Часто нужно бывает начертить («построить») угол, который был бы равен данному углу, причем построение необходимо выполнить без помощи транспортира, а обходясь только циркулем и линейкой. Умея строить треугольник по трем сторонам, мы сможем решить и эту задачу. Пусть на прямой MN (черт. 60 и 61) требуется построить у точки K угол, равный углу B . Это значит, что надо из точки K провести прямую, составляющую с MN угол, равный B .

Для этого отметим на каждой из сторон данного угла по точке, например А и С , и соединим А и С прямой линией. Получим треугольник АВС . Построим теперь на прямой MN этот треугольник так, чтобы вершина его В находилась в точке К : тогда у этой точки и будет построен угол, равный углу В . Строить же треугольник по трем сторонам ВС, ВА и АС мы умеем: откладываем (черт. 62) от точки К отрезок KL, равный ВС ; получим точку L ; вокруг K , как около центра, описываем окружность радиусом ВА , а вокруг L – радиусом СА . Точку Р пересечения окружностей соединяем с К и Z, – получим треугольник КPL, равный треугольнику ABC ; в нем угол К = уг. В .

Это построение выполняется быстрее и удобнее, если от вершины В отложить р а в н ы е отрезки (одним расстворением циркуля) и, не сдвигая его ножек, описать тем же радиусом окружность около точки К, как около центра.

Как разделить угол пополам

Пусть требуется разделить угол А (черт. 63) на две равные части помощью циркуля и линейки, не пользуясь транспортиром. Покажем, как это сделать.

От вершины А на сторонах угла отложим равные отрезки АВ и АС (черт. 64; это делается одним расстворени-ем циркуля). Затем ставим острие циркуля в точки В и С и описываем равными радиусами дуги, пересекающиеся в точке D. Прямая, соединяющая А и Д делит угол А пополам.

Объясним, почему это. Если точку D соединим с В и С (черт. 65), то получатся два треугольника ADC и ADB, у которых есть общая сторона AD ; сторона АВ равна стороне АС , а ВD равна CD. По трем сторонам треугольники равны, а значит, равны и углы BAD и DАС, лежащие против равных сторон ВD и СD . Следовательно, прямая AD делит угол ВАС пополам.

Применения

12. Построить без транспортира угол в 45°. В 22°30’. В 67°30’.

Р е ш е н и е. Разделив прямой угол пополам, получим угол в 45°. Разделив угол в 45° пополам, получим угол в 22°30’. Построив сумму углов 45° + 22°30’, получим угол в 67°30’.

Как построить треугольник по двум сторонам и углу между ними

Пусть требуется на местности узнать расстояние между двумя вехами А и В (черт 66), разделенными непроходимым болотом.

Как это сделать?

Мы можем поступить так: в стороне от болота выберем такую точку С , откуда видны обе вехи и возможно измерить расстояния АС и ВС. У г о л С измеряем помощью особого угломерного прибора (называемого а с т р о л я б и е й). По этим данным, т. е. по измеренным сторонам AC и ВС и углу С между ними, построим треугольник ABC где-нибудь на удобной местности следующим образом. Отмерив по прямой линии одну известную сторону (черт. 67), например АС , строят при ней у точки С угол С ; на другой стороне этого угла отмеряют известную сторону ВС. Концы известных сторон, т. е. точки А и В соединяют прямой линией. Получается треугольник, в котором две стороны и угол между ними имеют наперед указанные размеры.

Из способа построения ясно, что по двум сторонам и углу между ними можно построить т о л ь к о о д и н треугольник. поэтому, если две стороны одного треугольника равны двум сторонам другого и углы между этими сторонами одинаковы, то такие треугольники можно друг на друга наложить всеми точками, т. е. у них должны быть равны также третьи стороны и прочие углы. Это значит, что равенство двух сторон треугольников и угла между ними может служить признаком полного равенства этих треугольников. Короче говоря:

Т р е у г о л ь н и к и р а в н ы п о д в у м с т о р о н а м и у г л у м е ж д у н и м и.

В задачах на построение будем рассматривать построение геометрической фигуры, которое можно выполнить с помощью линейки и циркуля.

