Черных дыр не существует? September 29th, 2014

И как будто всего этого было недостаточно: сейчас появилась информация, что они и вовсе не существуют. Женщина математически доказала , что таких астрофизических объектов, как черные дыры, в природе просто не может существовать.

Давайте узнаем подробнее, что же это за версия в науке …

Объединив две, на первый взгляд, противоположные теории, Лаура Мерсини-Хьюстон (Laura Mersini-Houghton), профессор физики Колледжа наук и искусств Университета Северной Каролины (США), математически доказала, что черные дыры вообще не могли существовать. Ее исследование не только заставляет ученых переосмыслить ткань пространства-времени, но также и вновь задуматься над происхождением Вселенной.

Черные дыры - термин, популяризированный полвека назад американским теоретиком Джоном Уилером, - сверхмассивные релятивистские объекты, существование которых лежит в основе множества астрофизических теорий, описывающих эволюцию галактик, звезд, квазаров. И хотя сегодня их существование у большинства астрономов не вызывает сомнений, формально эти объекты считаются гипотетическими.

Поскольку эти объекты ни излучают свой, ни отражают чужой свет, определять их наличие можно только косвенными методами. Так, ученых убеждает в их существовании быстрое вращение звезд рядом с центрами галактик и отклонение лучей света (линзирование), которое наблюдается в окрестностях этих сильно гравитирующих объектов.

Астрономам известны черные дыры двух типов - звездных масс и сверхмассивные черные дыры массой в миллиарды масс Солнца.

Ведутся споры о существовании черных дыр промежуточных масс. Считается, что первый тип образуется при коллапсе массивных звезд, когда звезда, раздувшись, сбрасывает внешние слои и коллапсирует внутрь себя под действием собственной гравитации. Происхождение же сверхмассивных черных дыр вызывает у астрономов споры: то ли они формировались одновременно со Вселенной в сгустках темной материи, то ли при коллапсе больших газовых облаков.

То же самое произойдет, если Землю сжать до размеров грецкого ореха: ее плотность возрастет настолько, что ни одно тело не сможет оторваться от ее поверхности, даже двигаясь со скоростью света.

Основной характеристикой черной дыры является размер ее горизонта событий - воображаемой поверхности, попав за которую ни тело, ни информация уже не могут попасть обратно. Прелесть черных дыр в том, что они противопоставляют друг другу две фундаментальные физические теории - эйнштейновскую теорию гравитации, из которой вытекает возможность их существования, и квантовую теорию, которая постулирует, что никакая информация во Вселенной не может никуда исчезнуть.

В 1974 году известный британский ученый Стивен Хокинг предсказал, что черные дыры должны испаряться. Квантовая теория гласит, что в физическом вакууме постоянно рождаются пары частица - античастица. При этом рождение таких пар у горизонта событий допускает возможность, что одна частица упадет на черную дыру, а другая - нет. Так, улетевшие частицы могут уносить массу дыр за счет так называемого излучения Хокинга.

Примечательно, что свою теорию Хокинг выдвинул вскоре после того, как в 1973 году встречался в Москве с советскими физиками Яковом Зельдовичем и Алексеем Старобинским.

Они убедили Хокинга в том, что вращающаяся черная дыра может испускать электромагнитные волны и частицы.

Марсини-Хоутон математически описала процесс коллапса массивных звезд и пришла к парадоксу. Ее расчеты показали, что при коллапсе звезды возникает излучение Хоккинга, которое заставляет звезду стремительно терять свою массу.

Причем настолько стремительно, что плотность внутренних областей перестает расти и образование черной дыры останавливается.

«Я сама не могу оправиться от шока. Мы изучали эту проблему более 50 лет, и это решение заставляет нас о многом задуматься», - сказала исследовательница.

Исследование, которое было направлено в базу ArXiv , онлайн хранилище исследований в области физики, которые не рецензируются, содержит точные математические решения этой проблемы и подготовлено в сотрудничестве с Гаральдом Пайффером (Harald Peiffer), экспертом в области математической относительности из Университета Торонто (Канада). Более раннее исследование Мерсини-Хьюстон, также направленное в ArXiv в июне, было опубликовано в журнале Physics Letters B и содержит приблизительное решение исследуемой проблемы.

