162774 0

Каждый атом обладает некоторым числом электронов.

Вступая в химические реакции, атомы отдают, приобретают, либо обобществляют электроны, достигая наиболее устойчивой электронной конфигурации. Наиболее устойчивой оказывается конфигурация с наиболее низкой энергией (как в атомах благородных газов). Эта закономерность называется "правилом октета" (рис. 1).

Рис. 1.

Это правило применимо ко всем типам связей . Электронные связи между атомами позволяют им формировать устойчивые структуры, от простейших кристаллов до сложных биомолекул, образующих, в конечном счете, живые системы. Они отличаются от кристаллов непрерывным обменом веществ. При этом многие химические реакции протекают по механизмам электронного переноса , которые играют важнейшую роль в энергетических процессах в организме.

Химическая связь - это сила, удерживающая вместе два или несколько атомов, ионов, молекул или любую их комбинацию .

Природа химической связи универсальна: это электростатическая сила притяжения между отрицательно заряженными электронами и положительно заряженными ядрами, определяемая конфигурацией электронов внешней оболочки атомов. Способность атома образовывать химические связи называется валентностью , или степенью окисления . С валентностью связано понятие о валентных электронах - электронах, образующих химические связи, то есть находящихся на наиболее высокоэнергетических орбиталях. Соответственно, внешнюю оболочку атома, содержащую эти орбитали, называют валентной оболочкой . В настоящее время недостаточно указать наличие химической связи, а необходимо уточнить ее тип: ионная, ковалентная, диполь-дипольная, металлическая.

Первый тип связи - ионная связь

В соответствии с электронной теорией валентности Льюиса и Косселя, атомы могут достичь устойчивой электронной конфигурации двумя способами: во-первых, теряя электроны, превращаясь в катионы , во-вторых, приобретая их, превращаясь в анионы . В результате электронного переноса благодаря электростатической силе притяжения между ионами с зарядами противоположного знака образуется химическая связь, названная Косселем «электровалентной » (теперь ее называют ионной ).

В этом случае анионы и катионы образуют устойчивую электронную конфигурацию с заполненной внешней электронной оболочкой. Типичные ионные связи образуются из катионов Т и II групп периодической системы и анионов неметаллических элементов VI и VII групп (16 и 17 подгрупп - соответственно, халькогенов и галогенов ). Связи у ионных соединений ненасыщенные и ненаправленные, поэтому возможность электростатического взаимодействия с другими ионами у них сохраняется. На рис. 2 и 3 показаны примеры ионных связей, соответствующих модели электронного переноса Косселя.

Рис. 2.

Рис. 3. Ионная связь в молекуле поваренной соли (NaCl)

Здесь уместно напомнить о некоторых свойствах, объясняющих поведение веществ в природе, в частности, рассмотреть представление о кислотах и основаниях .

Водные растворы всех этих веществ являются электролитами. Они по-разному изменяют окраску индикаторов . Механизм действия индикаторов был открыт Ф.В. Оствальдом. Он показал, что индикаторы представляют собой слабые кислоты или основания, окраска которых в недиссоциированном и диссоциированном состояниях различается.

Основания способны нейтрализовать кислоты. Не все основания растворимы в воде (например, нерастворимы некоторые органические соединения, не содержащие ‑ ОН-групп, в частности, триэтиламин N(С 2 Н 5) 3) ; растворимые основания называют щелочами .

Водные растворы кислот вступают в характерные реакции:

а) с оксидами металлов - с образованием соли и воды;

б) с металлами - с образованием соли и водорода;

в) с карбонатами - с образованием соли, СO 2 и Н 2 O .

Свойства кислот и оснований описывают несколько теорий. В соответствие с теорией С.А. Аррениуса, кислота представляет собой вещество, диссоциирующее с образованием ионов Н + , тогда как основание образует ионы ОН ‑ . Эта теория не учитывает существования органических оснований, не имеющих гидроксильных групп.

В соответствие с протонной теорией Бренстеда и Лоури, кислота представляет собой вещество, содержащее молекулы или ионы, отдающие протоны (доноры протонов), а основание - вещество, состоящее из молекул или ионов, принимающие протоны (акцепторы протонов). Отметим, что в водных растворах ионы водорода существуют в гидратированной форме, то есть в виде ионов гидроксония H 3 O + . Эта теория описывает реакции не только с водой и гидроксидными ионами, но и осуществляющиеся в отсутствие растворителя или с неводным растворителем.

Например, в реакции между аммиаком NH 3 (слабым основанием) и хлороводородом в газовой фазе образуется твердый хлорид аммония, причем в равновесной смеси двух веществ всегда присутствуют 4 частицы, две из которых - кислоты, а две другие - основания:

Эта равновесная смесь состоит из двух сопряженных пар кислот и оснований:

1) NH 4 + и NH 3

2) HCl и Сl

Здесь в каждой сопряженной паре кислота и основание различаются на один протон. Каждая кислота имеет сопряженное с ней основание. Сильной кислоте соответствует слабое сопряженное основание, а слабой кислоте - сильное сопряженное основание.

Теория Бренстеда-Лоури позволяет объяснить уникальность роли воды для жизнедеятельности биосферы. Вода, в зависимости от взаимодействующего с ней вещества, может проявлять свойства или кислоты, или основания. Например, в реакциях с водными растворами уксусной кислоты вода является основанием, а с водными растворами аммиака - кислотой.

