Парадокс Рассела (антиномия Рассела , также парадокс Рассела - Цермело ) - открытый в 1901 году Бертраном Расселом теоретико-множественный парадокс (антиномия), демонстрирующий противоречивость логической системы Фреге , являвшейся ранней попыткой формализации наивной теории множеств Георга Кантора . Был открыт ранее, но не опубликован Эрнстом Цермело .

На неформальном языке парадокс можно описать следующим образом. Условимся называть множество «обычным», если оно не является своим собственным элементом. Например, множество всех людей является «обычным», так как само множество - не человек. Примером «необычного» множества является множество всех множеств , так как оно само является множеством, а следовательно, само является собственным элементом .

Можно рассмотреть множество, состоящее только из всех «обычных» множеств, такое множество называется расселовским множеством . Парадокс возникает при попытке определить, является ли это множество «обычным» или нет, то есть содержит ли оно себя в качестве элемента. Есть две возможности.

  • С одной стороны, если оно «обычное», то оно должно включать себя в качестве элемента, так как оно по определению состоит из всех «обычных» множеств. Но тогда оно не может быть «обычным», так как «обычные» множества - это те, которые себя не включают.
  • Остаётся предположить, что это множество «необычное». Однако оно не может включать себя в качестве элемента, так как оно по определению должно состоять только из «обычных» множеств. Но если оно не включает себя в качестве элемента, то это «обычное» множество.

В любом случае получается противоречие .

Энциклопедичный YouTube

    1 / 5

    ✪ Лекция 1. Определение множества. Законы де Моргана. Парадокс Рассела. Теорема Вейерштрасса

    ✪ 3 Парадокс Рассела

    ✪ Бертран Рассел Совет будущим поколениям

    ✪ Лекция 21: Наивная теория множеств и нечёткая логика

    ✪ Парадокс Монти Холла - Numberphile

    Субтитры

Формулировка парадокса

Парадокс Рассела можно сформулировать в наивной теории множеств . Следовательно, наивная теория множеств является противоречивой . Противоречив фрагмент наивной теории множеств, который можно определить как теорию первого порядка с бинарным отношением принадлежности ∈ {\displaystyle \in } и схемой выделения : для каждой логической формулы с одной свободной переменной в наивной теории множеств есть аксиома

∃ y ∀ x (x ∈ y ⟺ P (x)) {\displaystyle \exists y\forall x(x\in y\iff P(x))} .

Эта схема аксиом говорит, что для всякого условия P (x) {\displaystyle P(x)} существует множество y , {\displaystyle y,} состоящее из тех x , {\displaystyle x,} которые удовлетворяют условию P (x) {\displaystyle P(x)} .

Этого оказывается достаточно, чтобы сформулировать парадокс Рассела следующим образом. Пусть P (x) {\displaystyle P(x)} есть формула x ∉ x . {\displaystyle x\notin x.} (То есть P (x) {\displaystyle P(x)} означает, что множество x {\displaystyle x} не содержит себя в качестве элемента, или, в нашей терминологии, является «обычным» множеством.) Тогда, по аксиоме выделения, найдётся множество y {\displaystyle y} (расселовское множество) такое, что

∀ x (x ∈ y ⟺ x ∉ x) {\displaystyle \forall x(x\in y\iff x\notin x)} .

Так как это верно для любого x , {\displaystyle x,} то верно и для x = y . {\displaystyle x=y.} То есть

y ∈ y ⟺ y ∉ y . {\displaystyle y\in y\iff y\notin y.}

Из этого следует, что в наивной теории множеств выводится противоречие .

Парадокс не возник бы, если предположить, что расселовского множества не существует. Однако само такое предположение парадоксально: в канторовской теории множеств считается, что любое свойство определяет множество элементов, удовлетворяющих этому свойству. Так как свойство множества быть «обычным» выглядит корректно определённым, то должно существовать множество всех «обычных» множеств. Сейчас такая теория называется наивной теорией множеств .

Популярные версии парадокса

Существует несколько вариантов парадокса Рассела. В отличие от самого парадокса, они, как правило, не могут быть выражены на формальном языке .

Парадокс лжеца

Парадокс Рассела связан с известным ещё с античных времён парадоксом лжеца, который заключается в следующем вопросе. Дано высказывание:

Данное высказывание - ложно.

Истинно ли это высказывание или нет? Легко показать, что это высказывание не может быть ни истинным, ни ложным.

Рассел про этот парадокс писал :

Сам Рассел так объяснял парадокс лжеца. Чтобы говорить что-нибудь о высказываниях, надо сначала определить само понятие «высказывания», при этом не используя не определённых пока понятий. Таким образом, можно определить высказывания первого типа, которые ничего не говорят о высказываниях. Потом можно определить высказывания второго типа, которые говорят о высказываниях первого типа, и так далее. Высказывание же «данное высказывание - ложно» не попадает ни под одно из этих определений, и таким образом не имеет смысла .

Парадокс брадобрея

Рассел упоминает следующий вариант парадокса, сформулированный в виде загадки, которую ему кто-то подсказал .

Пусть в некой деревне живёт брадобрей, который бреет всех жителей деревни, которые не бреются сами, и только их. Бреет ли брадобрей сам себя?