Экспериментальные данные когда-нибудь могут представить физическое доказательство, существуют ли черные дыры во Вселенной. Однако на данный момент, по словам Мерсини-Хьюстон, математические выводы являются окончательными.

Многие физики и астрономы полагают, что наша Вселенная возникла из сингулярности, которая стала расширяться после Большой взрыва. Однако если сингулярностей не существует, ученым придется вновь обдумать теорию Большого взрыва и даже вопрос о том, произошел ли он в действительности.

«Физики пытались объединить эти две теории – теорию гравитации Эйнштейна и квантовую механику – на протяжении десятилетий, и этот сценарий приводит теории в гармонию, — говорит Мерсини-Хьюстон. – Это очень важно».

Что на самом деле остается на месте массивных звезд, могут дать дальнейшие наблюдения. Взрывы массивных звезд уже наблюдались в новейшую историю, так, в 1987 году астрономы наблюдали ярчайшую вспышку сверхновой SN 1987A. Однако ни черной дыры, ни нейтронной звезды на ее месте пока не обнаружено.

источники

http://www.gazeta.ru/science/2014/09/26_a_6235185.shtml

http://arxiv.org/abs/arXiv:1409.1837

http://www.newsfiber.com/p/s/h?v=EYb27xuC%2FrUc%3D+ABi3NuZBMb0%3D

http://nauka21vek.ru/archives/58918

А я вам еще вот про что напомню: или посмотрите например как происходит Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Черными дырами названы звезды, которые предположительно имеют настолько большие массы и малые размеры, что свет не может преодолеть силу тяжести и покинуть звезду.

По-видимому, черные дыры - это те объекты Вселенной, которые привлекают наибольшее внимание людей. Это звезды большой массы на конечной стадии жизни, которые создают столь сильное гравитационное поле, что абсолютно не могут отражать свет, поэтому для наблюдателя они кажутся черными. Не излучая электромагнитной энергии какого-либо типа, они не могут наблюдаться непосредственно, и поэтому настолько трудно подробно изучить их природу, что можно начать сомневаться в их существовании. Но в последние годы набралось достаточное количество доказательств их наличия, позволивших с достаточной уверенностью определить место этих объектов среди прочих, населяющих Вселенную.

Итак, тело, подвергающееся достаточно значительному сжатию, через какое-то время перестает отпускать от себя световые лучи. Радиус, при котором это начинает происходить, впервые рассчитал Карл Шварцшильд . По всей видимости, его можно считать величайшим астрофизиком первой половины двадцатого столетия. Ему принадлежат основополагающие вклады во многие разделы астрофизики. После того как сформулировал свои уравнения общей теории относительности, Карл Шварцшильд незадолго до своей смерти получил для них первые точные решения, описывающие, в частности, и свойства черных дыр. Шварцшильд был директором обсерваторий в Гёттингене и Потсдаме; в 1916 г. в возрасте 43 лет он умер от болезни, полученной им на фронтах первой мировой войны. Его прах покоится на центральном кладбище в Гёттингене.

Радиус, до которого необходимо сжать тело, чтобы свет от него не мог уходить в пространство, называют радиусом Шварцшильда . Для Солнца он составляет около трех километров. Если сжать Солнце до этого или меньшего радиуса, то его свет не будет выходить наружу. Вообще говоря, радиус Шварцшильда может быть рассчитан для любого тела. Чем меньше масса тела, тем меньше и радиус Шварцшильда. Для того количества вещества, из которого состоит человек, радиус Шварцшильда настолько мал, что если его выразить в сантиметрах, получится ноль целых и еще двадцать один ноль после запятой, и только дальше появятся цифры, отличные от нуля. Если сжать массу, равную массе человека, до столь малого радиуса, то во внешнее пространство от нее не будет уходить свет.

Превратившись в черную дыру, небесное тело не исчезает из Вселенной. Оно дает о себе знать внешнему миру благодаря своей гравитации. Черная дыра поглощает световые лучи, проходящие вблизи нее, и отклоняет лучи, идущие от нее на более значительном расстоянии. Черная дыра может вступать в гравитационное взаимодействие с другими телами: она может удерживать около себя планеты или образовывать с другой звездой двойную систему.