1) СН 3 СООН + Н 2 O Н 3 O + + СН 3 СОО ‑ . Здесь молекула уксусной кислоты донирует протон молекуле воды;

2) NH 3 + Н 2 O NH 4 + + ОН ‑ . Здесь молекула аммиака акцептирует протон от молекулы воды.

Таким образом, вода может образовывать две сопряженные пары:

1) Н 2 O (кислота) и ОН ‑ (сопряженное основание)

2) Н 3 О + (кислота) и Н 2 O (сопряженное основание).

В первом случае вода донирует протон, а во втором - акцептирует его.

Такое свойство называется амфипротонностью . Вещества, способные вступать в реакции в качестве и кислот, и оснований, называются амфотерными . В живой природе такие вещества встречаются часто. Например, аминокислоты способны образовывать соли и с кислотами, и с основаниями. Поэтому пептиды легко образуют координационные соединения с присутствующими ионами металлов.

Таким образом, характерное свойство ионной связи - полное перемещение нары связывающих электронов к одному из ядер. Это означает, что между ионами существует область, где электронная плотность почти нулевая.

Второй тип связи - ковалентная связь

Атомы могут образовывать устойчивые электронные конфигурации путем обобществления электронов.

Такая связь образуется, когда пара электронов обобществляется по одному от каждого атома. В таком случае обобществленные электроны связи распределены между атомами поровну. Примерами ковалентной связи можно назвать гомоядерные двухатомные молекулы Н 2 , N 2 , F 2 . Этот же тип связи имеется у аллотропов O 2 и озона O 3 и у многоатомной молекулы S 8 , а также у гетероядерных молекул хлороводорода НСl , углекислого газа СO 2 , метана СH 4 , этанола С 2 Н 5 ОН , гексафторида серы SF 6 , ацетилена С 2 Н 2 . У всех этих молекул электроны одинаково общие, а их связи насыщенные и направлены одинаково (рис. 4).

Для биологов важно, что у двойной и тройной связей ковалентные радиусы атомов по сравнению с одинарной связью уменьшены.

Рис. 4. Ковалентная связь в молекуле Сl 2 .

Ионный и ковалентный типы связей - это два предельных случая множества существующих типов химических связей, причем на практике большинство связей промежуточные.

Соединения двух элементов, расположенных в противоположных концах одного или разных периодов системы Менделеева, преимущественно образуют ионные связи. По мере сближения элементов в пределах периода ионный характер их соединений уменьшается, а ковалентный - увеличивается. Например, галогениды и оксиды элементов левой части периодической таблицы образуют преимущественно ионные связи (NaCl, AgBr, BaSO 4 , CaCO 3 , KNO 3 , CaO, NaOH ), а такие же соединения элементов правой части таблицы - ковалентные (Н 2 O, СO 2 , NH 3 , NO 2 , СН 4 , фенол C 6 H 5 OH , глюкоза С 6 H 12 О 6 , этанол С 2 Н 5 ОН ).

Ковалентная связь, в свою очередь, имеет еще одну модификацию.

У многоатомных ионов и в сложных биологических молекулах оба электрона могут происходить только из одного атома. Он называется донором электронной пары. Атом, обобществляющий с донором эту пару электронов, называется акцептором электронной пары. Такая разновидность ковалентной связи названа координационной (донорно-акцепторной , или дативной ) связью (рис. 5). Этот тип связи наиболее важен для биологии и медицины, поскольку химия наиболее важных для метаболизма d-элементов в значительной степени описывается координационными связями.

Pиc. 5.

Как правило, в комплексном соединении атом металла выступает акцептором электронной пары; наоборот, при ионных и ковалентных связях атом металла является донором электрона.

Суть ковалентной связи и ее разновидности - координационной связи - можно прояснить с помощью еще одной теории кислот и оснований, предложенной ГН. Льюисом. Он несколько расширил смысловое понятие терминов «кислота» и «основание» по теории Бренстеда-Лоури. Теория Льюиса объясняет природу образования комплексных ионов и участие веществ в реакциях нуклеофильного замещения, то есть в образовании КС.

Согласно Льюису, кислота - это вещество, способное образовывать ковалентную связь путем акцептирования электронной пары от основания. Льюисовым основанием названо вещество, обладающее неподеленной электронной парой, которое, донируя электроны, образует ковалентную связь с Льюисовой кислотой.

То есть теория Льюиса расширяет круг кислотно-основных реакций также на реакции, в которых протоны не участвуют вовсе. Причем сам протон, по этой теории, также является кислотой, поскольку способен акцептировать электронную пару.

Следовательно, согласно этой теории, катионы являются Льюисовыми кислотами, а анионы - Льюисовыми основаниями. Примером могут служить следующие реакции:

Выше отмечено, что подразделение веществ на ионные и ковалентные относительное, поскольку полного перехода электрона от атомов металла к акцепторным атомам в ковалентных молекулах не происходит. В соединениях с ионной связью каждый ион находится в электрическом поле ионов противоположного знака, поэтому они взаимно поляризуются, а их оболочки деформируются.

Поляризуемость определяется электронной структурой, зарядом и размерами иона; у анионов она выше, чем у катионов. Наибольшая поляризуемость среди катионов - у катионов большего заряда и меньшего размера, например, у Hg 2+ , Cd 2+ , Pb 2+ , Аl 3+ , Тl 3+ . Сильным поляризующим действием обладает Н + . Поскольку влияние поляризации ионов двустороннее, она значительно изменяет свойства образуемых ими соединений.