Любой ответ приводит к противоречию. Рассел замечает, что этот парадокс не эквивалентен его парадоксу и легко решается . Действительно, точно так же, как парадокс Рассела показывает, что не существует расселовского множества, парадокс брадобрея показывает, что такого брадобрея просто не существует. Разница состоит в том, что в несуществовании такого брадобрея ничего удивительного нет: не для любого свойства найдётся брадобрей, который бреет людей, обладающих этим свойством. Однако то, что не существует множества элементов, заданных некоторым вполне определённым свойством, противоречит наивному представлению о множествах и требует объяснения .

Вариант о каталогах

Наиболее близким по формулировке к парадоксу Рассела является следующий вариант его изложения :

Библиографические каталоги - это книги, которые описывают другие книги. Некоторые каталоги могут описывать другие каталоги. Некоторые каталоги могут описывать даже сами себя. Можно ли составить каталог всех каталогов, которые не описывают сами себя?

Парадокс возникает при попытке решить, должен ли этот каталог описывать сам себя. Несмотря на кажущуюся близость формулировок (это фактически парадокс Рассела, в котором вместо множеств используются каталоги), этот парадокс, так же, как и парадокс брадобрея, разрешается просто: такой каталог составить нельзя.

Парадокс Греллинга - Нельсона

Этот парадокс был сформулирован немецкими математиками Куртом Греллингом и Леонардом Нельсоном в 1908 году. Он фактически является переводом первоначального варианта парадокса Рассела, изложенного им в терминах логики предикатов (см. письмо к Фреге ), на нематематический язык.

Будем называть прилагательное рефлексивным , если это прилагательное обладает свойством, определяемым этим прилагательным. Например, прилагательные «русское», «многосложное» - обладают свойствами, которые они определяют (прилагательное «русское» является русским, а прилагательное «многосложное» является многосложным), поэтому они являются рефлексивными, а прилагательные «немецкое», «односложное» - являются нерефлексивными . Будет ли прилагательное «нерефлексивное» рефлексивным или нет?

Любой ответ приводит к противоречию . В отличие от парадокса брадобрея, решение этого парадокса не такое простое. Нельзя просто сказать, что такого прилагательного («нерефлексивный») не существует, так как мы его только что определили. Парадокс возникает из-за того, что определение термина «нерефлексивный» некорректно само по себе. Определение этого термина зависит от значения прилагательного, к которому оно применяется. А так как слово «нерефлексивный» само является прилагательным в определении, возникает порочный круг .

История

Рассел, вероятно, открыл свой парадокс в мае или июне 1901 года . Согласно самому Расселу, он пытался найти ошибку в доказательстве Кантора того парадоксального факта (известного как парадокс Кантора), что не существует максимального кардинального числа (или же множества всех множеств). В результате Рассел получил более простой парадокс . Рассел сообщил свой парадокс другим логикам, в частности Уайтхеду и Пеано . В своём письме к Фреге 16 июня 1902 года он писал, что обнаружил противоречие в «Исчислении понятий » - книге Фреге, опубликованной в 1879 году. Он изложил свой парадокс в терминах логики, а потом в терминах теории множеств, используя определение Фреге для функции :

Я испытал трудности только в одном месте. Вы утверждаете (стр. 17), что функция может сама выступать в качестве неизвестного. Раньше я тоже так считал. Но теперь такой взгляд мне кажется сомнительным из-за следующего противоречия. Пусть w предикат: «быть предикатом, который не приложим к самому себе». Может ли w быть приложим к самому себе? Из любого ответа следует обратное. Следовательно, мы должны заключить, что w - не предикат. Аналогично не существует класса (как целого) тех классов, которые, взятые как целое, не принадлежат себе. Отсюда я заключаю, что иногда определённое множество не формирует целостного образования.

Оригинальный текст (нем.)

Nur in einem Punkte ist mir eine Schwierigkeit begegnet. Sie behaupten (S. 17) es könne auch die Funktion das unbestimmte Element bilden. Dies habe ich früher geglaubt, jedoch jetzt scheint mir diese Ansicht zweifelhaft, wegen des folgenden Widerspruchs: Sei w das Prädicat, ein Prädicat zu sein welches von sich selbst nicht prädicirt werden kann. Kann man w von sich selbst prädiciren? Aus jeder Antwort folgt das Gegentheil. Deshalb muss man schließen dass w kein Prädicat ist. Ebenso giebt es keine Klasse (als Ganzes) derjenigen Klassen die als Ganze sich selber nicht angehören. Daraus schliesse ich dass unter gewissen Umständen eine definierbare Menge kein Ganzes bildet .

Фреге получил письмо как раз в то время, когда завершил работу над вторым томом «Основных законов арифметики» (нем. Grundgesetze der Arithmetik ). У Фреге не было времени исправить свою теорию множеств. Он лишь добавил приложение ко второму тому с изложением и своим анализом парадокса, которое начиналось с знаменитого замечания:

Вряд ли с учёным может приключиться что-нибудь худшее, чем если у него из-под ног выбьют почву в тот самый момент, когда он завершит свой труд. Именно в таком положении оказался я, получив письмо от Бертрана Рассела, когда моя работа уже была завершена .

Оригинальный текст (нем.)

