвуют и живые существа. Растения поглощают большое количество воды из почвы и испаряют ее с поверхности листьев. В экваториальных лесах подобное испарение влаги значительно смягчает климат. В северных лесах относительно слабо испаряющие воду хвойные деревья (особенно ели), и растущие под ними мхи могут способствовать переувлажнению и заболачиванию почвы.

Вопрос 3. Какие организмы поглощают диоксид углерода из атмосферы?

Диоксид углерода из атмосферы поглощают фотосинтезирующие организмы, которые усваивают его и запасают в виде органических соединений (в первую очередь глюкозы). Кроме того, часть атмосферного углекислого газа растворяется в воде морей и океанов, а затем в форме ионов угольной кислоты может захватываться животными - моллюсками, кораллами, губками, использующими карбонаты для построения раковин и скелетов. Результатом их активности может быть образование осадочных пород (известняков, мела и др.).

Вопрос 4. Опишите путь возвращения связанного углерода в атмосферу.

В процессе дыхания животные, растения и микроорганизмы окисляют органические вещества до диоксида углерода и выделяют его в атмосферу. Кроме этого, возвращению углерода в атмосферу способствует деятельность человека. Ежегодно в воздух выбрасывается около 5 млрд т углерода в результате сжигания ископаемого топлива и до 2 млрд. т. - при переработке древесины. Возвращение углерода в атмосферу из горных осадочных пород зависит от вулканической деятельности и геохимических процессов.

Вопрос 5. Какие факторы, кроме деятельности живых организмов, влияют на состояние нашей планеты?

Кроме деятельности живых организмов на состояние нашей планеты влияют абиотические факторы: движение литосферных плит, вулканическая активность, реки и морской прибой, климатические явления, засухи, наводнения и другие природные процессы. Некоторые из них действуют очень медленно; другие же способны практически мгновенно изменить состояние большого количества экосистем (масштабное извержение вулкана; сильное землетрясение, сопровождаемое цунами; лесные пожары; падение крупного метеорита).

Вопрос 6. Кто впервые ввел в науку термин "ноосфера"?

Ноосфера (от греч. noos - разум) - это понятие, обозначающее сферу взаимодействия природы и человека; это эволюционно новое состояние биосферы, при котором разумная деятельность человека становится решающим фактором ее развития. Впервые термин "ноосфера" в 1927 г. ввели в науку французские ученые Эдуард Лepya (1870-1954) и Пьер Тейяр де Шарден (1881-1955).

Вопрос 1. В чем заключается влияние живых организмов на биосферу?

Живые существа способствуют переносу и круговороту веществ в природе. Благодаря де­ятельности фотосинтетиков в атмосфере снизи­лось количество углекислого газа, появился кислород и сформировался защитный озоновый слой. Деятельность живых организмов опреде­ляет состав и структуру почвы (переработка ре­дуцентами органических остатков), предохра­няет ее от эрозии. В значительной мере живот­ные и растения определяют также содержание различных веществ в гидросфере (особенно в небольших по размеру водоемах). Некоторые организмы способны избирательно поглощать и накапливать определенные химические эле­менты — кремний, кальций, иод, серу и т. д. Результатом активности живых существ явля­ются отложения известняков, железных и мар­ганцевых руд, запасов нефти, угля, газа.

Вопрос 2. Расскажите о круговороте воды в природе.

Круговорот воды имеет огромное значение для существования биосферы. Вода испаряет­ся в первую очередь с поверхности океанов. Далее она в качестве водяного пара частично переносится ветрами и выпадает в виде осад­ков над сушей. Обратно в океан вода возвра­щается через реки и грунтовые воды.

В круговороте воды участвуют и живые су­щества. Растения поглощают большое количе­ство воды из почвы и испаряют ее с поверхно­сти листьев. В экваториальных лесах подобное испарение влаги значительно смягчает климат. В северных лесах относительно слабо испаряю­щие воду хвойные деревья (особенно ели), и растущие под ними мхи могут способствовать переувлажнению и заболачиванию почвы.