Третий тип связи - диполь-дипольная связь

Кроме перечисленных типов связи, различают еще диполь-дипольные межмолекулярные взаимодействия, называемые также вандерваалъсовыми .

Сила этих взаимодействий зависит от природы молекул.

Выделяют взаимодействия трех типов: постоянный диполь - постоянный диполь (диполь-дипольное притяжение); постоянный диполь - индуцированный диполь (индукционное притяжение); мгновенный диполь - индуцированный диполь (дисперсионное притяжение, или лондоновские силы; рис. 6).

Рис. 6.

Диполь-дипольным моментом обладают только молекулы с полярными ковалентными связями (HCl, NH 3 , SO 2 , Н 2 O, C 6 H 5 Cl ), причем сила связи составляет 1-2 дебая (1Д = 3,338 × 10 ‑30 кулон-метра - Кл × м).

В биохимии выделяют еще один тип связи - водородную связь, являющуюся предельным случаем диполь-дипольного притяжения. Эта связь образована притяжением между атомом водорода и электроотрицательным атомом небольшого размера, чаще всего - кислородом, фтором и азотом. С крупными атомами, обладающими аналогичной электроотрицательностью (например, с хлором и серой), водородная связь оказывается значительно более слабой. Атом водорода отличается одной существенной особенностью: при оттягивании связывающих электронов его ядро - протон - оголяется и перестает экранироваться электронами.

Поэтому атом превращается в крупный диполь.

Водородная связь, в отличие от вандерваальсовой, образуется не только при межмолекулярных взаимодействиях, но и внутри одной молекулы - внутримолекулярная водородная связь. Водородные связи играют в биохимии важную роль, например, для стабилизации структуры белков в виде а-спирали, или для образования двойной спирали ДНК (рис. 7).

Рис.7.

Водородная и вандерваальсовая связи значительно слабее, чем ионная, ковалентная и координационная. Энергия межмолекулярных связей указана в табл. 1.

Таблица 1. Энергия межмолекулярных сил

Примечание : Степень межмолекулярных взаимодействий отражают показатели энтальпии плавления и испарения (кипения). Ионным соединениям требуется для разделения ионов значительно больше энергии, чем для разделения молекул. Энтальпии плавления ионных соединений значительно выше, чем молекулярных соединений.

Четвертый тип связи - металлическая связь

Наконец, имеется еще один тип межмолекулярных связей - металлический : связь положительных ионов решетки металлов со свободными электронами. В биологических объектах этот тип связи не встречается.

Из краткого обзора типов связей выясняется одна деталь: важным параметром атома или иона металла - донора электронов, а также атома - акцептоpa электронов является его размер .

Не вдаваясь в детали, отметим, что ковалентные радиусы атомов, ионные радиусы металлов и вандерваальсовы радиусы взаимодействующих молекул увеличиваются по мере возрастания их порядкового номера в группах периодической системы. При этом значения радиусов ионов - наименьшие, а вандерваальсовых радиусов - наибольшие. Как правило, при движении вниз по группе радиусы всех элементов увеличиваются, причем как ковалентные, так и вандерваальсовы.

Наибольшее значение для биологов и медиков имеют координационные (донорно-акцепторные ) связи, рассматриваемые координационной химией.

Медицинская бионеорганика. Г.К. Барашков

Природа химической связи. Квантово-механическая трактовка механизма образования химической связи.

Типы связей: ковалентная, ионная, координационная (донорно-акцепторная), металлическая, водородная.

Характеристики связи: энергия и длина связи, направленность, насыщенность, электрические дипольные моменты, эффективные заряды атомов, степень ионности.

Метод валентных связей (ВС). Сигма- и пи-связи. Типы гибридизации атомных орбиталей и геометрия молекул. Неподеленные электронные пары молекул.

Метод молекулярных орбиталей (МО) и особенности использованной в нем волновой функции. Связывающие и разрыхляющие молекулярные орбитали. Принципы заполнения их электронами, порядок и энергия связей. Связи в двухатомных гомоядерных молекулах.

Свойства химических связей в твердом состоянии вещества. Свойства ионных кристаллов. Металлическая связь и строение металлических кристаллов. Специфические свойства металлов. Молекулярные кристаллы и их свойства.

Применение теории химической связи в химии и биологии. Энергия ковалентных связей и энергетика химических реакций. Предсказание геометрии молекул. Гибкость биомолекул как результат свободного вращения вокруг s-связей. Взаимодействие биомолекул с водой как следствие образования водородных связей и взаимодействия диполей воды с атомами, имеющими значительные заряды.

Вариант 1

1. Какую связь называют ионной? Покажите механизм возникновения ионной связи на примере образования фторида калия. Можно ли говорить о молекуле CI для твердого состояния вещества?

2. В каких молекулах из перечисленных ниже имеется p-связь? CH 4 ; N 2 ; BeCl 2 ; CO 2 . Ответ подтвердите графическими формулами.

3. Каков механизм переменной валентности элементов? Почему сера проявляет переменную валентность, кислород всегда не более чем двухвалентен?

4. Обозначьте тип гибридизации орбиталей в молекулах CH 4 , MgCl 2 , BF 3 .

Вариант 2

1. В чем заключается особенность типично ковалентной связи? Покажите механизм возникновения этой связи в обобщенно-схематическом виде.

