Сейчас всё более популярным делается небольшая самодвижущаяся платформа с двумя колёсами, так называемый Сигвей, который изобрёл Дин Камен. Замечая трудности, с которыми сталкивается человек в коляске при восхождении на тротуар, он увидел возможность создать транспортное средство, которое может помочь людям передвигаться без особых усилий. Камен применил на практике свою идею о создании самобалансирующейся платформы. Первая модель была испытана в 2001 году и это было средство передвижения с кнопками на ручке. Она была разработана для людей с ограниченными возможностями и позволяла им самостоятельно передвигаться даже по пересеченной местности. Новая модель стала известна как “Сигвей РТ”, и уже позволяла рулить, наклоняя влево или вправо рычаг. В 2004 году она начала продаваться в Европе и Азии. Цена самых продвинутых современных моделей, например Segway PTi2 - около 5000 долларов. В последнее время китайские и японские компании создают устройства с различными модификациями и новаторской конструкцией. Некоторые даже делают подобные транспортные средства только с одним колесом, но давайте рассмотрим классический Сигвей.


Segway состоит из платформы и двух колес, размещенных поперечно с приводом от двух электромоторов. Сама система стабилизируется сложной электронной схемой, которая управляет двигателями, принимая во внимание не только наклоны водителя, но и состояние транспортного средства, что позволяет ему всегда оставаться в вертикальном стабильном положении. Водитель, стоя на платформе, контролирует скорость просто перемещая ручку вперед или назад, при наклоне вправо или влево - поворот. Плата управления отслеживает сигналы соответствующих датчиков движения и ориентирования (похожие на те, которые позволяют смартфонам менять ориентацию экрана), чтобы помочь бортовому микропроцессору точно ориентировать платформу. Главный секрет segway не столько в электро-механической части, сколько в коде, который учитывает физику движения со значительной математической точностью обработки данных и предсказания поведения.

Сигвей оснащен двумя бесщеточными электромоторами, сделанных с применением сплава неодим-железо-бора, способными развивать мощность до 2 кВт, благодаря литий-полимерному аккумулятору.

Детали для Сигвея

Для создания Сигвея нужно два мотора-редуктора с колесами, аккумулятор, электронная схема, платформа и руль.

Мощность двигателя недорогих моделей примерно 250W, что обеспечивает скорость до 15 км/ч, с относительно низким потреблением тока. Напрямую крутить колеса не могут, потому что высокое число оборотов этих моторов не позволяют получить нужную тягу. Аналогично тому, что происходит, когда вы используете передач вашего велосипеда: за счет увеличения передаточного отношения потеряется скорость, но увеличится усилие, прикладываемое к педали.

Платформа расположена ниже оси моторов. Батарея, вес которой достаточно высок, также находятся под подножкой в симметричном положении, что гарантирует даже без водителя на борту Сигвей остается в вертикальном положении. Кроме того, внутренняя механическая стабильность поможет узлу электронной стабилизации, которая полностью активна, когда водитель присутствует. Присутствие человека на платформе поднимает центр тяжести выше оси колеса, что делает систему нестабильной - это уже будет компенсировать плате электроники.

В принципе, такую вещь можно сделать и самому, купив нужный блок электроники на китайском сайте (они есть в продаже). Монтаж всех частей осуществляется винтами и гайками (не шурупы). Особое внимание должно быть уделено надлежащему натяжению цепи. Крепление батарей осуществляется через U-образные хомуты с небольшими резиновыми прокладками, чтобы обеспечить нужное давление. Рекомендуется добавлять двухсторонний скотч между батареей и платформой, так чтоб не было проскальзывания. Контрольная панель должна быть вставлена между двумя батареями и крепится специальными распорками.

Рычаг управления может быть, а может и нет - ведь сейчас популярны модели сигвеев и без него (минисигвей). В общем вещь интересная и не очень дорогая, так как по информации от знакомых - закупочная оптовая цена в Китае всего 100 долларов.

Китайский сигвей – фото внешнего вида

До недавнего времени я вообще не знал, как называется “ну, такая каталка на двух колёсах, ехать стоя”. Недавно узнал, что этот электросамокат на двух колесах называется Сегвей или Сигвей , по-английски – Segway . Кто до сих пор не понял, о чем речь – фото слева.

Подробнее об этом замечательном двухколесном самокате можно узнать в википедии или на сайтах продавцов, я же опишу его коротко, и перейду к главному – устройству и ремонту сигвея. Будет много фото, а также подробное описание электрической схемы сигвея.