Но пока что это все был наш мысленный эксперимент. Существуют ли черные дыры в действительности? Довольно трудно представить себе, чтобы на нейтронную звезду поступало столь большое количество вещества, что ее масса увеличилась до того предела, за которым наступает гравитационный коллапс. У рентгеновских двойных звезд, например, поток вещества, поступающего к нейтронной звезде, настолько мал, что за все время жизни звезды, отдающей свою массу, масса нейтронной звезды увеличивается совсем ненамного. Но что мы знаем о возникновении нейтронных звезд? Всего лишь то, что пульсар в Крабовидной туманности образовался после взрыва Сверхновой. А что мы знаем о взрывах сверхновых? Не может ли случиться, что иногда после разлета внешней оболочки остается еще масса, достаточная не только для образования нейтронной звезды, но и для дальнейшего коллапса ее в черную дыру? Относительно некоторых рентгеновских двойных имеется сильное подозрение, что компактным объектом, от которого исходит рентгеновское излучение, является не нейтронная звезда, а черная дыра. Вещество, которое идет от звезды-спутника, может еще до того, как станет невидимым в недрах черной дыры, разогреться до такой степени, что начнет испускать рентгеновское излучение. По движению видимой звезды можно рассчитать массу рентгеновского источника. Считают, что у рентгеновского источника Лебедь Х-1 масса компактного объекта превышает три солнечных массы. Этот компактный объект уже не может быть нейтронной звездой; не является ли он черной дырой?

Умирающие звезды превращаются в компактные объекты, в которых вещество связано навечно. Однако прежде они выбрасывают часть своей массы в пространство - это то вещество, которое может послужить для образования новых звезд. И то вещество, из которого состоят наши собственные тела, по меньшей мере однажды кипело в недрах какой-нибудь звезды. Но почти всегда после звезды остается компактный объект, и в конце концов вся материя во Вселенной будет сосредоточена в остывающих белых карликах, нейтронных звездах и черных дырах, вокруг которых обращаются безрадостные холодные планеты. Похоже, что Вселенную ожидает довольно-таки унылое будущее.

Несмотря на огромные достижения в области физики и астрономии, есть немало явлений, суть которых до конца не раскрыта. К таким явлениям принадлежат загадочные черные дыры, вся информация о которых носит лишь теоретический характер и не может быть проверена практическим путем.

Существуют ли черные дыры?

Еще до появления теории относительности астрономами была высказана теория о существовании черных воронок. После публикации теории Эйнштейна был пересмотрен вопрос гравитации и в проблеме черных дыр появились новые предположения. Увидеть этот космический объект нереально, ведь он поглощает весь свет, попадающий в его пространство. Ученые доказывают наличие черных дыр, опираясь на анализ движения межзвездного газа и траектории передвижений звезд.

Образование черных дыр ведет к изменению вокруг них пространственно-временных характеристик. Время будто сжимается под влиянием огромной гравитации и замедляется. Звезды, оказавшиеся на пути черной воронки, могут уклоняться от своего маршрута и даже менять направление движения. Черные дыры поглощают энергию своей звезды-двойника, чем также проявляют себя.

Как выглядит черная дыра?

Информация, касающаяся черных дыр, по большей части носит гипотетический характер. Ученые изучают их по их воздействию на пространство и излучению. Увидеть черные дыры во вселенной не представляется возможным, ведь они поглощают весь свет, попадающий в близлежащее пространство. Со специальных спутников было сделано рентгеновское изображение черных объектов, на котором виден яркий центр, являющийся источником излучения лучей.

Как образуются черные дыры?

Черная дыра в космосе является отдельным миром, который имеет свои уникальные характеристики и свойства. Свойства космических дыр обусловлены причинами их появления. Относительно появления черных объектов существуют такие теории:

  1. Они являются результатом коллапсов, происходящих в космосе. Это может быть столкновение крупных космических тел или взрыв сверхновых звезд.
  2. Они возникают вследствие утяжеления космических объектов при сохранении их размеров. Причина такого явления не определена.

Черная воронка – это объект в космосе, имеющий относительно небольшой размер при огромной массе. Теория черной дыры говорит, что каждый космический объект потенциально может стать черной воронкой, если в результате каких-то явлений он будет терять свои размеры, но сохранять массу. Ученые даже говорят о существовании множества черных микродыр – миниатюрных космических объектах с относительно большой массой. Такое несоответствие массы и размера приводит к усилению гравитационного поля и появлению сильного притяжения.