С помощью линейки можно провести:

    произвольную прямую;

    произвольную прямую, проходящую через данную точку;

    прямую, проходящую через две данные точки.

С помощью циркуля можно описать из данного центра окружность данного радиуса.

Циркулем можно отложить отрезок на данной прямой от данной точки.

Рассмотрим основные задачи на построение.

Задача 1. Построить треугольник с данными сторонами а, b, с (рис.1).

Решение. С помощью линейки проведем произвольную прямую и возьмем на ней произвольную точку В. Раствором циркуля, равным а, описываем окружность с центром В и радиусом а. Пусть С - точка ее пересечения с прямой. Раствором циркуля, равным с, описываем окружность из центра В, а раствором циркуля, равным b - окружность из центра С. Пусть А - точка пересечения этих окружностей. Треугольник ABC имеет стороны, равные a, b, c.

Замечание. Чтобы три отрезка прямой могли служить сторонами треугольника, необходимо, чтобы больший из них был меньше суммы двух остальных (а < b + с).

Задача 2.

Решение. Данный угол с вершиной А и луч ОМ изображены на рисунке 2.

Проведем произвольную окружность с центром в вершине А данного угла. Пусть В и С - точки пересечения окружности со сторонами угла (рис.3, а). Радиусом АВ проведем окружность с центром в точке О - начальной точке данного луча (рис.3, б). Точку пересечения этой окружности с данным лучом обозначим С 1 . Опишем окружность с центром С 1 и радиусом ВС. Точка В 1 пересечения двух окружностей лежит на стороне искомого угла. Это следует из равенства Δ ABC = Δ ОВ 1 С 1 (третий признак равенства треугольников).

Задача 3. Построить биссектрису данного угла (рис.4).

Решение. Из вершины А данного угла, как из центра, проводим окружность произвольного радиуса. Пусть В и С - точки ее пересечения со сторонами угла. Из точек В и С тем же радиусом описываем окружности. Пусть D - точка их пересечения, отличная от А. Луч AD делит угол А пополам. Это следует из равенства Δ ABD = Δ ACD (третий признак равенства треугольников).

Задача 4. Провести серединный перпендикуляр к данному отрезку (рис.5).

Решение. Произвольным, но одинаковым раствором циркуля (большим 1/2 АВ) описываем две дуги с центрами в точках А и В, которые пересекутся между собой в некоторых точках С и D. Прямая CD будет искомым перпендикуляром. Действительно, как видно из построения, каждая из точек С и D одинаково удалена от А и В; следовательно, эти точки должны лежать на серединном перпендикуляре к отрезку АВ.

Задача 5. Разделить данный отрезок пополам. Решается так же, как и задача 4 (см. рис.5).

Задача 6. Через данную точку провести прямую, перпендикулярную данной прямой.

Решение. Возможны два случая:

1) данная точка О лежит на данной прямой а (рис. 6).

Из точки О проводим произвольным радиусом окружность, пересекающую прямую а в точках А и В. Из точек А и В тем же радиусом проводим окружности. Пусть О 1 - точка их пересечения, отличная от О. Получаем ОО 1 ⊥ AB. В самом деле, точки О и О 1 равноудалены от концов отрезка АВ и, следовательно, лежат на серединном перпендикуляре к этому отрезку.

Чтобы построить какой-либо чертеж или выполнить плоскостную разметку заготовки детали перед ее обработкой, необходимо осуществить ряд графических операций – геометрических построений.

На рис. 2.1 изображена плоская деталь – пластина. Чтобы начертить ее чертеж или разметить на стальной полосе контур для последующего изготовления, нужно проделать на плоскости построения, основные из которых пронумерованы цифрами, записанными на стрелках-указателях. Цифрой 1 указано построение взаимно перпендикулярных линий, которое надо выполнить в нескольких местах, цифрой 2 – проведение параллельных линий, цифрой 3 – сопряжение этих параллельных линий дугой определенного радиуса, цифрой 4 – сопряжение дуги и прямой дугой заданного радиуса, который в данном случае равен 10 мм, цифрой 5 – сопряжение двух дуг дугой определенного радиуса.

В результате выполнения этих и других геометрических построений будет вычерчен контур детали.