2. Из числа перечисленных ниже соединений выпишите двумя столбцами молекулы с одинарной и кратной связью. Те, в которых имеются π-связь, подчеркните.

C 2 H 4 , NH 3 , N 2 , CCl 4 , SO 2 , H 2 O.

3. Как влияет характер химической связи атомов на свойства веществ (способность к диссоциации, t и т. д.)?

4. Изобразите рисунком процесс Sp 2 -гибридизации. Приведите пример соответствующей молекулы и укажите ее геометрию.

Вариант 3

1. Как изменяется запас энергии молекул по сравнению с запасом энергии разрозненных атомов? Какая молекула прочнее: H 2 (E CB = 431,8 кДж) или N 2 (E CB = 945 кДж)?

2. Чем определяется величина ковалентности элемента? Приведите графические формулы молекул N 2 , NH 3 , NO и определите в каждой из них ковалентность азота.

3. Что называют гибридизацией орбиталей? Нарисуйте одну гибридную орбиталь и объясните, почему гибридные связи образуют более прочную связь, чем негибридные.

4. Дайте общую характеристику кристаллических веществ и назовите типы кристаллических решеток.

Вариант 4

1. Перечислите основные виды химических связей и приведите по одному примеру соответствующих этим видам связи химических соединений.

2. Изобразите рисунками два возможных способа перекрывания р-электронных облаков.

3. Что называют длиной диполя и дипольным моментом молекулы? От чего зависит величина дипольного момента?

4. Из перечисленных ниже молекул выпишите те, в которых имеются Sp-гибридные орбитали, и укажите их геометрию.

BeCl 2 , BCl 3 , H 2 O, C 2 H 2 .

Вариант 5

1. В чем особенность донорно-акцепторной связи? Покажите ее механизм в обобщенно-схематической форме и на примере.

2. От чего зависит величина ковалентности атома в молекуле? Имеет ли ковалентность знак? Определите ковалентность серы в молекуле H 2 S и ионе по их графическим формулам.

3. Сколько σ- и π-связей в молекуле N+, ионе ?

4. Почему молекула CaCl 2 (в парах) имеет линейную форму, молекула BCl 3 треугольную – плоскую, а молекула CCl 4 – тетраэдрическую?

Вариант 6

1. Какова физическая природа типично ковалентной связи в соответствии с представлениями волновой механики? Какими должны быть спины электронов взаимодействующих атомов, чтобы они могли вступить друг с другом в химическое взаимодействие?

2. Как современная теория химической связи объясняет переменную валентность элементов? Приведите пример.

3. Объясните с помощью графических формул? почему при наличии полярных связей в молекулах CO 2 и SO 2 одна из них неполярна, а другая полярна.

4. Выпишите химические соединения, в образовании которых участвуют Sp 2 -гибридные орбитали C 2 H 4 ; CH 4 ; BCl 3 ; C 2 H 2 .

Вариант 7

1. В каких случаях и как возникает водородная связь? Приведите примеры.

2. Выпишите те из приведенных ниже молекул, в которых имеется типично-ковалентная связь между атомами PCl 3 ; N 2 ; K 2 S; SO 3 . Приведите их графические формулы.

3. Каким принципам и правилам подчиняется заполнение и атомных, и молекулярных орбиталей? Как определяется число химических связей в молекуле по методу МО?

4. Какие из перечисленных молекул имеют угловую форму? CO 2 , SO 2 , H 2 O.

Вариант 8

1. В чем заключаются особенности металлической связи?

2. Сколько холостых электронов у атомов Al и Sе в основном состоянии? Какой процесс обусловливает возможность повышения ковалентности этих элементов до величины, соответствующей номеру их группы в системе Д. И. Менделеева?

3. В каких из приведенных молекул абсолютное значение, степени окисления и ковалентность подчеркнутых элементов не совпадают?

N 2 , H 2 , NH 3 , C 2 H 2 .

Ответ обоснуйте графическими формулами.

4. Изобразите схематически процесс Sp 3 -гибридизации орбиталей. Приведите примермолекулы, в которой осуществляется этот тип гибридизации.

Вариант 9

1. Для каких из перечисленных ниже молекул возможны межмолекулярные водородные связи и почему? СаН 2 , Н 2 О, HF 2 , CH 4 .

2. От чего зависит степень поляризации связи между атомами в молекуле и что является ее количественной характеристикой?

3. Сколько σ- и π-связей в молекуле СО 2 ? Какой здесь тип гибридизации орбиталей атома углерода?

4. Какие из перечисленных веществ имеют в твердом состоянии молекулярные, а какие – ионные кристаллические решетки?

NaJ, H 2 O, K 2 SO 4 , CO 2 , J 2 .

Вариант 10

1. Изобразите по методу валентных схем (ВС) строение молекул Н 2 , N 2 и NH 3 . Каков тип связи между атомами этих молекул? В какой из молекул имеются π-связи?

2. По типу химической связи определите, у какого из перечисленных ниже веществ а) наибольшая способность к диссоциации; б) самая низкая температура плавления; в) самая высокая температура кипения. HF; Cl 2 .

3. В чем заключается направленность ковалентной связи? Покажите на примере строения молекулы воды, как влияет направленность связи на геометрию молекулы.

4. В каких из перечисленных молекул углы связи между атомами равны 180°?. Какой тип гибридизации орбиталей это объясняет?

CH 4 , BF 3 , MgCl 2 , C 2 H 2 .