Что находится в черной дыре?

Черный таинственный объект можно назвать дырой лишь с большой натяжкой. Центром этого явления является космическое тело, имеющее повышенную гравитацию. Результатом такой гравитации становится сильное притяжение к поверхности этого космического тела. При этом образуется вихревой поток, в котором вращаются газы и крупицы космической пыли. Поэтому черную дыру правильнее называть черной воронкой.

Узнать на практике, что внутри черной дыры, невозможно, потому что уровень гравитации космической воронки не позволяет никакому объекту вырваться из зоны ее влияния. По мнению ученых, внутри черной дыры полная темнота, ведь кванты света исчезают в ней безвозвратно. Предполагается, что внутри черной воронки искажается пространство и время, законы физики и геометрии в этом месте не действуют. Такие особенности черных дыр предположительно могут приводить к образованию антивеществ, которые на данный момент не знакомы ученым.

Чем опасны черные дыры?

Иногда черные дыры описываются как объекты, поглощающие окружающие предметы, излучения и частицы. Такое представление неверно: свойства черной дыры позволяют ей впитывать лишь то, что попадает в зону ее влияния. Она может втягивать в себя космические микрочастицы и излучение, исходящее от звезд-двойников. Даже если планета находится вблизи черной дыры, она не будет поглощена, а продолжит двигаться по своей орбите.

Что будет, если попасть в черную дыру?

Свойства черных дыр зависят от силы гравитационного поля. Черные воронки притягивают к себе все, что попадает в зону их влияния. При этом изменяются пространственно-временные характеристики. Ученые, изучающие все о черных дырах, расходятся во мнении относительного того, что происходит с предметами в этой воронке:

  • одни ученые предполагают, что все предметы, попадающие в эти дыры, растягиваются или разрываются на куски и не успевают достичь поверхности притягивающего объекта;
  • другие же ученые утверждают, что в дырах искривляются все привычные характеристики, поэтому предметы там как бы исчезают во времени и пространстве. По этой причине черные дыры иногда называют воротами в иные миры.

Виды черных дыр

Черные воронки делятся по видам, исходя из способа их образования:

  1. Черные объекты звездных масс зарождаются в конце жизни некоторых звезд. Полное сгорание звезды и окончание термоядерных реакций приводит к сжатию звезды. Если же при этом звезда претерпит гравитационный коллапс, то сможет трансформироваться в черную воронку.
  2. Сверхмассивные черные воронки . Ученые утверждают, что сердцевиной любой галактики является сверхмассивная воронка, образование которой является началом появления новой галактики.
  3. Первичные черные дыры . Сюда могут относиться дыры различной массы, включая микродыры, образовавшиеся из-за расхождений в плотности материи и силе гравитации. Такие дыры – это воронки, образовавшиеся в начале зарождения Вселенной. Сюда же относятся такие объекты, как волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.
  4. Квантовые черные дыры . Появляются как результат ядерных реакций и живут непродолжительное время. Квантовые воронки представляют наибольший интерес, так как их изучение может помочь ответить на вопросы по проблеме черных космических объектов.
  5. Некоторые ученые выделяют такой вид космических объектов, волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.

Ближайшая черная дыра к Земле

Ближайшая черная дыра удалена от Земли на 3000 световых лет. Она называется V616 Monocerotis, или V616 Mon. Ее вес достигает 9-13 масс Солнца. Бинарный партнер этой дыры – звезда в полмассы Солнца. Еще одна относительно близкая к Земле воронка - Cygnus X-1. Она располагается от Земли в 6 тысячах световых лет и весит в 15 раз больше Солнца. Эта черная космическая дыра тоже имеет своего бинарного партнера, движение которого и помогает отследить влияние Cygnus X-1.

Черные дыры - интересные факты

Ученые рассказывают о черных объектах такие интересные факты:

  1. Если брать в расчет, что эти объекты являются центром галактик, то для поиска самой большой воронки следует обнаружить самую крупную галактику. Поэтому самая большая черная дыра во вселенной – воронка, находящаяся в галактике IC 1101 в центре скопления Abell 2029.
  2. Черные объекты на самом деле выглядят как разноцветные. Причина этого кроется в их радиомагнитном излучении.
  3. В середине черной дыры нет постоянных физических или математических законов. Все зависит от массы дыры и ее гравитационного поля.
  4. Черные воронки постепенно испаряются.
  5. Вес черных воронок может доходить до неимоверных размеров. Масса наибольшей черной дыры равняется 30 миллионам масс Солнца.