Это замечательное устройство позволяет человеку легко передвигаться на двух колёсах. При этом в систему управления сигвеем входит система балансировки, практически исключающая возможность падения.

Слово “практически” меня всегда настораживает. Так и в этот раз.

Но обо всём по порядку.

Поломка сигвея

Моя история началась как раз с того, что человек на сигвее упал. Ехал на приличной скорости, и – носом в асфальт!

Я начал разбираться, в чём дело. Оказалось, что при повороте ключа зажигания из этого ключа шли искры, и колеса при этом были заторможены. Ошибок на дисплее не было, но это только потому, что аппарат фактически не мог включиться – искрение в контактах замка привело к тому, что контакты покрылись нагаром, и ток от батареи не поступал на схему.

Странно, что контакты не пригорели и не слиплись намертво, впрочем, тогда бы выгорела проводка, т.к. при токе около 100 Ампер предусмотрено не было, а штатные предохранители остались целы.

Да, стоит сказать, что этот сигвей был дешевой подделкой, и куплен дней за десять до поломки. Всё было написано по китайски (насколько я разбираюсь в китайском), кроме “Warning!” Впрочем, о качестве сборки можно будет судить по фото.

Причина поломки – сгорели силовые транзисторы, через которые питались двигатели. Но об этом подробнее чуть позже.

Устройство сигвея. Разборка

Что мне конкретно понравилось – это колёса с солидными протекторами. То есть, предполагается, что этот самокат может использоваться в тяжелых условиях.

Однако, платы вообще не защищены от воздействия влаги, нет даже никакого лака. И вообще никаких резиновых прокладок от влаги не предусмотрено…

Руль прикручивается, его можно открутить при транспортировке:

Крепление руля. Вид спереди.

А вот вид сзади:

Предохранители и разъем зарядки

Видно два предохранителя по 50 А (схема сигвея будет чуть ниже), разъем заряда аккумулятора, над всем этим – “фары” в виде светодиодов на 12 В.

Верхняя панель. На ней – основные органы управления и индикации:

Верхняя панель сигвея

Вверху – дисплей, который показывает заряд батареи, ниже – предупреждения, которые необходимо внимательно прочитать, прежде чем становиться за руль. Если что непонятно – позвонить по телефону)

Три светодиода индицируют состояние сегвея: 1 – поворот влево, 2 – поворот вправо, 3 – горизонтальное положение (положение, в котором человек может становиться и начинать движение)

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Снимаем колёса.

Снято колесо

Сигвей со снятыми колесами

Снимаем переднюю панель.

Снимаем верхнюю крышку

Выглядит весьма непрезентабельно, но это только начало.

Передняя панель сзади. Провода откинуты. Замок снят.

К рулевой колонке рулю, который поворачивается только вправо и влево, приделан переменный резистор, распознающий наклон руля, и дающий сигнал контроллеру на поворот.

Переменный резистор наклона руля

Сопротивление – 10 кОм, линейная характеристика.

Так и хочется сказать – “потроха”

Как я уже говорил, качество сборки отвратительное. Хотя, по механике особых претензий нет.

Электронная начинка сигвея

Теперь подробнее рассмотрим электронику сигвея.

Вот фото подключения платы управления.

Устройство крупнее и подключение платы

Силовые транзисторы – IRF4110:

Силовые транзисторы платы управления

Именно парочка этих транзисторов и сгорела. При этом эта пара замкнула на себя питание аккумулятора, образовав КЗ.

Электронная схема сигвея – общий вид

Рассмотрим элементы схемы подробнее.

Электронная схема сигвея – общий вид – другой ракурс

Схема в общем не большая, разобьем её на несколько частей – приемник, контроллер, электронный гироскоп, драйвера транзисторов, силовые транзисторы, блок питания.

Микросхемки IC3, IC4 – это радиоканал, который позволяет управлять сигвеем с пульта. То есть, настраивать его, калибровать, блокировать, диагностировать.

Микросхема IC2 – контроллер ATMEGA 32A. Это сердце сигвея, точнее, мозг. Тут заложено самое главное – программа, алгоритм работы. Именно эта программа управляет вращением колёс и не дает человеку упасть.