Вариант 11

1. Какие электроны: спаренные или холостые – определяют возможное число типично-ковалентных связей атома в данном энергетическом состоянии? В качестве примера рассмотрите атом серы.

2. Чем отличаются друг от друга σ- и π-связи? Могут ли гибридные орбитали образовывать π-связь? Сравните прочность π- и σ-связей.

3. Изобразите рисунком схему Sр-гибридизации орбиталей и выпишите те из приведенных молекул, в которых имеется этот тип гибридизации.

BeCl 2 , CH 4 , AlF 3 , C 2 H 2 .

4. Дайте общую характеристику особенностей аморфных тел.

Вариант 12

1. Чем отличаются ковалентно-неполярная и ковалентно-полярная связь? Объясните на примерах, в каких случаях они возникают.

2. Укажите типы связей в следующих соединениях и ионах:

CsF, 2+ , Cl 2 , SO 3 .

3. Сколько гибридных орбиталей образуется при Sр 3 -гибридизации? Какова геометрия молекулы СН 4 , в которой этот тип гибридизации осуществляется?

4. Какие известны типы межмолекулярных взаимодействий?

Вариант 13

1. По величинам электроотрицательности атомов серы, хлора и натрия определите, какие из них образуют друг с другом ионную, а какие – ковалентную связь.

2. Перечертите таблицу и заполните ее для подчеркнутых атомов.

3. Почему фосфор может образовывать соединения PCl 3 и PCl 5 , а азот – только NCl 3 ? К какому атому смещена во всех этих молекулах электронная пара?

4. Какие из перечисленных молекул имеют форму тетраэдра и почему?

Вариант 14

1. Чем определяется величина электровалентности элемента в ионных соединениях? Обозначьте электровалентность в соединениях K 2 S, MgCl 2 , AlCl 3 . Совпадает ли она со степенью окисления?

2. Чем отличается метод молекулярных орбиталей (МО) от метода валентных связей (ВС)? Приведите схемы образования молекулы водорода по методу ВС и методу МО.

3. Какие типы связей имеются в молекуле NH 4 Cl? Покажите их на электронной схеме строения молекулы.

4. Укажите типы гибридизации орбиталей и геометрию молекул BeF 2 , СH 4 , BCl 3 .

С 2s 2 2p 2 С +1е = С -

О 2s 2 2p 4 О -1е = О +

Возможно иное объяснение образования тройной связи в молекуле СО.

Невозбужденный атом углерода имеет 2 неспаренных электрона, которые могут образовать 2 общие электронные пары с 2-мя неспаренными электронами атома кислорода (по обменному механизму). Однако имеющиеся в атоме кислорода 2 спаренные р -электрона могут образовывать тройную химическую связь, поскольку в атоме углерода имеется одна незаполненная ячейка, которая может принять эту пару электронов.

Тройная связь образуется по донорно-акцепторному механизму, направление стрелки от донора кислорода к акцептору – углероду.

Подобно N 2 - СО обладает высокой энергией диссоциации (1069 кДж), плохо растворим в воде, инертен в химическом отношении. СО – газ без цвета и запаха, безразличный несолеобразующий, не взаимодействует с кислотными щелочами и водой при обычных условиях. Ядовит, т.к. взаимодействует с железом, входящим в состав гемоглобина. При повышении температуры или облучении проявляет свойства восстановителя.



Получение:

в промышленности

CO 2 + C « 2CO

2C + O 2 ® 2CO

в лаборатории: H 2 SO 4, t

HCOOH ® CO­ + H 2 O;

H 2 SO 4 t

H 2 C 2 O 4 ® CO­ + CO 2 ­ + H 2 O.

В реакции СО вступает лишь при высоких температурах.

Молекула СО имеет большое сродство к кислороду, горит образуя СО 2:

СО + 1/2О 2 = СО 2 + 282 кДж/моль.

Из-за большого сродства к кислороду СО используется как восстановитель оксидов многих тяжелых металлов (Fe, Co, Pb и др.).

СO + Cl 2 = COCl 2 (фосген)

CO + NH 3 ® HCN + H 2 O H – C º N

CO + H 2 O « CO 2 + H 2

CO + S ® COS

Наибольший интерес представляют карбонилы металлов (используются для получения чистых металлов). Химическая связь по донорно-акцепторному механизму, имеет место p-перекрывание по дативному механихму.

5CO + Fe ® (пентакарбонил железа)

Все карбонилы – диамагнитные вещества, характеризуются невысокой прочностью, при нагревании карбонилы разлагаются

→ 4CO + Ni (карбонил никеля).

Как и СО карбонилы металлов – токсичны.

Химическая связь в молекуле СО 2

В молекуле СО 2 sp- гибридизация атома углерода. Две sp-гибридные орбитали образуют 2 s-связи с атомами кислорода, а оставшиеся негибридизованными р-орбитали углерода дают с двумя р-орбиталями атомов кислорода p-связи, которые располагаются в плоскостях перпендикулярных друг другу.

О ═ С ═ О

Под давлением 60 атм. и комнатной температуре СО 2 сгущается в бесцветную жидкость. При сильном охлаждении жидкая СО 2 застывает в белую снегоподобную массу, возгоняющуюся при Р = 1 атм и t = 195К(-78°). Спрессованная твердая масса называется сухим льдом, СО 2 не поддерживает горения. В нем горят лишь вещества, у которых сродство к кислороду выше чем у углерода: например,

2Mg + CO 2 ® 2MgO + C.