Вопрос 3. Какие организмы поглощают диок­сид углерода из атмосферы?

Диоксид углерода из атмосферы поглоща­ют фотосинтезирующие организмы, которые усваивают его и запасают в виде органических соединений (в первую очередь глюкозы). Кро­ме того, часть атмосферного углекислого газа растворяется в воде морей и океанов, а затем в форме ионов угольной кислоты может захва­тываться животными — моллюсками, корал­лами, губками, использующими карбонаты для построения раковин и скелетов. Результа­том их активности может быть образование осадочных пород (известняков, мела и др.).

Вопрос 4. Опишите путь возвращения связан­ного углерода в атмосферу.

В процессе дыхания животные, растения и микроорганизмы окисляют органические ве­щества до диоксида углерода и выделяют его в атмосферу. Кроме этого, возвращению углеро­да в атмосферу способствует деятельность че­ловека. Ежегодно в воздух выбрасывается око­ло 5 млрд т углерода в результате сжигания ископаемого топлива и до 2 млрд. т. — при пе­реработке древесины. Возвращение углерода в атмосферу из горных осадочных пород зависит от вулканической деятельности и геохимиче­ских процессов.

Вопрос 5. Какие факторы, кроме деятельности живых организмов, влияют на состояние нашей планеты?

Кроме деятельности живых организмов на состояние нашей планеты влияют абиотиче­ские факторы: движение литосферных плит, вулканическая активность, реки и морской прибой, климатические явления, засухи, на­воднения и другие природные процессы. Неко­торые из них действуют очень медленно; дру­гие же способны практически мгновенно изме­нить состояние большого количества экосистем (масштабное извержение вулкана; сильное землетрясение, сопровождаемое цунами; лес­ные пожары; падение крупного метеорита).

Вопрос 6. Кто впервые ввел в науку термин «ноосфера»?

Ноосфера (от греч. noos — разум) — это понятие, обозначающее сферу взаимодейст­вия природы и человека; это эволюционно но­вое состояние биосферы, при котором разум­ная деятельность человека становится решаю­щим фактором ее развития. Впервые термин «ноосфера» в 1927 г. ввели в науку француз­ские ученые Эдуард Лepya (1870-1954) и Пьер Тейяр де Шарден (1881-1955).

1. Биосфера – комплексная оболочка Земли, охватывающая всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, заселенная живыми организмами и преобразованная ими. Биосфера – глобальная экосистема с взаимосвязями, круговоротом веществ и превращением энергии.2. Отсутствие благоприятных условий для жизни организмов:1) в верхних слоях атмосферы – губительное действие космического излучения, ультрафиолетовых лучей; 2) в глубинах океана – недостаток света, пищи, кислорода, высокое давление; 3) в глубоких слоях литосферы – высокая плотность горных пород, высокая температура земных недр, недостаток света, пищи, кислорода. Отсутствие благоприятных условий – причина скудности жизни, незначительной биомассы.3.

Факторы, определяющие границы биосферы, – неблагоприятные условия для жизни организмов. Значение озонового слоя в атмосфере – защита от проникновения губительных для живого коротких ультрафиолетовых лучей. Граница соприкосновения разных сфер – зона с наиболее благоприятными условиями жизни, причина значительного скопления здесь живых организмов.

Земли и химию живого, их взаимосвязи. Вернадский о ведущей роли живого вещества в преобразовании биосферы, о ноосфере. Необходимость изучения роли и места живых организмов в целом на планете для познания присущих биосфере закономерностей.2. Живое вещество, или биомасса, – совокупность всех живых организмов на Земле, способность живого вещества к воспроизводству и распространению на планете – причины всюдности жизни, ее плотности и давления, борьбы организмов за пищу, воду, территорию, воздух.3. Постоянное взаимодействие живого вещества с окружающей средой в процессе обмена веществ: поглощение организмом различных элементов (кислорода, водорода, азота, углерода, фосфора и др.), их накопление, а затем вы деление

(частично при жизни и после смерти). 4. Устойчивость биосферы.