Einem wissenschaftlichen Schriftsteller kann kaum etwas Unerwünschteres begegnen, als daß ihm nach Vollendung einer Arbeit eine der Grundlagen seines Baues erschüttert wird. In diese Lage wurde ich durch einen Brief des Herrn Bertrand Russell versetzt, als der Druck dieses Bandes sich seinem Ende näherte .

z ∈ { x: P (x) } ⟺ P (z) {\displaystyle z\in \{x\colon P(x)\}\iff P(z)} ,

которая говорила, что можно построить множество элементов, удовлетворяющих свойству P (x) , {\displaystyle P(x),} он предложил использовать следующую аксиому:

z ∈ { x: P (x) } ⟺ P (z) & z ≠ { x: P (x) } {\displaystyle z\in \{x\colon P(x)\}\iff P(z)\ \&\ z\neq \{x\colon P(x)\}} ,

таким образом исключив возможность для множества быть элементом самого себя. Однако небольшая [какая? ] модификация парадокса Рассела доказывает, что и эта аксиома тоже приводит к противоречию .

Рассел опубликовал свой парадокс в своей книге «Принципы математики » в 1903 году .

Ниже приведены несколько из возможных подходов к построению системы аксиом, свободной от расселовских парадоксов.

Теория типов Рассела

Первым, кто предложил теорию, свободную от парадокса Рассела, был сам Рассел. Он разработал теорию типов, первая версия которой появилась в книге Рассела и Уайтхеда «Принципы математики » в 1903 году . В основе этой теории лежит следующая идея: простые объекты в этой теории имеют тип 0, множества простых объектов имеют тип 1, множества множеств простых объектов имеют тип 2 и так далее. Таким образом, ни одно множество не может иметь себя в качестве элемента. Ни множество всех множеств , ни расселовское множество не могут быть определены в этой теории. Аналогичная иерархия вводится для высказываний и свойств. Высказывания о простых объектах принадлежат типу 1, высказывания о свойствах высказываний типа 1 принадлежат типу 2 и так далее. В общем, функция по определению принадлежит типу более высокому, чем переменные, от которых она зависит. Такой подход позволяет избавиться не только от парадокса Рассела, но и многих других парадоксов, включая парадокс лжеца (), парадокс Греллинга - Нельсона, парадокс Бурали-Форти . Рассел и Уайтхед показали, как свести к аксиомам теории типов всю математику, в своём трёхтомном труде «Principia Mathematica », выпущенном в 1910-1913 годах .

Однако такой подход встретил трудности. В частности, возникают проблемы при определении таких понятий, как точная верхняя грань для множеств вещественных чисел. По определению точная верхняя грань есть наименьшая из всех верхних граней. Следовательно, при определении точной верхней грани используется множество вещественных чисел. Значит, точная верхняя грань является объектом более высокого типа, чем вещественные числа. А значит, сама не является вещественным числом. Чтобы избежать этого, пришлось вводить так называемую аксиому сводимости . Из-за её произвольности аксиому сводимости отказывались принимать многие математики, да и сам Рассел называл её дефектом своей теории. Кроме того, теория оказалась очень сложной. В итоге она не получила широкого применения .

Теория множеств Цермело - Френкеля

Самым известным подходом к аксиоматизации математики является теория множеств Цермело - Френкеля (ZF), которая возникла как расширение теории Цермело (1908). В отличие от Рассела, Цермело сохранил логические принципы, а изменил только аксиомы теории множеств . Идея этого подхода заключается в том, что допускается использовать только множества, построенные из уже построенных множеств при помощи определённого набора аксиом . Так, например, одна из аксиом Цермело говорит, что можно построить множество всех подмножеств данного множества (аксиома булеана). Другая аксиома (схема выделения ) говорит, что из каждого множества можно выделить подмножество элементов, обладающих данным свойством. В этом состоит главное отличие теории множеств Цермело от наивной теории множеств: в наивной теории множеств можно рассмотреть множество всех элементов, обладающих данным свойством, а в теории множеств Цермело - только выделить подмножество из уже построенного множества. В теории множеств Цермело нельзя построить множество всех множеств . Таким образом и расселовское множество там построить нельзя .

Классы

Иногда в математике бывает полезно рассматривать все множества как единое целое, например, чтобы рассматривать совокупность всех групп . Для этого теория множеств может быть расширена понятием класса , как, например, в системе Неймана - Бернайса - Гёделя (NBG). В этой теории совокупность всех множеств является классом . Однако, этот класс не является множеством и не является элементом никакого класса, что позволяет избежать парадокса Рассела .

Более сильной системой, позволяющей брать кванторы по классам, а не только по множествам, является, например, теория множеств Морса - Келли (MK) . В этой теории основным понятием является понятие класса , а не множества . Множествами в этой теории считаются такие классы, которые сами являются элементами каких-то классов . В этой теории формула z ∈ { x: P (x) } {\displaystyle z\in \{x\colon P(x)\}} считается эквивалентной формуле

P (z) & ∃ y . z ∈ y {\displaystyle P(z)\ \&\ \exists y.z\in y} .

Так как ∃ y . z ∈ y {\displaystyle \exists y.z\in y} в этой теории значит, что класс z {\displaystyle z} является множеством , эту формулу надо понимать как то, что { x: P (x) } {\displaystyle \{x\colon P(x)\}} является классом всех множеств (а не классов) z {\displaystyle z} , таких что P (z) {\displaystyle P(z)} . Парадокс Рассела в этой теории разрешается тем, что не любой класс является множеством .

Можно пойти дальше и рассматривать совокупности классов - конгломераты , совокупности конгломератов и так далее .

Влияние на математику

Аксиоматизация математики

Парадокс Рассела, вместе с другими математическими антиномиями , открытыми в начале XX века, стимулировал пересмотр оснований математики, результатом которого явилось построение аксиоматических теорий для обоснования математики, некоторые из которых упомянуты выше.