Если контроллер – мозг, то гироскоп – это органы чувств. Гироскоп – это маленькая микросхемка INVENSENCE MPU6050. Это замечательное устройство представляет собой трехканальный измеритель положения в пространстве (наклон по трем осям) и трехканальный измеритель ускорения. Если кто помнит из физики, ускорение – это скорость изменения скорости. Честно, не понимаю, как в этот чип можно впихнуть такие измерители. Я до сих пор знал электромеханические гироскопы, а акселерометры знал только электронные. Теперь узнал, что бывают и такие, и используются очень широко, в основном в мобильной и автомобильной электронике.

На последнем фото также видно две микросхемы буферов CD4001 (это 2И-НЕ). Это для развязки контроллера и остальной схемы. Далее сигнал управления поступает на драйвера IR2184S, которые подают напряжения на затворы силовых полевиков, фото которых я давал выше.

Блок питания XL7015 – преобразователь DC-DC, из плавающего постоянного напряжения около 48В он путем преобразований на частоте несколько килогерц выдает стабильное постоянное напряжение 15В. Далее – обычная КРЕНка 7805 выдает 5 Вольт. Желтая топорная перемычка была, я тут ни при чём. А вот сгоревшая дорожка вверху справа – это путь питания 0В на управление, её пришлось восстанавливать.

Слаботочные элементы схемы сигвея соединяются через кросс-плату:

На эту плату приходят сигналы: от потенциометра руля, от кнопок наличия человека, к светодиодам панели управления. И уходят провода на главную плату.

Вот двигателя с редукторами, на оси которых непосредственно насаживаются колёса. Добротно сделано, только никаких опознавательных знаков:

Двигатель колеса с редуктором

Аккумулятор тоже не содержит никаких надписей:

Аккумулятор 48В

Входят два провода для зарядки (потоньше) и два выходных провода.

Видите искореженные места? Аккумулятор вообще никак не закреплен, болтается в сигвее, и бьётся об острые края ребер жесткости.

В общем, сделано на … короче, плохо сделано, и так или иначе скорая поломка сигвея была неизбежной.

Ещё примочка – преобразователь, также валялся на дне, замотан в плёнку. Поскольку светодиоды габаритных огней рассчитаны на напряжение 12 В, а аккумулятор – на 48 В, то используется преобразователь постоянного напряжения DC-DC 48-12 В:

Схема сибвея

Ремонт segway

Ремонт сибвея свелся к замене силовых транзисторов, их драйвера, и резисторов обвязки. Также восстановлена перегоревшая дорожка, замок с ключом заменен на обычные тумблеры, и в схему включен защитный автомат на 63 А. Надеюсь, в случае чего, он спасет схему от выгорания.

Только в этом случае опять пострадает и чей-то нос.

Так что прогноз пессимистичный, покупайте только качественные вещи, особенно, если речь идёт о безопасности! Теперь понятно, почему на всех фото ездок на сигвее с надетым шлемом…

Езда на Segway

Езда на подобном оригинальном внедорожном сигвее (в спокойном режиме) показана на видео:

Также в видео подробно рассказано про технические характеристики этого замечательного устройства.

Давайте поговорим о том как можно использовать Ардуино для создания робота, который балансирует как Сигвей.

Сигвей от англ. Segway – двухколесное средство передвижения стоя, оснащенное электроприводом. Еще их называют гироскутерами или электрическими самокатами.

Вы когда-нибудь задумывались, как работает Сигвей? В этом уроке мы постараемся показать вам, как сделать робота Ардуино, который уравновешивает себя точно так же, как Segway.

Чтобы сбалансировать робота, двигатели должны противодействовать падению робота. Это действие требует обратной связи и корректирующих элементов. Элемент обратной связи - , который обеспечивает как ускорение, так и вращение во всех трех осях (). Ардуино использует это, чтобы знать текущую ориентацию робота. Корректирующим элементом является комбинация двигателя и колеса.

В итоге должен получиться примерно такой друг:

Схема робота

Модуль драйвера двигателя L298N:

Мотор редуктора постоянного тока с колесом:

Самобалансирующийся робот по существу является перевернутым маятником. Он может быть лучше сбалансирован, если центр массы выше относительно колесных осей. Высший центр масс означает более высокий момент инерции массы, что соответствует более низкому угловому ускорению (более медленное падение). Вот почему мы положили батарейный блок на верх. Однако высота робота была выбрана исходя из наличия материалов 🙂

Завершенный вариант самостоятельно балансирующего робота можно посмотреть на рисунке выше. В верхней части находятся шесть Ni-Cd-батарей для питания печатной платы. В промежутках между моторами используется 9-вольтовая батарея для драйвера двигателя.