СО 2 реагирует с NH 3:

CO 2 + 2NH 3 = CO(NH 2) 2 + H 2 O

(карбамид, мочевина)

2СО 2 + 2Na 2 O 2 ® 2Na 2 CO 3 +O 2

Мочевина разлагается водой:

CO(NH 2) 2 + 2H 2 O ® (NH 4) 2 CO 3 → 2NH 3 + СО 2

Целлюлоза – углевод, который состоит из остатков b-глюкозы. Она синтезируется в растениях по следующей схеме

хлорофилл

6CO 2 + 6H 2 O ® C 6 H 12 O 6 + 6O 2 ­фотосинтез глюкозы

СО 2 получают в технике:

2NaHCO 3 ® Na 2 CO 3 + H 2 O + CO 2

из кокса C + O 2 ® CO 2

В лаборатории (в аппарате Киппа):

.

Угольная кислота и ее соли

Растворяясь в воде, углекислый газ частично взаимодействует с ней, образуя угольную кислоту H 2 CO 3 ; при этом устанавливаются равновесия:

К 1 = 4×10 -7 К 2 = 4,8×10 -11 – слабая, неустойчивая, кислородсодержащая, двухосновная кислота. Гидрокарбонаты растворимы в Н 2 О. Карбонаты нерастворимы в воде, кроме карбонатов щелочных металлов, Li 2 CO 3 и (NH 4) 2 CO 3 . Кислые соли угольной кислоты получают, пропуская избыток СО 2 в водный раствор карбоната:

либо постепенным (по каплям) добавлением сильной кислоты в избыток водного раствора карбоната:

Na 2 CO 3 + HNO 3 ® NaHCO 3 + NaNO 3

При взаимодействии со щелочами или нагревании (прокаливании) кислые соли переходят в средние:

Соли гидролизуются по уравнению:

I ступень

Из-за полного гидролиза из водных растворов нельзя выделить карбонаты Gr 3+ , Al 3+ , Ti 4+ , Zr 4+ и др.

Практическое значение имеют соли - Na 2 CO 3 (сода), CaCO 3 (мел, мрамор, известняк), K 2 CO 3 (поташ), NaHCO 3 (питьевая сода), Са(НСО 3) 2 и Mg(HCO 3) 2 обусловливают карбонатную жесткость воды.

Сероуглерод (CS 2)

При нагревании (750-1000°С) углерод реагирует с серой, образуясероуглерод, органический растворитель (бесцветная летучая жидкость, реакционноспособное вещество), огнеопасен и летуч.

Пары CS 2 – ядовиты, применяется для фумигации (окуривания) зернохранилищ против насекомых - вредителей, в ветеринарии служит для лечения аскаридоза лошадей. В технике – растворитель смол, жиров, йода.

С сульфидами металлов CS 2 образует соли тиоугольной кислоты – тиокарбонаты.

Эта реакция аналогична процессу

Тиокарбонаты – желтые кристаллические вещества. При действии на них кислот выделяется свободная тиоугольная кислота.

Она более стабильна чем Н 2 СО 3 и при низкой температуре выделяется из раствора в виде желтой маслянистой жидкости, легко разлагающейся на:

Соединения углерода с азотом (СN) 2 или С 2 N 2 – дициан, легко воспламеняющийся бесцветный газ. Чистый сухой дициан получают путем нагревания сулемы с цианидом ртути (II).

HgCl 2 + Hg(CN) 2 ® Hg 2 Cl 2 + (С N) 2

Другие способы получения:

4HCN г + О 2 2(CN) 2 +2H 2 O

2HCN г + Сl 2 (CN) 2 + 2HCl

Дициан по свойствам похож на галогены в молекулярной форме X 2 . Так в щелочной среде он, подобно галогенам, диспропорционирует:

(С N) 2 + 2NaOH = NaCN + NaOCN

Циановодород - НСN (), ковалентное соединение, газ, растворяющийся в воде с образованием синильной кислоты (бесцветная жидкость и ее соли чрезвычайно ядовиты). Получают:

Циановодород получают в промышленности по каталитическим реакциям.

2CH 4 + 3O 2 + 2NH 3 ® 2HCN + 6H 2 O.

Соли синильной кислоты – цианиды, подвержены сильному гидролизу. CN - - ион изоэлектронный молекуле СО, входит как лиганд в большое число комплексов d-элементов.

Обращение с цианидами требует строгого соблюдения мер предосторожности. В сельском хозяйстве применяют для борьбы с особо опасными насекомыми – вредителями.

Цианиды получают:

Соединения углерода с отрицательной степенью окисления :

1) ковалентные (SiC карборунд) ;

2) ионноковалентные;

3) металлические карбиды.

Ионноковалентные разлагаются водой с выделением газа, в зависимости от того какой выделяется газ, их делят на:

метаниды (выделяется СН 4)

Al 4 C 3 + 12H 2 O ® 4Al(OH) 3 + 3CH 4

ацетилениды (выделяется С 2 Н 2)

H 2 C 2 + AgNO 3 ® Ag 2 C 2 + HNO 3

Металлические карбиды – соединения стехиометрического состава образованные элементами 4, 7, 8 групп посредством внедрения атомов Ме в кристаллическую решетку углерода.

Химия кремния

Отличие химии кремния от углерода обусловлено большими размерами его атома и возможностью использования 3d-орбиталей. Из-за этого связи Si – O - Si, Si - F более прочны, чем у углерода.