Во всех построенных новых аксиоматических теориях парадоксы, известные к середине XX века (в том числе парадокс Рассела), были устранены . Однако доказать, что новые подобные парадоксы не могут быть обнаружены в будущем (в этом состоит проблема непротиворечивости построенных аксиоматических теорий), оказалось, в современном понимании этой задачи, невозможно (см. Теоремы Гёделя о неполноте).

Интуиционизм

Параллельно возникло новое течение в математике, называемое интуиционизмом , основателем которого является Л. Э. Я. Брауэр . Интуиционизм возник независимо от парадокса Рассела и других антиномий. Однако открытие антиномий в теории множеств усилило недоверие интуиционистов к логическим принципам и ускорило формирование интуиционизма . Основной тезис интуиционизма говорит, что для доказательства существования некоторого объекта необходимо предъявить способ его построения . Интуиционисты отвергают такие абстрактные понятия, как множество всех множеств. Интуиционизм отрицает закон исключенного третьего , впрочем, необходимо отметить, что закон исключенного третьего не нужен для вывода противоречия из антиномии Рассела или любой другой (в любой антиномии доказывается, что A {\displaystyle A} влечёт отрицание A {\displaystyle A} и отрицание A {\displaystyle A} влечёт A , {\displaystyle A,} однако из (A ⇒ ¬ A) & (¬ A ⇒ A) {\displaystyle (A\Rightarrow \neg A)\&(\neg A\Rightarrow A)} даже в интуиционисткой логике следует противоречие) . Стоит также отметить, что в более поздних аксиоматизациях интуиционисткой математики были обнаружены парадоксы, аналогичные расселовскому, как, например, парадокс Жирара в первоначальной формулировке Мартина-Лёфа .

Диагональный аргумент (самоприменимость)

Несмотря на то что рассуждения Рассела приводят к парадоксу, основная идея этого рассуждения часто используется в доказательстве математических теорем. Как было уже сказано выше, Рассел получил свой парадокс, анализируя доказательство Кантора о несуществовании наибольшего кардинального числа . Этот факт противоречит существованию множества всех множеств, так как его мощность должна быть максимальной. Тем не менее, по теореме Кантора , множество всех подмножеств данного множества имеет бо́льшую мощность, чем само множество. Доказательство этого факта основано на следующем диагональном аргументе ?! :

Пусть есть взаимнооднозначное соответствие , которое каждому элементу x {\displaystyle x} множества X {\displaystyle X} ставит в соответствие подмножество s x {\displaystyle s_{x}} множества X . {\displaystyle X.} Пусть d {\displaystyle d} будет множеством, состоящим из элементов x {\displaystyle x} таких, что x ∈ s x {\displaystyle x\in s_{x}} (диагональное множество ). Тогда дополнение этого множества s = d ¯ {\displaystyle s={\overline {d}}} не может быть ни одним из s x . {\displaystyle s_{x}.} А следовательно, соответствие было не взаимнооднозначным.

Кантор использовал диагональный аргумент при доказательстве несчётности действительных чисел в 1891 году. (Это не первое его доказательство несчётности действительных чисел, но наиболее простое) .

Связанные парадоксы

Самоприменимость используется во многих парадоксах, кроме рассмотренных выше:

  • Парадокс всемогущества - средневековый вопрос: «Может ли всемогущий бог создать камень, который он сам не сможет поднять?»
  • Парадокс Бурали-Форти (1897) - аналог парадокса Кантора для ординальных чисел .
  • Парадокс Мириманова (1917) - обобщение парадокса Бурали-Форти для класса всех фундированных классов .
  • Парадокс Ришара (1905) - семантический парадокс, показывающий важность разделения языка математики и метаматематики.
  • Парадокс Берри (1906) - опубликованный Расселом упрощённый вариант парадокса Ришара.
  • Парадокс Клини - Россера (1935) - формулировка парадокса Ришара в терминах λ-исчисления .
  • Парадокс Карри (1941) - упрощение парадокса Клини - Россера.
  • Парадокс Жирара (1972) - формулировка парадокса Бурали-Форти в терминах интуиционистской теории типов .
  • - полушутливый парадокс, напоминающий парадокс Берри.

Примечания

  1. Godehard Link (2004), One hundred years of Russell"s paradox , с. 350, ISBN 9783110174380 , .
  2. Антиномия Рассела // Словарь по логике. Ивин А. А., Никифоров А. Л. - М.: Туманит, ВЛАДОС, 1997. - 384 с. - ISBN 5-691-00099-3 .
  3. Andrew David Irvine, Harry Deutsch. Russell"s Paradox // The Stanford Encyclopedia of Philosophy / Edward N. Zalta. - 2014-01-01.
  4. Антиномия - статья из Математической энциклопедии . А. Г. Драгалин
  5. А. С. Герасимов. Курс математической логики и теории вычислимости . - Издание третье, исправленное и дополненное. - Санкт-Петербург: ЛЕМА, 2011. - С. 124-126. - 284 с.

Информация

Год написания:

2013

Систематизация и связи

Парадокс Брадобрея встречается в различных формулировках - одна из которых (в виде загадки) звучит так:

В одном городе все мужчины бреются, причем одни из них бреются сами, а другие бреются у брадобрея. Кто бреет брадобрея?

Понятно, что каждый из ответов:

1. брадобрей бреется сам,

2. брадобрей бреется у брадобрея

приводит к противоречию:

1. если он бреется сам, то не должен бриться у брадобрея,

2. если он бреется брадобреем, то не должен бриться сам.