Геометрическим построением называют способ решения задачи, при котором ответ получают графическим путем без каких-либо вычислений. Построения выполняют чертежными (или разметочными) инструментами максимально аккуратно, ибо от этого зависит точность решения.

Линии, заданные условиями задачи, а также построения выполняют сплошными тонкими, а результаты построения – сплошными основными.

Приступая к выполнению чертежа или разметке, нужно вначале определить, какие из геометрических построений необходимо применить в данном случае, т.е. провести анализ графического состава изображения.

Рис. 2.1.

Анализом графического состава изображения называют процесс расчленения выполнения чертежа на отдельные графические операции.

Выявление операций, необходимых для построения чертежа, облегчает выбор способа его выполнения. Если нужно вычертить, например, пластину, изображенную на рис. 2.1, то анализ контура ее изображения приводит нас к выводу, что мы должны применить следующие геометрические построения: в пяти случаях провести взаимно перпендикулярные центровые линии (цифра 1 в кружке), в четырех случаях вычертить параллельные линии (цифра 2 ), вычертить две концентрические окружности (0 50 и 70 мм), в шести случаях построить сопряжения двух параллельных прямых дугами заданного радиуса (цифра 3 ), а в четырех – сопряжения дуги и прямой дугой радиуса 10 мм (цифра 4 ), в четырех случаях построить сопряжение двух дуг дугой радиуса 5 мм (цифра 5 в кружке).

Для выполнения этих построений необходимо вспомнить или повторить по учебнику правила их вычерчивания.

При этом целесообразно выбирать рациональный способ выполнения чертежа. Выбор рационального способа решения задачи сокращает время, затрачиваемое на работу. Например, при построении равностороннего треугольника, вписанного в окружность, более рационален способ, при котором построение выполняют рейсшиной и угольником с углом 60° без предварительного определения вершин треугольника (см. рис. 2.2, а, б ). Менее рационален способ решения той же задачи с помощью циркуля и рейсшины с предварительным определением вершин треугольника (см. рис. 2.2, в ).

Деление отрезков и построение углов

Построение прямых углов

Угол 90° рационально строить с помощью рейсшины и угольника (рис. 2.2). Для этого достаточно, проведя прямую, восставить к ней перпендикуляр с помощью угольника (рис. 2.2, а ). Рационально перпендикуляр к отрезку наклонной строить, передвигая (рис. 2.2, б ) или поворачивая (рис. 2.2, в ) угольник.

Рис. 2.2.

Построение тупых и острых углов

Рациональные способы построения углов 120, 30 и 150, 60 и 120, 15 и 165, 75 и 105,45 и 135° приведены на рис. 2.3, где показаны положения угольников для построения этих углов.

Рис. 2.3.

Деление угла на две равные части

Из вершины угла описывают дугу окружности произвольного радиуса (рис. 2.4).

Рис. 2.4.

Из точек ΜηΝ пересечения дуги со сторонами угла раствором циркуля, большим половины дуги ΜΝ, делают две пересекающиеся в точке А засечки.

Через полученную точку А и вершину угла проводят прямую линию (биссектрису угла).

Деление прямого угла на три равные части

Из вершины прямого угла описывают дугу окружности произвольного радиуса (рис. 2.5). Не меняя раствора циркуля, делают засечки из точек пересечения дуги со сторонами угла. Через полученные точки М и Ν и вершину угла проводят прямые.

Рис. 2.5.

Этим способом можно делить на три равные части только прямые углы.

Построение угла, равного данному. Из вершины О заданного угла проводят дугу произвольного радиуса R, пересекающую стороны угла в точках М и N (рис. 2.6, а ). Затем проводят отрезок прямой, который будет служить одной из сторон нового угла. Из точки О 1 на этой прямой тем же радиусом R проводят дугу, получая точку Ν 1 (рис. 2.6, б ). Из этой точки описывают дугу радиусом R 1, равным хорде MN. Пересечение дуг дает точку Μ 1, которую соединяют прямой с вершиной нового угла (рис. 2.6, б ).

Рис. 2.6.