Теория

В теории управления, удерживая некоторую переменную (в данном случае позицию робота), требуется специальный контроллер, называемый ПИД (пропорциональная интегральная производная). Каждый из этих параметров имеет «прирост», обычно называемый Kp, Ki и Kd. PID обеспечивает коррекцию между желаемым значением (или входом) и фактическим значением (или выходом). Разница между входом и выходом называется «ошибкой».

ПИД-регулятор уменьшает погрешность до наименьшего возможного значения, постоянно регулируя выход. В нашем самобалансирующем роботе Arduino вход (который является желаемым наклоном в градусах) устанавливается программным обеспечением. MPU6050 считывает текущий наклон робота и подает его на алгоритм PID, который выполняет вычисления для управления двигателем и удерживает робота в вертикальном положении.

PID требует, чтобы значения Kp, Ki и Kd были настроены на оптимальные значения. Инженеры используют программное обеспечение, такое как MATLAB, для автоматического вычисления этих значений. К сожалению, мы не можем использовать MATLAB в нашем случае, потому что это еще больше усложнит проект. Вместо этого мы будем настраивать значения PID. Вот как это сделать:

  1. Сделайте Kp, Ki и Kd равными нулю.
  2. Отрегулируйте Kp. Слишком маленький Kp заставит робота упасть, потому что исправления недостаточно. Слишком много Kp заставляет робота идти дико вперед и назад. Хороший Kp сделает так, что робот будет совсем немного отклоняться назад и вперед (или немного осциллирует).
  3. Как только Kp установлен, отрегулируйте Kd. Хорошее значение Kd уменьшит колебания, пока робот не станет почти устойчивым. Кроме того, правильное Kd будет удерживать робота, даже если его толькать.
  4. Наконец, установите Ki. При включении робот будет колебаться, даже если Kp и Kd установлены, но будет стабилизироваться во времени. Правильное значение Ki сократит время, необходимое для стабилизации робота.

Поведение робота можно посмотреть ниже на видео:

Код Ардуино самобалансирующего робота

Нам понадобилось четыре внешних библиотеки, для создания нашего робота. Библиотека PID упрощает вычисление значений P, I и D. Библиотека LMotorController используется для управления двумя двигателями с модулем L298N. Библиотека I2Cdev и библиотека MPU6050_6_Axis_MotionApps20 предназначены для чтения данных с MPU6050. Вы можете загрузить код, включая библиотеки в этом репозитории .

#include #include #include "I2Cdev.h" #include "MPU6050_6Axis_MotionApps20.h" #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE #include "Wire.h" #endif #define MIN_ABS_SPEED 20 MPU6050 mpu; // MPU control/status vars bool dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer; // FIFO storage buffer // orientation/motion vars Quaternion q; // quaternion container VectorFloat gravity; // gravity vector float ypr; // yaw/pitch/roll container and gravity vector //PID double originalSetpoint = 173; double setpoint = originalSetpoint; double movingAngleOffset = 0.1; double input, output; //adjust these values to fit your own design double Kp = 50; double Kd = 1.4; double Ki = 60; PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT); double motorSpeedFactorLeft = 0.6; double motorSpeedFactorRight = 0.5; //MOTOR CONTROLLER int ENA = 5; int IN1 = 6; int IN2 = 7; int IN3 = 8; int IN4 = 9; int ENB = 10; LMotorController motorController(ENA, IN1, IN2, ENB, IN3, IN4, motorSpeedFactorLeft, motorSpeedFactorRight); volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high void dmpDataReady() { mpuInterrupt = true; } void setup() { // join I2C bus (I2Cdev library doesn"t do this automatically) #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE Wire.begin(); TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz) #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE Fastwire::setup(400, true); #endif mpu.initialize(); devStatus = mpu.dmpInitialize(); // supply your own gyro offsets here, scaled for min sensitivity mpu.setXGyroOffset(220); mpu.setYGyroOffset(76); mpu.setZGyroOffset(-85); mpu.setZAccelOffset(1788); // 1688 factory default for my test chip // make sure it worked (returns 0 if so) if (devStatus == 0) { // turn on the DMP, now that it"s ready mpu.setDMPEnabled(true); // enable Arduino interrupt detection attachInterrupt(0, dmpDataReady, RISING); mpuIntStatus = mpu.getIntStatus(); // set our DMP Ready flag so the main loop() function knows it"s okay to use it dmpReady = true; // get expected DMP packet size for later comparison packetSize = mpu.dmpGetFIFOPacketSize(); //setup PID pid.SetMode(AUTOMATIC); pid.SetSampleTime(10); pid.SetOutputLimits(-255, 255); } else { // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it"s going to break, usually the code will be 1) Serial.print(F("DMP Initialization failed (code ")); Serial.print(devStatus); Serial.println(F(")")); } } void loop() { // if programming failed, don"t try to do anything if (!dmpReady) return; // wait for MPU interrupt or extra packet(s) available while (!mpuInterrupt && fifoCount < packetSize) { //no mpu data - performing PID calculations and output to motors pid.Compute(); motorController.move(output, MIN_ABS_SPEED); } // reset interrupt flag and get INT_STATUS byte mpuInterrupt = false; mpuIntStatus = mpu.getIntStatus(); // get current FIFO count fifoCount = mpu.getFIFOCount(); // check for overflow (this should never happen unless our code is too inefficient) if ((mpuIntStatus & 0x10) || fifoCount == 1024) { // reset so we can continue cleanly mpu.resetFIFO(); Serial.println(F("FIFO overflow!")); // otherwise, check for DMP data ready interrupt (this should happen frequently) } else if (mpuIntStatus & 0x02) { // wait for correct available data length, should be a VERY short wait while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); // read a packet from FIFO mpu.getFIFOBytes(fifoBuffer, packetSize); // track FIFO count here in case there is > 1 packet available // (this lets us immediately read more without waiting for an interrupt) fifoCount -= packetSize; mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); input = ypr * 180/M_PI + 180; } }