Парадокс апеллирует к нашему пониманию закона исключенного третьего, из которого следует, что любое множество можно строго разделить на два непересекающиеся подмножества по признаку обладания их элементов некоторым предикатом: в одно подмножество войдут те элементы, кто обладают предикатом, в другое - те, которые не обладают предикатом (или обладают его отрицанием). Подобные предикаты называются контрадикторными, и предложения, в которых одному субъекту приписываются такие предикаты, образуют логические противоречия, подчиняющиеся упомянутому закону исключенного третьего. Так мужчины города, включая брадобрея, строго делятся на два множества:

1. обладающие предикатом «бриться самому»,

2. обладающие отрицанием этого предиката, то есть не бреющиеся сами.

Также строго на два непересекающихся множества мужчины делятся и по признаку обладания предикатом «бреется у брадобрея»:

1. те, кого бреет брадобрей,

2. те, кого кто не бреет брадобрей.

При делении по предикату «бриться самому» брадобрей попадет в множество самостоятельно бреющихся, а по признаку «бреется у брадобрея» будет отнесен к тем, кого бреет брадобрей. Следовательно, если бы в условиях парадокса было предложено делить мужчин по признаку обладания каким-то одним предикатом и его отрицанием (то есть контрадикторно):

1. все мужчины в городе делятся на тех, кто бреется сам и не бреется сам или

2. все мужчины в городе делятся на тех, кто бреется у брадобрея и не бреется у брадобрея,

то при ответе на вопрос «к какому из подмножеств следует отнести брадобрея? » ни в первом, ни во втором случае никакой проблемы не возникло бы.

Парадокс же получился вследствие подмены однозначно контрадикторных предикатов - «бреется сам»/«не бреется сам» или «бреется у брадобрея»/«не бреется у брадобрея» - на псевдоконтрадикторные. Действительно, в условиях парадокса предлагается разделить всех мужчин города на два множества:

1. бреются сами и

2. бреются у брадобрея,

что явно некорректно, поскольку предикат «бреется сам» не является отрицанием предиката «бреется у брадобрея» на всем множестве мужчин деревни включая брадобрея. То есть предложенное разделение не является контрадикторным, а следовательно не может подчиняться закону исключенного третьего. Поэтому и не следует удивляться, что брадобрей оказывается одновременно и в одном, и в другом подмножествах.

Для логически строгой формулировки решения парадокса брадобрея предлагается ввести понятия абсолютной и локальной контрадикторности . Абсолютно контрадикторными следует считать такую пару предикатов, для которой предложения, образованные приписыванием их одному логическому субъекту, подчиняются закону исключенного третьего всегда и везде на любом множестве логических субъектов. К абсолютно контрадикторным, безусловно, следует отнести пару «предикат» / «его отрицание». В нашем случае абсолютно контрадикторными являются предикаты «бреется сам» / «не бреется сам» или «бреется у брадобрея» / «не бреется у брадобрея». Однако можно указать ситуации, когда закон исключенного третьего выполняется и для любых несовместимых предикатов. Например, если на столе находятся только красные и зеленые шары, то на этом множестве предложение «шар красный» и «шар зеленый» являются контрадикторными: они одновременно не могут быть истинными, и ложность одного однозначно подразумевает истинность другого. В этом случае мы можем говорить о локальной контрадикторности в пределах некоторого множества. Так, скажем, предикаты «мальчик» и «девочка» локально контрадикторны на множестве учеников класса, но не контрадикторны на множестве всех людей находящихся в школе, включая персонал. В парадоксе брадобрея предикаты «бреется сам» и «бреется у брадобрея» являются контрадикторными - локально контрадикторными - на множестве мужчин города за исключением брадобрея и не являются контрадикторными на всем множестве мужчин включая брадобрея, а следовательно, требование, чтобы брадобрей принадлежал лишь к одному из подмножеств, следует считать логически некорректным.

Ситуацию с парадоксом брадобрея можно проиллюстрировать на таком примере. Допустим, на столе находятся красные шары и зеленые кубики. Понятно, что пары предикатов «красный»/«зеленый» и «шарообразный»/«кубический» являются локально контрадикторными. Более того, на этом множестве предметов локально контрадикторными являются и пары предикатов «красный»/«кубический» и «зеленый»/«шарообразный». То есть мы можем сказать, что все предметы на столе однозначно можно разделить на два множества «красные» и «кубические» или «шарообразные» и «зеленые». Однако, как следует из определения, локальная контрадикторность выполняется лишь на строго фиксированном множестве, и если мы, к примеру, выложим на стол еще красный кубик, то на полученном множестве предметов закон исключенного третьего выполняться не будет - на вопрос «к какому из множеств - к красным или кубическим - нам следует отнести новый предмет?» мы не получим однозначного ответа.

Итак, теперь мы можем строго зафиксировать логическую природу парадокса брадобрея: в его формулировке заложена элементарная логическая ошибка - применение локально контрадикторных противоположностей за пределами множества, на котором они контрадикторны.

Для полноты рассмотрения проблемы необходимо проанализировать и другую распространенную формулировку парадокса брадобрея - в виде абсурда:

Брадобрею власти города приказали брить всех, кто сам не бреется, и не брить того, кто бреется сам. Должен ли брадобрей брить себя?