Деление отрезка прямой на две равные части. Из концов заданного отрезка раствором циркуля, большим половины его длины, описывают дуги (рис. 2.7). Прямая, соединяющая полученные точки М и Ν, делит отрезок на две равные части и перпендикулярна ему.

Рис. 2.7.

Построение перпендикуляра в конце отрезка прямой. Из произвольной точки О, взятой над отрезком АВ, описывают окружность, проходящую через точку А (конец отрезка прямой) и пересекающую прямую в точке М (рис. 2.8).

Рис. 2.8.

Через полученную точку М и центр О окружности проводят прямую до встречи с противоположной стороной окружности в точке N. Точку N соединяют прямой с точкой А.

Деление отрезка прямой на любое число равных частей. Из любого конца отрезка, например из точки А, проводят под острым углом к нему прямую линию. На ней циркулем- измерителем откладывают нужное число равных отрезков произвольной величины (рис. 2.9). Последнюю точку соединяют со вторым концом заданного отрезка (с точкой В ). Из всех точек деления с помощью линейки и угольника проводят прямые, параллельные прямой 9В, которые и разделят отрезок АВ на заданное число равных частей.

Рис. 2.9.

На рис. 2.10 показано, как применить это построение для разметки центров отверстий, равномерно расположенных на прямой.

Это - древнейшая геометрическая задача .

Пошаговая инструкция

1й способ. - С помощью «золотого», или «египетского», треугольника . Стороны этого треугольника имеют соотношение сторон 3:4:5, а угол равен строго 90град . Этим качеством широко пользовались древние египтяне и другие пракультуры.

Илл.1. Построение Золотого, или египетского треугольника

  • Изготавливаем три мерки (или веревочных циркуля – веревка на двух гвоздях или колышках) с длинами 3; 4; 5 метров . Древние в качестве единиц измерения часто пользовались способом завязывания узелков с равными расстояниями между ними. Единица длины - «узелок ».
  • Вбиваем в точке О колышек, цепляем на него мерку «R3 - 3 узелка».
  • Протягиваем веревку вдоль известной границы – в сторону предполагаемой точки А.
  • В момент натяжения на линии границы – точка А, вбиваем колышек.
  • Затем - снова от точки О, протягиваем мерку R4 – вдоль второй границы. Колышек пока не вбиваем.
  • После этого натягиваем мерку R5 – от А до В.
  • В месте пересечения мерок R2 и R3 вбиваем колышек. – Это искомая точка В – третья вершина золотого треугольника , со сторонами 3;4;5 и с прямым углом в точке О .

2й способ. С помощью циркуля .

Циркуль может быть веревочный или в виде шагомера . См:

Наш циркуль-шагомер имеет шаг в 1 метр.

Илл.2. Циркуль-шагомер

Построение – также по Илл.1.

  • От точки отсчета – точки О – угла соседа, проводим отрезок произвольной длины - но больше, чем радиус циркуля = 1м – в каждую сторону от центра (отрезок АВ).
  • Ставим ногу циркуля в точку О.
  • Проводим окружность с радиусом (шагом циркуля) = 1м. Достаточно провести короткие дуги – сантиметров по 10-20, в местах пересечения с отмеченным отрезком (через точки А и В.). Этим действием мы нашли равноудаленные точки от центра - А и В. Величина удаления от центра здесь не имеет значения. Можно эти точки просто отметить рулеткой.
  • Далее нужно провести дуги с центрами в точках А и В, но несколько (произвольно) большего радиуса, чем R=1м. Можно перенастроить наш циркуль на больший радиус, если он имеет регулируемый шаг. Но для такой небольшой текущей задачи не хотелось бы его «дергать». Или когда регулировки нет. Можно сделать за полминуты веревочный циркуль .
  • Ставим первый гвоздь (или ножку циркуля с радиусом больше, чем 1м) поочередно в точки А и В. И проводим вторым гвоздем - в натянутом состоянии веревки, две дуги - так чтобы они пересеклись друг с дружкой. Можно в двух точках: C и D, но достаточно одной – C. И снова хватит коротких засечек на пересечении в точке С.
  • Проводим прямую (отрезок) через точки С и D.
  • Все! Полученный отрезок, или прямая, - есть точное направление на север:). Простите, - на прямой угол .
  • На рисунке показаны два случая несоответствия границы по участку соседа. На Илл.3а приведен случай, когда забор соседа уходит от нужного направления в ущерб себе. На 3б – он залез на Ваш участок. В ситуации 3а возможно построение двух «направляющих» точек: и C, и D. На 3б же – только С.
  • Поставьте на углу О колышек, а в точке C - временный колышек, и протяните от С шнур до задней границы участка. – Так, чтобы шнур едва касался колышка О. Замерив от точки О – в направлении D, длину стороны по генплану, получите достоверный задний правый угол участка.