Для кремния известны оксиды состава SiO и SiO 2 .Монооксид кремния существует только в газовой фазе при высоких температурах в инертной атмосфере; он легко окисляется кислородом с образованием более стабильного оксида SiO 2 .

2SiO + О 2 t ® 2SiO 2

SiO 2 – кремнезем, имеет несколько кристаллических модификаций. Низкотемпературная – кварц, обладает пьезоэлектрическими свойствами. Природные разновидности кварца: горный хрусталь, топаз, аметист. Разновидности кремнезема – халцедон, опал, агат, песок.

Известно большое разнообразие силикатов (точнее оксосиликатов). В строении их общая закономерность: все состоят из тетраэдров SiO 4 4- которые через атом кислорода соединены друг с другом.

Сочетания тетраэдров могут соединяться в цепочки, ленты, сетки и каркасы.

Важные природные силикаты 3MgO×H 2 O×4SiO 2 тальк, 3MgO×2H 2 O×2SiO 2 асбест.

Как и для SiO 2 для силикатов характерно (аморфное) стеклообразное состояние. При управляемой кристаллизации можно получить мелкокристаллическое состояние – ситаллы – материалы повышенной прочности. В природе распространены алюмосиликаты – каркасные ортосиликаты, часть атомов Si заменены на Al, например Na 12 [(Si,Al)O 4 ] 12 .

Наиболее прочный галогенид SiF 4 разлагается только под действием электрического разряда.

Гексафторокремниевая кислота (по силе близка к H 2 SO 4).

(SiS 2) n – полимерное вещество, разлагается водой:

Кремниевые кислоты.

Соответствующие SiO 2 кремниевые кислоты не имеют определенного состава, обычно их записывают в виде xH 2 O ySiO 2 – полимерные соединения

Известны:

H 2 SiO 3 (H 2 O×SiO 2) – метакремниевая (не существует реально)

H 4 SiO 4 (2H 2 O×SiO 2) – ортокремниевая (простейшая реально существующая только в растворе)

H 2 Si 2 O 5 (H 2 O×2SiO 2) – диметакремниевая.

Кремниевые кислоты – плохо растворимые вещества, для H 4 SiO 4 характерно коллоидное состояние, как кислота слабее угольной (Si менее металличен, чем С).

В водных растворах идет конденсация ортокремневой кислоты, в результате образуются поликремниевые кислоты.

Силикаты – соли кремневых кислот, в воде нерастворимы, кроме силикатов щелочных металлов.

Растворимые силикаты гидролизуются по уравнению

Желеобразные растворы натриевых солей поликремневых кислот называются «жидким стеклом». Широко применяются как силикатный клей и в качестве консерванта древесины.

Сплавлением Na 2 CO 3 , CaCO 3 и SiO 2 получают стекло, которое является переохлажденным взаимным раствором солей поликремниевых кислот.

6SiO 2 + Na 2 CO 3 + CaCO 3 ® Na 2 O × CaO × 6SiO 2 + 2CO 2 Силикат записан как смешанный оксид.

Силикаты больше всего используются в строительстве. 1 место в мире по выпуску силикатной продукции – цемент, 2-е – кирпич, 3 – стекло.

Строительная керамика – облицовочная плитка, керамические трубы. Для изготовления санитарно-технических изделий – стекло, фарфор, фаянс, глиняная керамика.

Для σ-связей характерно такое расположение перекрывающихся электронных облаков, при котором ось облака совпадает с линией, соединяющей центры атомов.

Пусть имеется молекула CR 4 ; причем все связи в ней строго ковалентны; введем в эту молекулу заместитель X так, чтобы получилось соединение CR 3 X. Теперь электронная плотность распределена уже иначе: атом углерода или приобрел, или потерял часть заряда электронного облака - стал или положительным, или отрицательным по сравнению с его состоянием в исходной молекуле. Соответственно и атом заместителя также получил какой-то заряд. Условились обозначать этот эффект термином «индуктивность», а знак индуктивности принимать таким, чтобы он совпадал со знаком заряда, возникшего на атоме заместителя.

Индуктивный эффект положителен (+I), если

Индуктивный эффект отрицателен (-I), если

где δ - избыточный заряд на каждом из атомов. Стрелка показывает направления смещения электронной плотности. Индуктивный эффект не ограничивается одной связью; он распространяется по связям, быстро ослабевая. Индуктивный эффект растет с увеличением заряда, создаваемого заместителем. Энергичное притяжение электронов, характерное для металлоидных атомов, выражается в сильном отрицательном индуктивном эффекте (-I-эффект); наоборот, отрицательный ион кислорода склонен отдавать электроны и проявляет положительный (+I-эффект). Ненасыщенные связи С-С характеризуются отрицательным эффектом, т, е. они притягивают «на связь» электроны; радикалы метил- и н-алкилы обнаруживают положительный эффект.

Индуктивные эффекты вызывают смещение плотности σ-электронов и позволяют в общих чертах предвидеть, где именно в данной молекуле можно ожидать сосредоточивание отрицательных, а где положительных зарядов. Электронный «остов» молекулы не абсолютно жесткий, и, хотя σ-связи под влиянием различных соседних групп более или менее поляризованы, приближение к данной связи какого-либо постороннего иона или действие внешнего поля могут усилить или ослабить поляризацию. Этот дополнительный эффект называют динамическим эффектом; он, в частности, проявляется в особенно легкой деформируемости связей углерод - иод по сравнению с деформируемостью связей углерод - фтор или хлор.