В ней парадоксальность ситуации подчеркивается невозможностью выполнить приказ: если брадобрея отнести к тем, кто не бреется сам, то он должен себя брить, а если он будет бриться сам, то он не должен себя брить. Хотя на первый взгляд парадокс в данной формулировке, вроде, и не связан с подменой абсолютной контрадикторности на локальную (деление идет по предикатам «бреется сам»/«не бреется сам»), но при детальном рассмотрении становится очевидным, что мы, как и в случае с парадоксом-загадкой, имеем дело с неоднозначностью применения закона исключенного третьего. Нам предлагается два варианта разделения: с позиции отдающего приказ деление производится по предикату «бреется сам», а с позиции брадобрея разделение должно осуществляться по предикату «бреет брадобрей». И понятно, что эти разделения совпадают только на множестве всех мужчин города за исключением брадобрея - можно констатировать локальную контрадикторность. А вот при добавлении к мужчинам брадобрея однозначность пропадает: при одном разделении он относится к одному подмножеству, а при другом - к другому. То есть мы опять имеем дело с неоднозначностью контрадикторного деления, с нарушением закона исключенного третьего.

В заключение хотелось бы отметить, что парадокс брадобрея не связан, как это принято считать, с теорией множеств, хотя и был впервые сформулирован Расселом в качестве иллюстрации к так называемому парадоксу «множества всех множеств». Действительно, странно было бы мыслить брадобрея как множество, включающее или не включающее в себя других мужчин города. Гораздо осмысленнее выглядит заключение, что парадокс Рассела, который звучит так:

Пусть К — множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли К само себя в качестве элемента? Если да, то, по определению К, оно не должно быть элементом К — противоречие. Если нет — то, по определению К, оно должно быть элементом К — вновь противоречие.

имеет ту же логическую природу, что и парадокс брадобрея - нарушение контрадикторности деления на подмножества. Если мы рассмотрим все множества за исключением самого множества К, то предикаты «содержит себя в качестве элемента» и «входит в множество К» будут однозначно контрадикторными (локально контрадикторными): из истинности предложения «множество содержит себя в качестве элемента» однозначно следует ложность «множество не входит в множество К» и наоборот. И понятно, что эта контрадикторность нарушается при рассмотрении всех множеств включая К.

Итак, мы безусловно можем и должны говорить, что парадокс брадобрея иллюстрирует парадокс Рассела, но именно и только как общелогический парадокс, связанный с нарушением закона исключенного третьего, а не как специальный парадокс теории множеств.

А не ее противоречивость.

Антиномия Рассела формулируется следующим образом:

Пусть K - множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то, по определению K , оно не должно быть элементом K - противоречие. Если нет - то, по определению K , оно должно быть элементом K - вновь противоречие.

Противоречие в антиномии Рассела возникает из-за использования в рассуждении понятия множества всех множеств и представления о возможности неограниченного применения законов классической логики при работе с множествами. Для преодоления этой антиномии было предложено несколько путей. Наиболее известный состоит в предъявлении для теории множеств непротиворечивой формализации , по отношению к которой являлись бы допустимыми все «действительно нужные» (в некотором смысле) способы оперирования с множествами. В рамках такой формализации утверждение о существовании множества всех множеств было бы невыводимым.

Действительно, допустим, что множество U всех множеств существует. Тогда, согласно аксиоме выделения , должно существовать и множество K , элементами которого являются те и только те множества, которые не содержат себя в качестве элемента. Однако предположение о существовании множества K приводит к антиномии Рассела. Следовательно, ввиду непротиворечивости теории , утверждение о существовании множества U невыводимо в этой теории, что и требовалось доказать.

В ходе реализации описанной программы «спасения» теории множеств было предложено несколько возможных её аксиоматизаций (теория Цермело - Френкеля ZF, теория Неймана - Бернайса - Гёделя NBG, и т. д.), однако ни для одной из этих теорий до настоящего момента не найдено доказательства непротиворечивости. Более того, как показал Гёдель, разработав ряд теорем о неполноте , такого доказательства не может существовать (в некотором смысле).

Другой реакцией на открытие парадокса Рассела явился интуиционизм Л. Э. Я. Брауэра .

Ошибочно считают, что этот парадокс демонстрирует противоречивость теории множеств Г.Кантора. Для опровержения этих взглядов Н. Вавилов приводит следующий парадокс - "Парадокс Пиглета":

Пусть n - такое целое число, которое одновременно больше и меньше нуля. Тогда n в том и только том случае является положительным, когда оно является отрицательным.

Очевидно, что из него следует лишь несуществование предположенного нами числа n , а не противоречивость теории чисел в целом - этот же метод используется в доказательствах от противного.

Структура данного парадокса идентична структуре парадокса Рассела, что позволяет делать выводы лишь о противоречивости понятия "множество всех множеств", но не теории множеств в целом.

Варианты формулировок

Существует много популярных формулировок этого парадокса. Одна из них традиционно называется парадоксом брадобрея и звучит так:

Одному деревенскому брадобрею приказали «брить всякого, кто сам не бреется, и не брить того, кто сам бреется» , как он должен поступить с собой?

Еще один вариант:

В одной стране вышел указ: «Мэры всех городов должны жить не в своем городе, а в специальном Городе мэров» , где должен жить мэр Города мэров?

И ещё один:

Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылок на самих себя. Должен ли такой каталог включать ссылку на себя?