Значения Kp, Ki, Kd могут работать или не работать. Если они этого не делают, выполните шаги, описанные выше. Обратите внимание, что наклона в коде установлен на 173 градуса. Вы можете изменить это значение, если хотите, но обратите внимание, что это угол наклона, которым должен поддерживаться роботом. Кроме того, если ваши двигатели слишком быстры, вы можете отрегулировать значения motorSpeedFactorLeft и motorSpeedFactorRight.

На этом пока всё. До встречи.

Гироскутер внутри

Основные детали

Из чего состоит гироскутер? Если взглянуть со стороны, то гироскутер представляет из себя интересное устройство. Первое - это рабочая платформа или доска. Именно на нее встает человек и, пытаясь держать баланс, управляет, ездит или падает. По бокам от платформы есть два колеса, именно они и дают нам возможность ездить и двигаться вперед или назад.

Сначала разберемся с платформой. Рабочая платформа разделена на две части, на правую и левую часть. Как раз для правой и левой ноги. Сделано это для того, чтобы была возможность поворачивать вправо или влево, как раз за счет нажатия носком на эти платформы.

Как устроен гироскутер?

Мини-сигвей устройство

Колеса

По бокам идут два колеса. Обычно гироскутеры бывают 4-ех видов, и различаются они по классу и размеру колес. Первый класс гироскутеров является детский гироскутер с колесами в диаметре 4.5 дюймов. Маленький размер колес делает гироскутер очень неудобным и не проходимым в некоторых участках дороги.

Следующий класс - это гироскутер 6.5 дюймов. Он имеет уже больший диаметр колес, но все также предназначен только для езды по ровным поверхностям. Гироскутер 8 дюймов, является золотой серединой среди всех гиробордов. Он имеет оптимальный размер колес, который может проехать практически по любым дорогам.

И самый большой является внедорожник всех мини-сигвеев - гироскутер 10 дюймов . Это модель, у которой есть интересная особенность, помимо больших колес, эти колеса имеют камерную систему. То есть колеса надувные, они имеют более плавный ход, и такие гироскутеры более износостойкие чем прототипы поменьше.

Корпус

Корпус у всех гироскутеров сделан из разных материалов, но с одной и той же особенностью. Везде корпус закрывает колеса, защищая от брызг, грязи, воды, снега и пыли. Гироскутеры с маленькими колесами 4.5 и 6, обычно делают из обычного пластика. Так как эти модели предназначены для езды по ровной дороге, и развивают не такую высокую скорость, то инженеры решили не ставить дорогой пластик и не увеличивать тем самым цену на гироскутер.

У гироскутера с 8-ми дюймовыми колесами , корпуса делают из различных материалов, как из простого пластика, так и из карбона, ударопрочного магниевого пластика. Такой пластик, способен выдержать практически любое физическое воздействие и удары. Карбон к примеру еще и легкий материал, тем самым он снижает нагрузку на электродвигатели и уменьшает скорость разрядки батареи.