.Сравнительная характеристика ММО и МВС

Оба квантовомеханических подхода к описанию химической связи √ ММО и МВС √ приближенны, ММО придает преувеличенное значение делокализации электрона в молекуле и основывается на одноэлектронных волновых функциях √ молекулярных орбиталях. МВС преувеличивает роль локализации электронной плотности и основывается на том, что элементарная связь осуществляется только парой электронов между двумя атомами.

Сравнивая МВС м ММО, следует отметить, что достоинством первого является его наглядность: насыщаемость связи объясняется как максимальная ковалентность, направленность вытекает из направленности атомных и гибридных орбиталей; дипольный момент молекулы складывается из дипольных моментов связей, разности ОЭО атомов, образующих молекулу, и наличия неподеленных электронных пар.

Однако существование некоторых соединений невозможно объяснить с позиций МВС. Это электронодефицитные соединения (B 2 H 6 , NO,) и соединения благородных газов. Их строение легко объясняет ММО. Устойчивость молекулярных ионов и атомов в сравнении с молекулами легко предсказывается с позиции ММО. И, наконец, магнетизм и окраска вещества также легко объясняются ММО.

Количественные расчеты в ММО, несмотря на свою громоздкость, все же гораздо проще, чем в МВС. Поэтому в настоящее время в квантовой химии МВС почти не применяется. В то же время качественно выводы МВС гораздо нагляднее и шире используются экспериментаторами, чем ММО. Основанием для этого служит тот факт, что реально в молекуле вероятность пребывания данного электрона между связанными атомами гораздо больше, чем на других атомах, хотя и там она не равна нулю. В конечном счете, выбор метода определяется объектом исследования и поставленной задачей.

26. Ковалентная связь (атомная связь, гомеополярная связь) - химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой .

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Образование связи

Простая ковалентная связь образуется из двух неспаренных валентных электронов, на один от каждого атома:

A· + ·В → А: В

В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).

Заполнение электронами атомных (по краям) и молекулярных (в центре) орбиталей в молекуле H 2 . Вертикальная ось соответствует энергетическому уровню, электроны обозначены стрелками, отражающими их спины.

Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО . Обобществленные электроны располагаются на более низкой по энергии связывающей МО.

]Виды ковалентной связи

Существуют три вида ковалентной химической связи, отличающихся механизмом образования:

1. Простая ковалентная связь . Для ее образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.

§ Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называетсянеполярной ковалентной связью . Такую связь имеют простые вещества, например: О 2 , N 2 , Cl 2 . Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например в молекуле PH 3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.

§ Если атомы различны, то степень владения обобществленной парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различныминеметаллами, то такое соединение называется ковалентной полярной связью .

2. Донорно-акцепторная связь . Для образования этого вида ковалентной связи оба электрона предоставляет один из атомов - донор . Второй из атомов, участвующий в образовании связи, называется акцептором . В образовавшейся молекуле формальный заряд донора увеличивается на единицу, а формальный заряд акцептора уменьшается на единицу.

3. Семиполярная связь .Её можно рассматривать как полярную донорно-акцепторную связь. Этот вид ковалентной связи образуется между атомом, обладающим неподелённой парой электронов (азот, фосфор, сера, галогены и т. п.) и атомом с двумя неспаренными электронами (кислород, сера). Образование семиполярной связи протекает в два этапа:

1. Перенос одного электрона от атома с неподелённой парой электронов к атому с двумя неспаренными электронами. В результате атом с неподелённой парой электронов превращается в катион-радикал (положительно заряженная частица с неспаренным электроном), а атом с двумя неспаренными электронами - в анион-радикал (отрицательно заряженная частица с неспаренным электроном).

2. Обобществление неспаренных электронов (как в случае простой ковалентной связи).

При образовании семиполярной связи атом с неподелённой парой электронов увеличивает свой формальный заряд на единицу, а атом с двумя неспаренными электронами понижает свой формальный заряд на единицу.

]σ-связь и π-связь

Сигма (σ)-, пи ()-связи - приближенное описание видов ковалентных связей в молекулах различных соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании -связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен, ацетилен и бензол.

В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвертого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют -связью.

В линейной молекуле ацетилена

Н-С≡С-Н (Н: С::: С: Н)

имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две -связи между этими же атомами углерода. Две -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

Все шесть атомов углерода циклической молекулы бензола С 6 H 6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвертых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные -связи, а единая -электронная система из шести электронов, общая для всех атомов углерода. Связи между атомами углерода в молекуле бензола совершенно одинаковые.

\]Примеры веществ с ковалентной связью

Простой ковалентной связью соединены атомы в молекулах простых газов (Н 2 , Cl 2 и др.) и соединений (Н 2 О, NH 3 , CH 4 , СО 2 , HCl и др.). Соединения с донорно-акцепторной связью - аммония NH 4 + , тетрафторборат анион BF 4 − и др. Соединения с семиполярной связью - закись азота N 2 O, O − -PCl 3 + .

Кристаллы с ковалентной связью диэлектрики или полупроводники. Типичными примерами атомных кристаллов (атомы в которых соединены между собой ковалентными (атомными) связями могут служить алмаз, германий и кремний.

Единственным известным человеку веществом с примером ковалентной связи между металлом и углеродом является цианокобаламин, известный как витамин B12.