Черные дыры являются одними из самых удивительных и в то же время пугающих объектов нашей Вселенной. Возникают они в тот момент, когда в звездах, имеющих огромную массу, заканчивается ядерное топливо. Ядерные реакции прекращаются и светила начинают остывать. Тело звезды сжимается под действием гравитации и постепенно она начинает притягивать к себе более мелкие объекты, трансформируясь в черную дыру.

Первые исследования

Изучать черные дыры светила науки начали не так давно, несмотря на то что основные концепции их существования были разработаны еще в прошлом столетии. Само понятие «черной дыры» было введено в 1967 году Дж. Уиллером, хотя вывод о том, что эти объекты неизбежно возникают при коллапсе массивных звезд, был сделан еще в 30-х годах прошлого столетия. Все, что внутри черной дыры - астероиды, свет, поглощенные ею кометы, - когда-то приблизилось слишком близко к границам этого загадочного объекта и не сумело их покинуть.

Границы черных дыр

Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.

Строение черных дыр

Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению - ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.

Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.

Основные категории

Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные, а также сверхмассивные. Их масса превосходит массу Солнца в несколько сотен тысяч раз. Звездные образуются после смерти больших небесных светил. Черные дыры обычной массы появляются после завершения жизненного цикла больших звезд. Оба вида черных дыр, несмотря на различное происхождение, имеют сходные свойства. Сверхмассивные черные дыры расположены в центрах галактик. Ученые предполагают, что они сформировались во времена образования галактик за счет слияния плотно прилежащих друг к другу звезд. Однако это только догадки, не подтвержденные фактами.

Что внутри черной дыры: догадки

Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины - переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.

Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи.

Связь с теорией относительности

Черные дыры являются одним из самых удивительных предсказаний А. Эйнштейна. Известно, что сила тяготения, которая создается на поверхности любой планеты, обратно пропорциональна квадрату ее радиуса и прямо пропорциональна ее массе. Для этого небесного тела можно определить понятие второй космической скорости, которая необходима, чтобы преодолеть эту силу тяготения. Для Земли она равна 11 км/сек. Если же масса небесного тела будет увеличиваться, а диаметр - наоборот, уменьшаться, то вторая космическая скорость со временем может превысить скорость света. И поскольку, согласно теории относительности, никакой объект не может двигаться быстрее скорости света, то образуется объект, не дающий ничему вырваться за его пределы.

В 1963 году учеными были обнаружены квазары - космические объекты, являющиеся гигантскими источниками радиоизлучения. Располагаются они очень далеко от нашей галактики - их удаленность составляет миллиарды световых лет от Земли. Чтобы объяснить чрезвычайно высокую активность квазаров, ученые ввели гипотезу о том, что внутри них располагаются черные дыры. Эта точка зрения сейчас является общепринятой в научных кругах. Исследования, которые проводились в течение последних 50 лет, не только подтвердили данную гипотезу, но и привели ученых к выводу о том, что черные дыры есть в центре каждой галактики. В центре нашей галактики также есть такой объект, его масса составляет 4 миллиона солнечных масс. Эта черная дыра носит название «Стрелец А», и поскольку она расположена ближе всего к нам, ее больше всего исследуют астрономы.

Излучение Хокинга

Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым - ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами - под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры - возле ее внешней границы, горизонта событий. Такое рождение является парным - появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.

В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.

Вопрос о сохранении информации

Одной из основных проблем, которая появилась после открытия излучения Хокинга, является проблема потери информации. Связана она с вопросом, кажущимся на первый взгляд очень простым: что произойдет, когда черная дыра испарится полностью? Обе теории - как квантовая физика, так и классическая - имеют дело с описанием состояния системы. Обладая информацией о начальном состоянии системы, при помощи теории можно описать, каким образом она будет меняться.

При этом в процессе эволюции информация о начальном состоянии не теряется - действует своего рода закон о сохранении информации. Но если черная дыра испарится полностью, то наблюдатель теряет информацию о той части физического мира, который когда-то попал в дыру. Стивен Хокинг считал, что информация о начальном состоянии системы каким-то образом восстанавливается после того, как черная дыра испарилась полностью. Но трудность состоит в том, что по определению из черной дыры передача информации невозможна - ничто не может покинуть горизонт событий.