Двигатели

После того как вы снимите крышку, по бокам ближе к колесу вы должны увидеть электродвигатель. Электродвигатели бывают разной мощности. Среднее значение среди всех мини-сигвеев является показатель 700 Ватт на оба колеса. Или по 350 Ватт на одно колесо. Дело в том, что электродвигатели у гироскутеров работают независимо друг от друга. Одно колесо может ехать с одной скоростью, а второе с другой, или они могут двигаться в разные стороны, одно назад, другое вперед. Таким образом эта система придает гироскутеру управляемости.

Он становится более чувствительным к поворотам на большой скорости. Также вы можете разворачиваться на места на 360 градусов. Чем выше мощность у двигателя, тем выше переносимый груз и тем выше скорость, но не всегда. Надо понимать, что чем выше масса нагрузки на платформу, тем ниже скорость и быстрее разряжается батарея. Поэтому гироскутеры с мощными двигателями стоят дороже.

Система балансировки

Система балансировки состоит и включает в себя довольно много компонентов. В первую очередь, это два гироскопических датчика, которые расположены в правой и левой части платформы. Если снять крышку корпуса, то можно увидеть две вспомогательные платы, именно к ним и подсоединены гироскопические датчики. Вспомогательные платы, помогают обрабатывать информацию и отправлять ее в процессор.

Дальше в правой части можно увидеть основную плату, именно там стоит 32-ух битный процессор и осуществляется все управление и вычисление. Там же и стоит программа, которая реагирует на любое изменение платформы справа или слева.

Если платформа наклоняется вперед, то процессор, обработав информацию, посылает сигнал электродвигателям, которые физически удерживают доску в ровном положении. Но если платформа наклоняется сильнее с определенным давлением, колесо начинает сразу движение вперед или назад.

Нужно обязательно помнить, что во всех нынешних гироскутерах должны быть две вспомогательные платы для гироскопических датчиков и одна основная, где стоит процессор. В старых моделях может стоять и двухплатная система, но с осени 2015 года, в стандарт была внесено изменение и теперь все гироскутеры, мини-сигвеи делаются с 3-мя платами.

В китайских подделках или некачественных гироскутерах, может стоять одна плата, основная. К сожалению такой мини-сигвей имеет плохие характеристики в управлении. Может вибрировать или опрокидывать водителя. А в последствии вся система вообще может выйти из строя.

Схема внутреннего устройства управления гироскутером не такая сложная как кажется. Вся система сделана так, чтобы максимально быстро реагировать на любое поведение платформы. Расчет идет в доли секунды и с поразительной точностью.

Батарея

Система питания гироскутера осуществляется от двух или более аккумуляторов. В стандартных недорогих моделях обычно ставят аккумулятор с мощностью 4400 мА/ч. Аккумулятор отвечает за работу всей системы в целом и обеспечения ее электроэнергией, поэтому батарея должна быть качественная и фирменная. Обычно используют аккумуляторы двух брендов - это Samsung и LG.

Также аккумуляторы различаются по классу. Есть низкоуровневые батареи классов 1С, 2С. Такие аккумуляторы обычно ставят на гироскутеры с 4.5 и 6.5 дюймовыми колесами. Все по той же причине, потому что эти гироскутеры предназначены для ровных дорог, ровному асфальту, мрамору или полу.

Гироскутеры с 8-ми дюймовыми колесами, обычно ставят аккумуляторы среднего класса типа 3С, это уже более надежная модель батареи. Она не будет отключаться при резкой остановке или при наезде на бордюр или в яму.

У большеколесных 10-ти дюймовых моделях, обычно ставят аккумуляторы 5С класса. Этот гироскутер способен ездить практически по любым дорогам, земле, лужам, ямам. Поэтому батарея нужно более надежная.

Основной принцип устройства гироскутера обусловлен в удержании равновесии. При большом весе водителя гироскутеру нужно больше электроэнергии для осуществления маневров и движения.

Другое

Во многих гироскутерах также ставят Bluetooth систему и колонки. С помощью нее вы сможете слушать любимую музыку и кататься с друзьями. Но эта система еще дает возможность подсоединять свой смартфон к гироскутеру и следить за состоянием своего средства передвижения. Можно следить за средней скоростью, смотреть какой расстояние вы преодолели. Настроить максимальную допустимую скорость и много чего еще.