Литература

  • Р. Курант , Г. Роббинс . Что такое математика? гл. II, § 4.5
  • Мирошниченко П.Н. Что же разрушал парадокс Рассела в системе Фреге? // Современная логика:проблемы теории,истории и применения в науке. СПб.,2000. С.512-514.
  • Катречко С.Л. Расселовский парадокс брадобрея и диалектика Платона -Аристотеля //Современная логика:проблемы теории,истории и применения в науке. СПб.,2002. С.239-242.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Парадокс брадобрея" в других словарях:

    Парадокс Рассела открытый в 1901 году Бертраном Расселом и позднее независимо переоткрытый Э. Цермело теоретико множественный парадокс, демонстрирующий противоречивость логической системы Фреге, являвшейся ранней попыткой формализации… … Википедия

    Парадокс Рассела открытая в 1903 году Бертраном Расселом и позднее независимо переоткрытая Э. Цермело теоретико множественная антиномия, демонстрирующая несовершенство языка наивной теории множеств Г. Кантора, а не ее противоречивость. Антиномия… … Википедия

    Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера

    Уроборос «Змей, пожирающий сам себя». Самореференция (самоотносимость) явление, которое возникает в системах высказываний в тех случаях, когда некое понятие ссылается само на себя. Иначе говоря, если какое либо … Википедия

    - … Википедия

    Служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не устанавливается на информационные статьи списки и глоссари … Википедия

СОКРАЩЁННАЯ И ИЗМЕНЁННАЯ глава из работы
«Логические парадоксы. Пути решения»

Парадокс Б. Рассела «О парикмахере (цирюльнике, брадобрее)»

Бритый брадобрей или снова о парикмахере

В начале 20-го века Бертраном Расселом был открыт логический парадокс. Он сообщил о нём в своём письме к известному математику, философу и логику Готлобу Фреге – основателю современной логической семантики – когда тот «в 1902 году уже передал в печать второй том «Оснований арифметики». В письме «сообщалось о формальном противоречии в предложенном Фреге обосновании арифметики (парадокс Рассела), разрешить которое Фреге тщетно пытался до конца своей жизни. Однако именно Рассел принёс Фреге широкую известность, ибо в изложении Рассела (специальное приложение к Основаниям математики, 1903) концепция Фреге стала доступной широкому кругу читателей». Конец цитаты http://www.krugosvet.ru/articles/92/1009213/1009213a1.htm).
Не только Фреге, но и никто другой за сто с лишним лет до сегодняшнего дня не смог решить этот логический парадокс. Никто, кроме меня.

«Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса» (Ивин А. А. Искусство правильно мыслить. – М.: Просвещение. – 1998). В таком виде решение находится в другой статье: Парадокс Рассела – исходный вариант – о множествах, Но весь мир знает его в другой формулировке. Рассел «предложил следующий популярный вариант открытого им парадокса математической теории множеств.
Представим, что совет одной деревни так определил обязаннос­ти парикмахера этой деревни: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя?». (Ивин А. А. Искусство правильно мыслить. – М.: Просвещение. – 1990, c. 205 – 206, http://www.koob.ru/books/iskusstvo_pravilno_mislit.rar).

Было много искажений парадокса, а также попыток решить данное противоречие, но в основном все решения сводились к следующему.
«Если да (то есть парикмахер должен брить себя сам – моя вставка), то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, то он бу­дет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только в том случае, когда он не бреет себя. Что, разумеется, невозможно.

Рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно и нет такого жителя деревни, который брил бы всех тех и только тех её жителей, которые не бреются сами. Обязанности парикмахера не кажутся на первый взгляд проти­воречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не является всё-таки парадок­сальным. Условие, которому должен удовлетворять деревенский бра­добрей, на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой нет в ней человека, который был бы старше самого себя или который родился бы до своего рождения. Рассуждение о парикмахере может быть названо псевдопарадоксом». Конец цитаты (там же).

РЕШЕНИЕ

В 1992 году 19 декабря шла любимая многими до сих пор телеигра «Что? Где? Когда?». При счете 2:6 возникла, как это очень часто бывает, спорная, даже конфликтная ситуация. И тогда Владимир Яковлевич Ворошилов задал вопрос, который должен был принести победу или поражение знатокам. Это был вопрос о цирюльнике – парадокс Рассела. Конечно, знатоки проиграли, хотя могли выиграть. Потому что он задал несколько искажённый вариант вопроса:«Звучит вопрос: бреет ли сам себя цирюльник, если сам цирюльник бреет всех, кто не бреется сам?
Ответ знатоков: нет, не бреет.» (летопись/«Что? Где? Когда? Продюсерский центр ИГРА-ТВ», http://chgk.tvigra.ru/letopis/?19921219#cur). Им нужно было ответить:«Из информации о том, что цирюльник бреет всех, кто не бреется сам, невозможно сделать вывод о том, бреет ли он сам себя, бреет ли его кто-то другой или он вообще не бреется. Потому что нет достаточных оснований для таких выводов».
Но мне не давал покоя этот парадокс. Казалось, что ответ крутится в голове, нужно лишь «ухватить его за хвост». И мне через некоторое время это удалось.

Решение, как часто это бывает, просто до безумия. Всё рассуждение в деталях и с рассмотрением искажённых вариантов занимает несколько страниц. Я приведу лишь сокращённый вариант рассуждения.