Биологический круговорот – основа целостности и устойчивости биосферы.

Энергия Солнца – основа биологического круговорота. Космическая роль растений – использование энергии Солнца на создание органических веществ из неорганических, распространение органических веществ и энергии по цепям питания.5. Биогеохимические функции живого вещества: 1) газовая – в процессе фотосинтеза растения выделяют кислород, в процессе дыхания все организмы выделяют углекислый газ, клубеньковые бактерии используют атмосферный азот; 2) концентрационная – организмы поглощают различные химические элементы, накапливают их (иод – водоросли, железо, сера – бактерии); 3) окислительно-восстановительная – происходит окисление и восстановление ряда веществ с участием организмов (образование бокситов, руды, известняков); 4) биохимическая – ее проявление в результате питания, дыхания, разрушения и гниения отмерших организмов.6. Влияние деятельности человека на круговорот веществ (химической промышленности, транспорта, сельского хозяйства и др.). Отсутствие в биосфере механизмов, способных восстановить равновесие, нарушаемое деятельностью человека. Проблемы: озоновые дыры и возможные последствия; производство большого количества энергии, загрязнение атмосферы и возможное потепление климата; увеличение численности населения и проблемы питания.7. Сохранение равновесия в биосфере – проблема всего человечества, необходимость ее решения.

Проведение мониторинга, рациональное природопользование, сокращение норм потребления и др.

Специфическое свойство жизни – обмен веществ со средой. Любой организм должен получать из внешней среды определенные вещества как источники энергии и материал для построения собственного тела. Продукты метаболизма, уже непригодные для дальнейшего использования, выводят наружу. Таким образом, каждый организм или множество одинаковых организмов в процессе своей жизнедеятельности ухудшают условия своего обитания. Возможность обратного процесса – поддержания жизненных условий или даже их улучшения, - определяется тем, что биосферу населяют разные организмы с разным типом обмена веществ.
В простейшем виде набор качественных форм жизни представлен продуцентами, консументами и редуцентами, совместная деятельность которых обеспечивает извлечение определенных веществ из внешней среды, их трансформацию на разных уровнях трофических цепей и минерализацию органического вещества до составляющих, доступных для очередного включения в круговорот (основные элементы, мигрирующие по цепям биологического круговорота, - углерод, водород, кислород, калий. Фосфор, сера и т.д.).
Продуценты - это живые организмы, которые способны синтезировать органическое вещество из неорганических составляющих с использованием внешних источников энергии. (Отметим, что получение энергии извне - общее условие жизнедеятельности всех организмов; по энергии все биологические системы - открытые) их называют также автотрофами, поскольку они сами снабжают себя органическим веществом. В природных сообществах продуценты выполняют функцию производителей органического вещества, накапливаемого в тканях этих организмов. Органическое вещество служит и источником энергии для процессов жизнедеятельности; внешняя энергия используется лишь для первичного синтеза.
Все продуценты по характеру источника энергии для синтеза органических веществ подразделяются на фотоавтотрофов и хемоавтотрофов. Первые используют для синтеза энергию солнечного излучения в части спектра с длиной волны 380-710 нм. Эго главным образом зеленые растения, но к фотосинтезу способны и представители некоторых других царств органического мира. Среди них особое значение имеют цианобактерии (сине-зеленые «водоросли»), которые, по-видимому, были первыми фотосинтетиками в эволюции жизни на Земле. Способны к фотосинтезу также многие бактерии, которые, правда, используют особый пигмент - бактериохлорин - и не выделяют при фотосинтезе кислород. Основные исходные вещества, используемые для фотосинтеза,- диоксид углерода и вода (основа для синтеза углеводов), а также азот, фосфор, калий и другие элементы минерального питания.