Еще на многих моделях стоит подсветка, она освещает вам путь в темноте, и так же может ярко мигать в такт с музыкой. Но нужно помнить, что музыка и подсветка сильно садят батарею. Многие вообще отключают подсветку, чтобы увеличить запас хода.

Вывод

Конструкция гироскутера сделана так, чтобы он был компактным и легким, но при этом быстрым, мощным и долговечным. Главное покупать гироскутер у проверенных поставщиков, у которых есть вся необходимая документация, чтобы не пришлось разбирать его после неудачного катания.

Если вы думаете, что гироскутер или мини-сигвей невозможно сделать дома своими руками и силами, то вы далеко заблуждаетесь. Как ни странно, в интернете есть много видео, где многие умельцы делают именно свой гироскутер. У некоторых он получается очень самодельный, но есть и те, кто смог по настоящему приблизиться к самой технологии создания и воспроизвести по настоящему интересную и качественную вещь. Так можно ли сделать гироскутер своими руками? Нам расскажет об этом Adrian Kundert - инженер и просто хороший человек.

Что такое гироскутер?

Как сделать гироскутер своими руками? Для того, чтобы понять как сделать самодельный гироскутер, нужно для начала понять - что такое гироскутер , из чего он состоит и что нужно для создания этого интересного средства передвижения. Гироскутер - это самосбалансированное средство передвижения, принцип работы которого стоит на системе гироскопических датчиков и внутренней технологии удержания баланса рабочей платформы. То есть когда мы включаем гироскутер, включается и система балансировки. Когда человек встает на гироскутер, начинается меняться положение платформы, эта информация считывается как раз гироскопическими датчиками.

Эти датчики считывают любое изменение положения относительно земной поверхности или точки от которой идет гравитационное воздействие. После считывания, информация подается на вспомогательные платы, которые находятся по обе стороны платформы. Так как датчики и сами электродвигатели работают независимо друг от друга, то в дальнейшем нам понадобятся два электродвигателя. От вспомогательных плат, информация в обработанном виде уже идет в материнскую плату с микропроцессором. Там уже с необходимой точностью выполняется программа удержания баланса.

То есть если платформа наклоняется вперед, примерно на несколько градусов, то двигателям подается сигнал на движение в обратное направление и платформа выравнивается. Также выполняется и наклон в другую сторону. Если же гироскутер наклоняется на больший градус, то программа сразу же понимает, что идет команда о движении вперед или назад электродвигателям. Если гироскутер наклоняется больше чем на 45 градусов, то двигатели и сам гироскутер отключается.

Гироскутер состоит, из корпуса, стальной или металлической основы, на который и будет крепится вся электроника. Дальше идет два электродвигателя с той мощностью, чтобы была возможность ездить под весом человека до 80-90кг. Дальше идет материнская плата с процессором и две вспомогательные платы, на которых как раз и стоят гироскопические датчики. И конечно же аккумулятор и два колеса с одинаковым диаметром. Как сделать гироскутер? Для решения этого вопроса, нам понадобится добыть определенные детали конструкции самого гироборда.

Что же нам понадобится?

Как сделать гироскутер своими руками? Первое и основное что понадобится, это два электрических двигателя, с мощностью способных перевозить вес взрослого человека. Средняя мощность у заводских моделей составляет 350 Ватт, поэтому постараемся найти двигатели такой мощности.

Дальше конечно же нужно найти два одинаковых колеса, примерно 10-12 дюймов. Лучше побольше, так как электроники у нас будет много. Чтобы проходимость была выше и расстояние между платформой и землей было на нужном уровне.

Два аккумулятора, свинцово-кислотных, нужно выбрать номинальную мощность как минимум 4400 мА/ч, а лучше больше. Так как мы будем делать не металлическую конструкцию, но она будет весить больше чем оригинальный мини-сигвей или гироскутер.

Производство и процесс

Как сделать гироскутер, мощный и чтобы он сам держал баланс при езде? Сначала нужно построить план, какое именно средство передвижения нам понадобится. Нам нужно сделать довольно мощное средство передвижения с большими колесами и большой проходимостью по разным дорогам. Минимальное значение беспрерывной езды должно составлять 1-1.5 часа. Мы потратим примерно около 500 евро. Поставим беспроводную систему управления нашему гироскутеру. Поставим считывающее устройство неполадок и ошибок, вся информация будет идти на SD-карту.