Что будет, если попадешь в черную дыру?

Считается, что если бы каким-либо невероятным способом человек мог попасть на поверхность черной дыры, то она сразу стала бы его затягивать в направлении себя. В конечном счете человек бы растянулся настолько, что превратился бы в поток субатомных частиц, движущихся по направлению к точке сингулярности. Доказать эту гипотезу, конечо же, невозможно, ведь ученые вряд ли когда-нибудь смогут узнать, что происходит внутри черных дыр. Сейчас некоторые физики заявляют, что если бы человек попал в черную дыру, то у него появился бы клон. Первая из его версий сразу же была бы уничтожена потоком раскаленных частиц излучения Хокинга, а вторая бы прошла через горизонт событий без возможности вернуться назад.

На днях ученый из США выступил с сенсационным заявлением о том, что «черных дыр» в природе не существует. К такому выводу американский физик пришел, после того, как соединил между собой две противоречивые теории на этот счет. Однако данная гипотеза вполне логично объясняет возникающее несоответствие между квантовой механикой и теорией относительности Эйнштейна.

Стоит отметить: более пятидесяти лет ученые считали, что материя под действием собственной гравитации при коллапсе звезды сжимается, образуя в итоге сингулярность, которая становится ядром черной дыры и способна уничтожить любую материю. Причем главной особенностью черный дыры является горизонт событий, своего рода граница за которую не может выйти даже свет.

На сегодняшний день большинство астрофизиков и любителей фантастики не сомневаются в существовании черных дыр, которые также неоднократно упоминаются в различных кинофильмах. Существуют даже косвенные доказательства существования черных дыр. В частности, считается, что в центре нашей галактики также располагается огромная черная дыра.

Между тем довольно часто в ходе объяснения происхождения и функционирования черных дыр возникают некоторые трудности. В частности, теория гравитации Эйнштейна подтверждает образование сингулярности, но согласно фундаментальным основам квантовой теории, во Вселенной никакая информация не может исчезнуть. Поэтому объединение двух этих теорий неизменной приводит к так называемому парадоксу потери информации.

Еще в 1974 году ученый Стивен Хокинг попробовал объяснить парадокс, используя квантовую механику. Он предположил, что несоответствие вполне можно объяснить существованием гипотетического излучения черной дыры. Данное излучение, которое назвали хокинговым, представляет собой поток виртуальных элементарных частиц. В результате воздействия квантовых эффектов они испаряются с поверхности черной дыры. Получается, что если сингулярность не будет поглощать энергию, то постепенно она «испарится», выбросив в итоге часть хаотичной информации. В какой-то мере это будет способствовать разрешению парадоксов.

Однако данная теория также порождает большое количество несоответствий. Тогда два года назад была выведена новая теорию, согласно которой в образовании квантовых эффектов виновата так называемая «стена огня» черной дыры, которая возникает позади невидимого события и мгновенно уничтожает любую материю. Данная теория вызвала огромный интерес в научном мире и в какой-то степени способствовала образованию ряда других гипотез. В частности, согласно гипотезе Хуана Малдасены наша Вселенная представляет собой проекцию информации на плоскость.

Другую теорию предложила профессор физики Лаура Мерсини-Хоутон. Она согласна с тем, что под действием гравитации звезда производит излучение Хокинга при коллапсировании. Однако, по расчетам эксперта звезда при этом также лишается массы. Поэтому она не сможет сжаться в сингулярность и образовать новую черную дыру. То есть, вместо того, чтобы умирающая звезда должна сформировать черную дыру, она взрывается.
Получается, что она не образует парадокс событий и другие, связанные с этим несоответствия. Таким образом,можно сказать, что черных дыр на самом деле не существует.

Таким образом, можно сказать, что гипотеза Мерсини-Хоутон порождает не меньше вопросов, чем гипотезы других ученых. Также ошибочными признаются теории о том, что наша Вселенная возникла из сингулярности, которая во время большого взрыва неожиданно начала расширяться. По мнению Мерсини-Хоутон, это не могло произойти, так как никакой сингулярности не было.

No related links found