Ответить на вопрос парадокса Рассела можно, если отнести парикмахера к какому либо классу мужчин: «бреются сами» или «не бреются сами». Но после логического анализа возможных оснований отнесения к этим классам множеств мужчин следует единственный вывод – это невозможно, потому что такого логически оправданного основания не существует. Исходя из данного вывода многие, в том числе и А. А. Ивин, пришли к заключению, что парадокс нерешаем, назвав его псевдопарадоксом. Но тогда следует и все другие парадоксы «решить» подобным образом раз и навсегда. Ведь никто же не думает, что может существовать в реальности ситуация разговора матери и крокодила, миссионера и людоедов и других. Значит, отрицание логического допущения не является решением. А решение таково:

Если невозможно отнести парикмахера ни к одному из классов «бреются сами» и «не бреются сами», значит, его нужно включить в третий класс – «НЕ БРЕЮТСЯ». И тогда парикмахер не нарушает ни одного логического условия, потому что на данный класс мужчин они не распространяются.

Все мужчины деревни

А. БРЕЮТСЯ 1 -сами, 2- не сами Б. НЕ БРЕЮТСЯ

И теперь парикмахеру суждено умереть бородатым.

Для правильного понимания данной задачи необходимо было лишь мысленно переставить частицу «не» перед глаголом «бреются» на место после него. И тогда смысл парадоксального условия задачи проявился бы, как на фотобумаге при печатании. Ведь фраза «не бреются сами» сразу же приняла вид абсолютно простой, не запутанной и понятной любому. А именно – «НЕ бреются сами» значит «бреются НЕ сами», то есть всё же бреются хотя и не собственными руками. И, таким образом, сразу же проявляется очевидная и грубая ошибка в логическом рассуждении всех тех, кто пытался решить данный парадокс. Такой тип ошибок я назвал «ложный вывод», когда делается абсолютно неверный и даже противоположный от необходимого по логике вывод («Логические парадоксы. Пути решения», глава «Ошибки рассуждения – ложный вывод», ). В данной задаче «ложный вывод» заключается в том, что фраза в логическом рассуждении должна звучать не в виде: «если парикмахер не должен брить себя сам, то будет относиться к тем, кто не бреется сам», что неверно, а в виде: «если парикмахер не должен брить себя сам, то будет относиться к тем, кто бреется не сам или НЕ БРЕЕТСЯ».

После решения «парадокса Рассела» я решил и другие известные парадоксы, применив к ним два общих постулата: 1. при подходе к решению любой проблемы необходимо чёткое понимание самой проблемы во всех деталях; 2. знание – относительное понятие («Логические парадоксы. Пути решения», глава «О принципах решения парадоксов»,

В наиболее общей форме парадокс Бертрана Рассела выглядит так:

Пусть М - множество всех множеств, которые не содержат себя в качестве своего элемента. Вопрос: содержит ли М само себя в качестве элемента?

Если ответ «да», то, по определению М, оно не должно быть элементом М и мы получили противоречие.

Если ответ «нет» - то, по определению М, оно должно быть элементом М - вновь противоречие…

«В чём же суть противоречия? Класс иногда является, а иногда не является членом самого себя. « Класс чайных ложек, например, не является другой чайной ложкой, но классы вещей, не являющиеся чайными ложками, являются одними из вещей, которые не являются чайными ложками».

Парадокс Рассела связан с использованием понятия класса всех собственных классов. «Собственным» называется класс, не содержащий себя самого в качестве своего элемента. «Несобственным» - класс, который, по предположению, содержит себя самого в качестве своего элемента. Полагают, что таков класс всех классов. Относительно класса всех собственных классов («расселовского класса») и ставится вопрос: каков он - собственный или несобственный? Если предположить, что он собственный, то он должен быть отнесён к несобственным классам, и наоборот.

В полушутливой форме Рассел представляет этот парадокс через однотипный, так называемый парадокс «Брадобрея» во «Введении в философию математики» (1919). Деревенский брадобрей должен брить всех тех и только тех жителей своей деревни, которые не бреются сами. Должен ли он брить самого себя? Если он будет брить себя, значит, он бреется сам и не имеет права брить себя. Но если он не будет брить себя, он имеет право себя брить. Таким образом можно продемонстрировать и парадоксальность «множества всех множеств, не являющихся собственными элементами». Надо отметить, что «Брадобрей» - не «чистый парадокс», ибо из него следует только, что такого парикмахера вообще не может существовать, т. е. «принципиально не может быть найдена никакая однозначная и непротиворечивая определённость для этой совокупности, содержащая элементы, определимые только в терминах этой совокупности, а также элементы, включающие в себя или предполагающие эту совокупность». Устраняется парадокс заключением, что если некоторые предпосылки рождают противоречие, значит они неверны.

Антиномия Рассела сыграла важную роль в развитии оснований математики. Она подорвала основы теории множеств, саму новую логику, стала истинным бедствием и крушением надежд тех, кто занимался проблемами обоснования математики и логики на рубеже XIX-XX веков.

Рассел в 1903 г. не признавал открыто, что обнаружил решение парадокса. В «Предисловии» к «Принципам математики» он отмечал, что единственным оправданием для публикации работы, имеющей ряд нерешённых вопросов, было то, что это исследование давало возможность глубже проникнуть в природу классов. Как возможное решение в «Приложении В» к данной работе Рассел предлагал простую теорию типов. В дальнейшем он приходит к убеждению, что именно эта теория, развитая в систему, даёт возможность устранить парадокс».

Колесников А. С., Философия Бертрана Рассела, Л., Издательство Ленинградского университета, 1991 г., с. 84-85.