Схема гироскутера

На схеме выше можно все четко увидеть: электродвигатели, аккумуляторы и прочее. Для начала нужно выбрать именно тот микроконтроллер, который и будет осуществлять управление. Из всех представленных на рынке микроконтроллеров Arduino мы с вами выберем UnoNano, и в качестве дополнительного чипа обработки информации будет выступать ATmega 328.

Но как сделать гироскутер безопасным? Два аккумулятора у нас будут подсоединены последовательно, так мы получим нужное напряжение. Для электродвигателей, как раз и понадобится сдвоенная мостовая схема. Будет поставлена кнопка готовности, по нажатию которой и будет поступать питание на двигатели. При отжимании этой кнопки, двигатели и сам гироскутер будет отключаться. Нужно это для осуществления безопасной езда самого водителя и нашего средства передвижения.

Микроконтроллер Arduino будет на скорости около 38400 БОД, использовать последовательную связь со схемой XBee. Мы будем использовать два гироскопических датчика InvenSense MPU 6050 на базе модулей GY-521. Они в свою очередь будут считывать информацию о положении платформы. Эти датчики достаточно точны для того, чтобы сделать мини-сигвей. Эти датчики будут расположены на двух дополнительных вспомогательных платах, которые будут осуществлять первичную обработку.

Мы будем использовать шину I2C, она имеет достаточную пропускную способность, чтобы быстро связывать с микроконтроллером Arduino. Гироскопический датчик имеющий адрес 0x68 имеет частоту обновления информации раз в 15 мс. Второй же датчик адресов 0x68 работает напрямую от микроконтроллера. У нас так же есть выключатель нагрузки, он переводит гироскутер в режим удержания баланса, тогда когда платформа находится в ровном положении. В этом режиме гироскутер остается на месте.

Три деревянные детали, на которых и будет располагаться наши колеса и электродвигатели. Рулевой столб, сделан из обычной деревянной палки он будет крепиться к передней части самого гироскутера. Тут можно взять любую палку, даже черенок от швабры. Нужно обязательно учесть тот факт, что аккумуляторы и другие схемы, будут производить давление на платформу и тем самым балансировка будет немного перенастроена, именно в ту часть, где будет больше давление.

Двигатели же нужно равномерно распределить справа и слева по бокам платформы, а аккумулятор максимально посередине в специальной коробке. Крепим рулевой столб на обычные финты и присоединяем кнопку готовности к верхней части палки. То есть если что-то пошло не так и кнопка отжата, то гироскутер будет выключаться. В дальнейшем эту кнопку можно переделать в подножную часть или настроить на определенный наклон самой платформы, но мы пока делать этого не будем.

Внутренняя схема и спайка всех проводов, производится по той же схеме. Дальше нужно подключить два гироскопических датчика к нашему микроконтроллеру, по мостовой схеме с двигателем, по данной таблице.

Датчики балансировки должны быть установлены параллельно земле или вдоль самой платформы, а вот датчики поворота направо и налево должны быть установлены перпендикулярно гироскопическим датчикам.

Настройка датчиков

Дальше производим настройку микроконтроллера, загружаем исходный код . Дальше нужно проверить правильную взаимосвязь между гироскопическими датчиками и датчиками поворотов. Используйте программу Arduino Terminal по программированию и настройке гироскутера. Обязательно нужно настроить ПИД регулятор баланса. Дело в том, что вы можете выбрать двигатели с другой мощностью и характеристиками, для них настройка будет другой.

Есть несколько параметров в этой программе. Первый самый главный параметр, это параметр Kp, он отвечает за балансировку. Сначала увеличьте этот показатель, для того чтобы ввести гироскутер в нестабильный вид, а потом уменьшайте показатель до нужного параметра.

Следующий параметр, это параметр Ki он отвечает за ускорение гироскутера. При снижении угла наклона скорость уменьшает или увеличивается при обратном действии. и последний параметр, это параметр Kd, он возвращает саму платформу в ровное положение, а двигатели приводит в режим удержания. В этом режиме гироскутер просто стоит на месте.

Дальше вы включаете кнопку включения микроконтроллера Arduino и гироскутер переходит в режим ожидания. После того как вы встали на сам гироборд, вы встаете ногами на нажимную кнопку, так гироскутер переходит в режим "на месте". Включаются датчики балансировки и при изменении угла наклона, гироскутер едет вперед или назад. При каких либо поломках, можно без проблем осуществить ремонт гироскутера своими руками.