Илл.3. Построение прямого угла – от угла соседа, с помощью циркуля-шагомера и веревочного циркуля

Если у Вас есть циркуль-шагомер, то можно и вовсе обойтись без веревочного . Веревочный в предыдущем примере мы применили для проведения дуг большего радиуса, чем у шагомера. Большего потому, что эти дуги должны где-нибудь пересечься. Для того чтобы дуги можно было провести шагомером с тем же радиусом – 1м с гарантией их пересечения, надо чтобы точки А и В находились внутри окружности c R =1м.

  • Отмерьте тогда эти равноудаленные точки рулеткой - в разные стороны от центра, но обязательно по линии АВ (линии забора соседа). Чем точки А и В будут ближе к центру – тем дальше от него направляющие точки: C и D, и тем точнее измерения. На рисунке это расстояние принято равным около четверти радиуса шагомера = 260мм.

Илл.4. Построение прямого угла с помощью циркуля-шагомера и рулетки

  • Не менее актуальна эта схема действий и при построении любого прямоугольника, в частности - контура прямоугольного фундамента. Вы получите его идеальным. Его диагонали, конечно, нужно проверить, но разве не уменьшаются усилия? – По сравнению, когда диагонали, углы и стороны контура фундамента двигают туда-сюда, пока углы не сойдутся..

Собственно, мы решили геометрическую задачу на земле. Для того чтобы Ваши действия были более уверенными на участке, потренируйтесь на бумаге – с помощью обычного циркуля. Что ничем в принципе не отличается.

При строительстве или разработке домашних дизайн-проектов часто требуется построить угол, равный уже имеющемуся. На помощь приходят шаблоны и школьные знания геометрии.

Инструкция

  • Угол образуют две прямые, исходящие из одной точки. Эта точка будет называться вершиной угла, а линии будут являться сторонами угла.
  • Для обозначения углов используйте три буквы: одна у вершины, две у сторон. Называют угол, начиная с той буквы, которая стоит у одной стороны, далее называют букву, стоящую у вершины, и затем букву у другой стороны. Используйте и другие способы для обозначения углов, если вам удобнее иначе. Иногда называют только одну букву, которая стоит у вершины. А можно обозначать углы греческими буквами, например, α, β, γ.
  • Встречаются ситуации, когда необходимо начертить угол, чтобы он был равен уже данному углу. Если при построении чертежа использовать транспортир возможности нет, можно обойтись только линейкой и циркулем. Допустим, на прямой, обозначенной на чертеже буквами MN, нужно построить угол у точки К, так, чтобы он был равен углу В. То есть из точки K необходимо провести прямую, образующую с линией MN угол, который будет равен углу В.
  • В начале отметьте по точке на каждой стороне данного угла, например, точки А и С, дальше соедините точки С и А прямой линией. Получите треугольник АВС.
  • Сейчас постройте на прямой MN такой же треугольник, чтобы его вершина В находилась на линии в точке К. Используйте правило построения треугольника по трем сторонам. Отложите от точки К отрезок KL. Он должен быть равен отрезку ВС. Получите точку L.
  • Из точки K вычертите окружность радиусом равным отрезку ВА. Из L вычертите окружность радиусом СА. Полученную точку (Р) пересечения двух окружностей соедините с К. Получите треугольник КPL, который будет равен треугольнику ABC. Так вы получите угол К. Он и будет равен углу В. Чтобы это построение сделать удобнее и быстрее, от вершины В отложите равные отрезки, используя один раствор циркуля, не сдвигая ножек, опишите этим же радиусом из точки К окружность.